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Abstract The purpose of this paper is to provide a com- (1996) and the 4DVAR method which has been much stud-
prehensive presentation and interpretation of the Ensemblied by the meteorological community (see e.g. Talagrand and
Kalman Filter (EnKF) and its numerical implementation. The Courtier, 1987; Courtier and Talagrand, 1987; Courtier et al.,
EnKF has a large user group and numerous publications hav&994; Courtier, 1997).
discussed applications and theoretical aspects of it. This pa-
per reviews the important results from these studies and also  This paper gives a comprehensive presentation of the EnKF,
presents new ideas and alternative interpretations which furand it may serve as an EnKF reference document. For a user
ther explain the success of the EnKF. In addition to providingof the EnKF it provides citations to hopefully all previous
the theoretical framework needed for using the EnKF, there ipublications where the EnKF has been examined or used. It
also a focus on the algorithmic formulation and optimal nu-also provides a detailed presentation of the method both in
merical implementation. A program listing is given for some terms of theoretical aspects and the practical implementation.
of the key subroutines. The paper also touches upon specifigor experienced EnKF users it will provide a better under-
issues such as the use of nonlinear measurenieisiipro-  standing of the EnKF through the presentation of a new and
files of temperature and salinity, and data which are avail-alternative interpretation and implementation of the analysis
able with high frequency in time. An ensemble based optimalscheme.
interpolation (EnOl) scheme is presented as a cost effective
approach which may serve as an alternative to the EnKF in  |n the next section, an overview is given of previous works
some applications. involving the EnKF. Further, in Section 3, an overview of
the theoretical formulation of the EnKF will be given. There-
after the focus will be on implementation issues starting with
the generation of the initial ensemble in Section 4.1 and the
Key words Data assimilation — Ensemble Kalman Filter ~ stochastic integration of the ensemble members in Section 4.2.
The major discussion in this paper relates to the EnKF anal-
ysis scheme which is given in Section 4.3. Section 5 dis-
1 Introduction cusses particular aspects of the numerical implementation.
Appendix A presents an approach for examining the con-

The Ensemble Kalman Filter has been examined and applieaIStency Pf the EnKF bqsgd on comparisons of mnpvatpns
in a number of studies since it was first introduced by Evenseﬁmd pre_d|cted error st_at|st|cs. In Appendix B an optlmal n-

(1994b). It has gained popularity because of it's simple Con_terpolatlon glgorlthm' IS pregented. It uses a stayonary en-
ceptual formulation and relative ease of implementation, e_g_semble but is otherwise similar to the EnKF, and it can thus

it requires no derivation of a tangent linear operator or ad-be denoted Ensemble Optimal Interpolation (EnOl). In Ap-

joint equations and no integrations backward in time. Fur-Pendix C we have given an algorithm which is currently used

ther, the computational requirements are affordable and corfOF assimilation of observations of subsurface quantities. In
parable with other popular sophisticated assimilation meth-Appendlx D the Ensemble Kaiman Smoother (EnKS) is pre-

ods such as the representer method by Bennett (1992); Ber?‘-emed in terms of the terminology developed in this paper.

nett et al. (1993); Bennett and Chua (1994); Bennett et aIIF IS llustrated how the smoothe_r SOIUUOD can be very ef-
ficiently computed as a reanalysis following the use of the
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G. Evensen: The ensemble Kalman Filter...

2 Chronology of ensemble assimilation developments general filter could be derived and the EnKF could be shown
to be a suboptimal solver of the general filter where the prior
This section attempts to provide a complete overview of thedensities are assumed to be Gaussian distributed.
developments and applications related to the EnKF. In addi- Hamill and Snyder (2000) constructed a hybrid assimila-
tion it also points to other recently proposed ensemble basetion scheme by combining 3DVAR and the EnKF. The esti-
methods and some smoother applications. mate is computed using the 3DVAR algorithm but the back-
ground covariance is a weighted average of the time evolving
EnKF error covariance and the constant 3DVAR error covari-
2.1 Applications of the EnKF ance. A conclusion was that with increasing ensemble size
the best results were found with larger weight on the EnKF
Applications involving the EnKF are numerous and includeserror covariance.
the initial work by Evensen (1994b) and an additional exam-  Hamill et al. (2000) report from working groups in a work-
ple in Evensen (1994a) which showed that the EnKF resolveghop on ensemble methods.
the closure problems reported from applications of the Ex-  Keppenne (2000) implemented the EnKF with a two layer
tended Kalman Filter (EKF). shallow water model and examined the method in twin ex-
An application with assimilation of altimeter data for the periments assimilating synthetic altimetry data. He focused
Agulhas region was discussed in Evensen and van Leeuweon the numerical implementation on parallel computers with
(1996) and later in an intercomparison with the Ensembledistributed memory and found the approach efficient for such
Smoother (ES) by van Leeuwen and Evensen (1996). systems. He also examined the impact of ensemble size and
An example with the Lorenz attractor was given by Evensa&oncluded that realistic solutions could be found using a mod-
(1997) where it was shown that the EnKF could track theest ensemble size.
phase transitions and find a consistent solution with realistic ~ Mitchell and Houtekamer (2000) introduced an adaptive
error estimates even for such a chaotic and nonlinear modelformulation of the EnKF where the model error parameter-
Burgers et al. (1998) reviewed and clarified some pointsization was updated by incorporating information from the
related to the perturbation of measurements in the analysiginovations during the integration.
scheme, and also gave a nice interpretation supporting the Park and Kaneko (2000) presented an experiment where
use of the ensemble mean as the best estimate. the EnKF was used to assimilate acoustic tomography data
Houtekamer and Mitchell (1998) introduced a variant of into a barotropic ocean model.
the EnKF where two ensembles of model states are integrated Gronnevik and Evensen (2001) examined the EnKF for
forward in time, and statistics from one ensembile is used taise in fish stock assessment, and also intercompared it with
update the other. The use of two ensembles was motivatethe Ensemble Smoother (ES) and the Ensemble Kalman Smoother
by claiming that this would reduce possible inbreeding in the(EnKS).
analysis. This has, however, lead to some dispute discussed Heemink et al. (2001) have been examining different ap-
in the comment by van Leeuwen (1999a) and the reply byproaches which combine ideas from RRSQRT filtering and
Houtekamer and Mitchell (1999). the EnKF to derive computationally more efficient methods.
Miller et al. (1999) included the EnKF in a comparison Houtekamer and Mitchell (2001) have continued the ex-
with nonlinear filters and the Extended Kalman Filter, andamination of the two-ensemble approach and introduced a
concluded that it performed well, but could be beaten by atechnique for computing the global EnKF analysis in the case
nonlinear and more expensive filter in difficult cases wherewith many observations, and also a method for filtering of
the ensemble mean is not a good estimator. eventual long range spurious correlations caused by a lim-
Madsen and (Q@izares (1999) compared the EnKF and ited ensemble size. As will be seen below the current paper
the reduced rank square root implementation of the Extendegresents a much more efficient way to compute the global
Kalman filter with a 2-D storm surge model. This is a weakly analysis and also argues against filtering of covariances.
nonlinear problem and good agreement was found between Pham (2001) reexamined the EnKF in an application with
the EnKF and the extended Kalman filter implementation. the Lorenz attractor and intercompared results with those ob-
Echevin et al. (2000) studied the EnKF with a coastal ver-tained from versions of the Singular Evolutive Extended Kalman
sion of the Princeton Ocean Model and focussed in particula(SEEK) filter and a particle filter. Ensembles with very few
on the horizontal and vertical structure of multivariate covari- members were used and this favoured methods like the SEEK
ance functions from sea surface height. It was concluded thawvhere the “ensemble” of EOFs is selected to best possible
the EnKF could capture anisotropic covariance functions rerepresent the model attractor.
sulting from the impact of coastlines and coastal dynamics, Verlaan and Heemink (2001) applied the RRSQRT and
and had a particular advantage over simpler methodologieEnKF filters in test examples with the purpose of classifying
in such areas. and defining a measure of the degree of nonlinearity of the
Evensen and van Leeuwen (2000) rederived the EnKF amodel dynamics. Such an estimate may have an impact on
a suboptimal solver for the general Bayesian problem of findthe choice of assimilation method.
ing the posterior distribution given densities for the model = Hansen and Smith (2001) proposed a method for produc-
prediction and the observations. From this formulation theing analysis ensembles based on integrated use of the 4DVAR
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method and the EnKF. A probabilistic approach was used angMICOM) by Bleck et al. (1992) for the Indian Ocean. The
lead to high numerical cost, but an improved estimate couldbaper provided an analysis of regionally dependent covari-
be found compared to 4DVAR and the EnKF used separatelyance functions in the tropics and subtropics and also the mul-
Hamill et al. (2001) examined the impact of ensemble sizetivariate impact of assimilating satellite observations.

on noise in distant covariances. They evaluated the impact Brusdal et al. (2002) discussed a similar application as
of using an “inflation factor” as introduced by Anderson and Haugen et al. (2002), but focussed on the North Atlantic.
Anderson (1999), and also the use of a Schur product of thén addition, this paper included an extensive intercompari-
covariance with a correlation function to localize the back-son of the theoretical background of the EnKF, EnKS and
ground covariances as previously discussed by Houtekamehe SEEK filter, and also compared results from these meth-
and Mitchell (2001). The inflation factor is used to replace ods using the same model and measurements. This paper, to-

the forecast ensemble according to gether with Haugen et al. (2002), are the first applications of
N the EnKF with a full-blown OGCM in a realistic application,
Y=o, — )+, @ and have proved the feasibility of the assimilation system for

with p slightly greater than one (typically 1.01). The purpose real oceanographic problems.
is to account for a slight under representation of variance due  Natvik and Evensen (2002a,b) presented the first realis-
to the use of a small ensemble. tic 3-D application of the EnKF with a marine ecosystem
Bishop et al. (2001) used an implementation of the EnKFmodel. These papers proved the feasibility of assimilating
in an observation system simulation experiment. Ensemblé&€aWiFS ocean colour data to control the evolution of a ma-
predicted error statistics were used to determine the optimaline ecosystem model. In addition several diagnostic methods
configuration of future targeted observations. The applicatiorvere introduced which can be used to examine the statistical
typically looked at a case where additional targeted measureand other properties of the ensemble.
ments could be deployed over the next few days and the de- Mitchell et al. (2002) examined the EnKF with a global
ployment could be optimized to minimize the forecast errorsatmospheric general circulation model with simulated data
in a selected region. The methodology was named Ensenfe€sembling realistic operational observations. They assimi-
ble Transform Kalman Filter and it was further examined by lated 80 000 observations a day. The system was examined
Majumdar et al. (2001). with respect to required ensemble size, and the effect of lo-
Reichle et al. (2002) give a nice discussion of the EnKFcalization (local analysis at a grid point using only nearby
in relation to the optimal representer solution. They find goodmeasurements). It was found that severe localization could
convergence of the EnKF toward the representer solution withéad to imbalance, but with large enough ratio of influence
the difference being caused by the Gaussian assumptions ustf the measurements, this was not a problem and no digital
in the EnKF at analysis steps. These are avoided in the refiltering was required. In the experiments they also included
resenter method which solves for the maximum likelihood model errors and demonstrated the importance of this to avoid
smoother estimate. filter divergence. This work is a significant step forward and it

Evensen (2002) provided an intercomparison and reviewshows promising results with respect to using the EnKF with
of sequential assimilation methods including some simple exatmospheric forecast models.
amples. Keppenne and Rienecker (2002) implemented a massively
Bertino et al. (2002) applied the EnKF and the Reducedparallel version of the EnKF with the Poseidon isopycnic co-
Rank Square Root (RRSQRT) filter with a model for the Odraordinate ocean model for the tropical Pacific. They demon-
estuary. The two methods were compared and used to assirgtrated the assimilation ah situ observations and focussed
ilate real observations to assess the potential for operation&n the parallelization of the model and analysis scheme for
forecasting in the lagoon. This is a relatively linear model andcomputers with distributed memory. They also showed that
the EnKF and the RRSQRT filter provided similar results. ~ regionalization of background covariances has negligible im-
Eknes and Evensen (2002) examined the EnKF with a 1-act on the quality of the analysis.
D three component marine ecosystem model with focus on
sensitivity to the characteristics of the assimilated measure-
ments and the ensemble size. It was found that the EnKR.2 Other ensemble based filters
could handle strong nonlinearities and instabilities which oc-
cur during the spring bloom. The EnKF can also be related to some other sequential filters
Allen et al. (2002) takes the Eknes and Evensen (20025uch as the Singular Evolutive Extended Kalman (SEEK) fil-
work one step further by applying the method with a 1-D ter by Pham et al. (1998); Brasseur et al. (1999); Carmillet
version of ERSEM for a site in the Mediterranean Sea. Theyet al. (2001) (see also Brusdal et al., 2002, for an intercompar-
showed that even with such a complex model it is possible tason of the SEEK and the EnKF); the Reduced Rank Square
find an improved estimate by assimilatimgsitu data intothe ~ Root (RRSQRT) filter by Verlaan and Heemink (2001); and
model. the Error Subspace Statistical Estimation (ESSE) filter by
Haugen and Evensen (2002) applied the EnKF to assimitermusiaux and Robinson (1999a,b); Lermusiaux (2001) which
late sea level anomalies and sea surface temperature data irtan be interpreted as an EnKF where the analysis is computed
a version of the Miami Isopycnic Coordinate Ocean Modelin the space spanned by the EOFs of the ensemble.
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Anderson (2001) proposed a method denoted the “Eni.e., taking non-Gaussian contributions in the predicted error
semble Adjustment Kalman Filter” where the analysis is com-statistics into account when computing the analysis. These
puted without adding perturbations to the observations. Thisre discarded in the EnKF (see Evensen and van Leeuwen,
still gives the correct mean of the analyzed ensemble but irR000), and a fully nonlinear filter is expected to improve the
the EnKF it would give too low variance as explained by results when used with nonlinear dynamical models with multi-
Burgers et al. (1998). This is accounted for by deriving a lin-modal behaviour where the predicted error statistics are far
ear operator which replaces the traditional gain matrix and refrom Gaussian. Implementations of nonlinear filters have been
sults in an updated ensemble which is consistent with theoryproposed by Miller et al. (1999), Anderson and Anderson
A drawback may be the required inversion of the measure{1999), Pham (2001) and Miller and Ehret (2002), although
ment error covariance when this is nondiagonal. This methodhey are still not practical for high dimensional systems due to
becomes a variant of the square root algorithm used by Bisholarge numerical cost. A promising exception is the approach
et al. (2001). Itis demonstrated that for small ensembles (10taken by van Leeuwen (2002) based on importance sampling.
20 members) the EAKF performs better than the EnKF.

Whitaker and Hamill (2002) proposed another version of
the EnKF where the perturbation of observations are avoided3 Sequential data assimilation
The scheme provides a better estimate of the analysis vari-
ance by avoiding the sampling errors of the observation perThis section gives a brief introduction to sequential data as-
turbations. The scheme was tested for small ensemble siz&milation methodologies such as the Kalman Filter (KF) and
(10-20 members) where it had a clear benefit on the resultdhe Extended Kalman Filter (EKF) and outline the general
The scheme is based on a redefinition of the Kalman gairtheory of the EnKF.
derived from the equation

P*=(I-KH)P'(I- H"K")+ KRK" @ 3.1 A variance minimizing analysis
=(I-KH)P" L _ .
( ) The Kalman Filter is a sequential filter method, which means
where the termi RKT = 0 without perturbations of mea- that the model is integrated forward in time and whenever

surements. A solution of this equation is measurements are available these are used to reinitialize the
model before the integration continues. We neglect the time
A — -117T index and denote a model forecast and analysiﬁfaemdz/;'“l
K=PH [( VHP H" + R) ] respectively and the measurements are containetl Fur-

1 ) ther, the respective covariances for model forecast, analysis
X {\/ HP'H" + R+ \/E} ) and measurements are denofed P* and R, and the anal-

ysis equation becomes
This is essentially a Monte Carlo implementation of the square ; _— A .
root filter and was named (EnSRF). v =v¢'+ PH' (HP'H' + R)"'(d— Hvy'), (4)

with the analysis error covariances given as

2.3 Ensemble smoothers P* =P PPHY(HP'H + R)"'HP'. (5)

Some publications have focussed on the extension of the EnKiare 7 is the measurement operator relating the true model
to asmoother. The first formulation was given by van Leeuwegiateq)' to the observationd allowing for measurement er-
and Evensen (1996) who introduced the Ensemble Smoothgg s je.

(E_S). This method has later be_en ex_amined in Evensen_(1997) d= Hy' +e. (6)

with the Lorenz attractor; applied with a QG model to find a

Steady mean flow by van Leeuwen (1999b) and for the time The reinitialization,¢a, is determined as a WE|ghtEd lin-

dependent problem in van Leeuwen (2001); and for fish stociear combination of the model predictiog,’, and the mea-

assessment by Gronnevik and Evensen (2001). Evensen agdrementsd. The weights are the inverses of the error co-

van Leeuwen (2000) re-examined the smoother formulatiorvariances for the model prediction and the measurements, and

and derived a new algorithm with better properties named théhe optimal linear-combination becomes the Best Linear Un-

Ensemble Kalman Smoother (EnKS). This method has als®iased Estimator (BLUE).

been examined in Gronnevik and Evensen (2001) and Brus- The error covariances for the measuremeftsneed to

dal et al. (2002). be prescribed based on our best knowledge about their accu-
racy and the methodologies used to collect them. The error
covariances for the model prediction is computed by solving

2.4 Nonlinear filters and smoothers an equation for the time evolution of the error covariance ma-
trix of the model state.

Another extension of the EnKF relates to the derivation of an A derivation of these equations can be found in several

efficient method for solving the nonlinear filtering problem, publications (see e.g. Burgers et al., 1998).
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3.2 The Kalman Filter where now the overline denote an average over the ensemble.
_ ' _ ' . Thus, we can use an interpretation where the ensemble mean
Given a linear dynamical model written on discrete form as s the best estimate and the spreading of the ensemble around

the mean is a natural definition of the error in the ensemble
’¢’k+1 = Fy, (7) mean
the error covariance equation becomes Since the error covariances as defined in (12) and (13) are
T defined as ensemble averages, there will clearly exist infini-
Py =FPyF +Q, (8)

tively many ensembles with an error covariance equ&’Pio
where the matrixQ is the error covariance matrix for the andP¢. Thus, instead of storing a full covariance matrix, we
model errors. The model is assumed to contain errors, e.g:@n represent the same error statistics using an appropriate
due to neglected physics and numerical approximations. Th&nsemble of model states. Given an error covariance matrix,

equations (7) and (8) are integrated to produce the forecas@n ensemble of finite size will always provide an approxima-
' and P!, used in the analysis equations (4) and (5). tion to the error covariance matrix. However, when the size

of the ensembléV increases the errors in the representation
will decrease proportional to/v/' N.

3.3 The Extended Kalman Filter Suppose now that we havé model states in the ensem-
_ _ ble, each of dimension. Each of these model states can be
With a nonlinear model represented as a single point inamlimensional state space.
All the ensemble members together will constitute a cloud
Vi = F@r), ©) J

of points in the state space. Such a cloud of points in the
the error covariance equation would still be (8) but wih  state space can be approximately described using a proba-
being the tangent linear operator (Jacobiany ¢f>). Thus,  bility density function
a linearized and approximate equation is used for the predic-
tion of error statistics in the Extended Kalman Filter (EKF). o) = — (14)
A comprehensive discussion of the properties of the EKF
can be found in the literature, but for a convenient summarywhered N is the number of points in a small unit volume and
which intercompares the EKF with Ensemble Kalman Filter IV is the total number of points. With knowledge about either
(EnKF), to be discussed next, see Evensen (2002). ¢ or the ensemble representingve can calculate whichever
statistical moments (such as mean, covariances etc.) we want
whenever they are needed.
3.4 The Ensemble Kalman Filter The conclusion so far is that the information contained

i by a full probability density function can be represented by
The ensemble Kalman filter as proposed by Evensen (1994b), ensemble of model states.

and later clearified by Burgers et al. (1998) is now introduced.
We will adapt a three stage presentation starting with the reps 4 5 pregiction of error statistics The EnKF was designed

resentation of error statistics using an ensemble of model; osove two major problems related to the use of the EKF
states, then an alternative to the traditional error covariancgvith nonlinear dynamics in large state spaces. The EKF ap-
equation is proposed for the prediction of error statistics, ancb”es a closure scheme where third- and higher order mo-
finally a consistent analysis scheme is presented. ments in the error covariance equation are discarded. This

) o ] linearization has been shown to be invalid in a number of ap-
3.4.1 Representation of error statisticThe error covariance  jications, e.g., Evensen (1992) and Miller et al. (1994). In
matrices for the forecasted and the analyzed estiniitend fact, the equation is no longer the fundamental equation for
P, are in the Kalman filter defined in terms of the true statéihe error evolution when the dynamical model is nonlinear.

as In Evensen (1994b) it was shown that a Monte Carlo method

Pl = (¢f _ ¢t)(¢f — YT, (10) can be usgt_j to solye an equation for the time evolutiqn of
. _ — . the probability density of the model state, as an alternative to
P = (" = ") (" — )T, (11)  using the approximate error covariance equation in the EKF.

For a nonlinear model where we appreciate that the model

where the overline denotes an expectation vatids the . _ o
is not perfect and contains model errors, we can write it as a

model state vector at a particular time and the superscript

f, a, andt represent forecast, analyzed, and true state, respeé:[cmhas'"C differential equation (on continuous form) as

tively. However, sm_ce the true state is r_10t known,_lt IS more dip = F(4)dt + g(ap, dg). (15)
convenient to consider ensemble covariance matrices around
the ensemble mea), This equation states that an increment in time will yield an

increment iy, which in addition, is influenced by a random

P~ P — (¢ — N (" — )T, (12)  contribution from the stochastic forcing tergis, dq), rep-
N . e A T resenting the model errors. Tlg describe a vector Brown-
Pt~ Pg = (4" — ") (" — 9T, (13)  jan motion process with covarian€dt. Because the model
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is nonlinearg is not an explicit function of the random vari- such an ensemble of states forward in time, it is easy to cal-

abledq so the Ito interpretation of the stochastic differential culate approximate estimates for moments of the probability

equation has to be used instead of the Statonovitz interpretalensity function at different time levels. In this context the

tion Jazwinski (1970). Monte Carlo method might be considered a particle method

When the model errors are additive, i.e., when the stochagn the state space.

tic forcing term can be written ag(v>,dg) = g(v)dg, one

can derive the Fokker-Planck equation (also named Kolmogogo¥'s An analysis schemeThe KF analysis scheme was based

equation) which describes the time evolution of the probabil-on the definitions ofP! and P* as given by equations (10)

ity density¢(s) of the model state, and (11). We will now give a derivation of the analysis scheme

) T where the ensemble covariances are used as defined by (12)
? 'y ofip) }Z 0°¢(gQg" )ij (16)  and (13). This is convenient since in practical implementa-
t ,

O 25 o0y tions one is doing exactly this, and it will also lead to a con-
sistent formulation of the EnKF.
wheref; is the component numbeof the model operatof As will be shown later it is essential that the observa-
andgQgT is the covariance matrix for the model errors. tions are treated as random variables having a distribution

This equation does not apply any important approxima-with mean equal to the first guess observations and covari-
tions and can be considered as the fundamental equation fance equal td?. Thus, we start by defining an ensemble of
the time evolution of error statistics. A detailed derivation is observations
given in Jazwinski (1970). The equation describes the change d; =d+¢€j, a7)
of the probability density in a local “volume” which is depen-
dent on the divergence term describing a probability flux into
the local “volume” (impact of the dynamical equation) and
the diffusion term which tends to flatten the probability den-
sity due to the effect of stochastic model errors. If (16) could R, = e€?, (18)
be solved for the probability density function, it would be
possible to calculate statistical moments like the mean statand, of course, in the limit of an infinite ensemble this matrix
and the error covariance for the model forecast to be used iwill converge toward the prescribed error covariance matrix
the analysis scheme. R used in the standard Kalman filter.

The EnKF applies a socalled Markov Chain Monte Carlo  The analysis step for the EnKF consists of the follow-
(MCMC) method to solve (16). The probability density can ing updates performed on each of the model state ensemble
be represented using a large ensemble of model states and byembers
integrating these model states forward in time according to . P P . .
the model dynamics described by the stochastic differential ¥; = %; + PeH (HP.H " + R.)™ (d; — Htp;). (19)
equation (15), this ensemble prediction is equivalent to solv—N
ing the Fokker Planck equation using a MCMC method. This
procedure forms the backbone for the EnKF. = $+ P HYHP H" + R.)"(d - H?) (20)

A linear model for a Gauss-Markov process in which the ¢ ¢ ’
initial condition is assumed to be taken from a normal dis-whered = d is the first guess vector of measurements. Thus,
tribution will have a probability density which is completely the relation between the analyzed and forecasted ensemble
characterized by its mean and covariance matrix for all timesmean is identical to the relation between the analyzed and
One can then derive exact equations for the evolution of thdorecasted state in the standard Kalman filter in equation (4),
mean and the covariance matrix as a simpler alternative thaapart from the use oP!* and R, instead of P"** and R.
solving the full Kolmogorov's equation. Such moments of Note that the introduction of an ensemble of observations
Kolmogorov’s equation, including the error covariance equa-does not make any difference for the update of the ensemble
tion (8), are easy to derive, and several methods are illustrateghean since this does not affect equation (20).
by Jazwinski (1970, examples 4.19-4.21). If the mean,s?, is considered to be the best estimate,

For a nonlinear model, the mean and covariance matrixhen the linearity of the analysis scheme makes it an arbitrary
will not in general characterize(v, ¢). They do, however, choice whether one updates the mean using the first guess
determine the mean path and the dispersion about that patbbservationsl, or if one updates each of the ensemble mem-
and it is possible to solve approximate equations for the mobers using the perturbed observations (17). However, it will
ments, which is the procedure characterizing the extendedow be shown that by updating each of the ensemble mem-
Kalman filter. bers using the perturbed observations one also creates a new

An alternative to the approximate stochastic dynamic ap-ensemble having the correct error statistics for the analysis.
proach for solving Kolmogorov’s equation and predicting the The updated ensemble can then be integrated forward in time
error statistics is to use Monte Carlo methods. A large cloudill the next observation time.
of model states (points in state space) can be used to rep- Moreover, the error covarianc®?, of the analyzed en-
resent a specific probability density function. By integrating semble is reduced in the same way as in the standard Kalman

wherej counts from 1 to the number of model state ensemble
membersV. Next we define the ensemble covariance matrix
of the measurements as

ote that equation (19) implies that
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Filter. We now derive the analyzed error covariance estimatdetween the EnKF and the standard Kalman filter (for linear
resulting from the analysis scheme given above, but using thdynamics), and that one can certainly interpret the ensemble
standard Kalman filter form for the analysis equations. First,covariances as error covariances while the ensemble mean is
note that equations (19) and (20) are used to get used as the best guess trajectory.
L _ - For nonlinear dynamics the so called extended Kalman
P — " = (I — K.H)(p5 — ') + Ke(d; —d), (21) filter may be used and is given by the evolution equations
(25) and (26) with the n.l. terms neglected. The ensemble

where we have used the definition of the Kalman gain, Kalman filter includes the full effect of these terms and there

K. = PiHT(HpiHT LR (22) are no linearizations or closure assumptions applied. In addi-
tion, there is no need for a tangent linear operator, sudh,as
The derivation is then as follows, or its adjoint, and this makes the EnKF very easy to imple-
_ _ ment for practical applications.

P = (" =) (" — )T This leads to an interpretation of the EnKF as a purely
—(I-K.HP(I-H"K")+ K.RK" statistical Monte Carlo method V\_/here the ensemble of model_
P K HP - PH'KT (23) states evolves in sta_te space with the mean as the bes_t esti-
T e e e e e mate and the spreading of the ensemble as the error variance.

+ K (HPH" + R.)KT At measurement times each observation is represented by an-
— (I- K.H)P". other ensemble, where the mean is the actual measurement

and the variance of the ensemble represents the measurement

Note that this derivation clearly states that the observatbbns €rTors.
must be treated as random variables to get the measurement
error covariance matri®,, into the expression.

4 Practical formulation and interpretation
3.4.4 Summary We now have a complete system of equa- ) ) ) o
tions which constitutes the ensemble Kalman filter (EnKF), This section discusses the EnKF in more detail with focus on
and the resemblance with the standard Kalman filter is mainth€ practical formulation and interpretation. It is shown that
tained. This is also true for the forecast step. Each ensembf@n interpretation in the “ensemble space” provides a better
The ensemble covariance matrix of the errors in the modegfficient algorithms to be developed.
equations, given by

Q. = ququT, (24) 4.1 The initial ensemble
converges t@ in the limit of infinite ensemble size. The en- The initial ensemble should ideally be chosen to properly rep-
semble mean then evolves according to the equation resent the error statistics of the initial guess for the model
_— state. However, a modest mis-specification of the initial en-
Phrr = f(ﬂ) (25)  semble does normally not influence the results very much
= f(v,) +n.l, over time. The rule of thumb seems to be that one needs to

h | h hich i i create an ensemble of model states by adding some kind of
:/.V ere g ' re?rﬁserg{s the termivxr/] I(|:E Elfy aﬂsﬁ Ih nofrfl- Eerturbations to a best guess estimate, and then integrate the
Inear. One of the advantages of the EnKFis that the effect of ,qo pje over a time interval covering a few characteristic

these terms is retained since each ensemble member is e scales of the dynamical system. This will ensure that the

grated mdependentlly by the model. . system is in dynamical balance and that proper multivariate
The error covariance of the ensemble evolves accord'n%orrelations have developed

to The perturbations can be created in different ways. The

PSH - FPEFT +@Qc +nl, (26) simplest is to sample random numbers (for a scalar model),
whereF is the tangent linear operator evaluated at the currentandom curves (for a 1-D model) or random fields (for a
time step. This is again an equation of the same form as isnodel with 2 or higher dimensions), from a specified distri-
used in the standard Kalman filter, except of the extra termgution. In Appendix E there is an example of a procedure for
n.l. that may appear if is non-linear. Implicitly, the EnKF  generating such random perturbations.
retains these terms also for the error covariance evolution.

Thus, if the ensemble mean is used as the best estimate,

with the ensemble covariand®, interpreted as the error co- 4.2 The ensemble integration
varianceP, and by defining the observation error covariance
matrix R, = R and the model error covarian€@, = Q, The ensemble of model states is integrated forward in time
the EnKF and the standard Kalman filter become identicalaccording to the stochastic equation (15). In a practical im-
This discussion shows that there is a unique correspondeng#ementation this becomes just a standard integration of the
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numerical model but subject to a stochastic noise which reVariance growth due to the stochastic forcingTo explain
sembles the uncertainties in the model. Note that the EnKRhe choice of the stochastic term in Equation (32) we will use
allows for a wide range of noise models. Stochastic termsa simple random walk model for illustration, i.e.,

can be added to all poorly known model parameters and one

is not restricted to use Gaussian distributed noise. Further, it Vi = Yi1 + VAtopg;. (33)
is possible to use time correlated (red) noise. This equation can be rewritten as

k—1
4.2.1 Simulation of model errorsThe following equation Py, =y + VAtop Y gy (34)
can be used for simulating the time evolution of model er- i=0

rors:

q, =g, +V1-aPwe_1. (27)

Here we assume thab, is a sequence of white noise drawn

from a distribution of smooth pseudo random fields with mean ,, ;T _ Yoo + Ato?p?
equal to zero and variance equal to one. Such fields can be e
generated using the algorithm presented in the Appendix E.

The coefficientr € [0,1) determines the time decorrelation
of the stochastic forcing, e.gy, = 0 generates a sequence
which is white in time, whilex = 1 will remove the stochas-

tic forcing and represent the model errors with a random field

which is constant in time.
This equation ensures that the varianceypfis equal to
one as long as the variancegyf_, is one. Thus, this equation

will produce a sequence of time correlated pseudo random

fields with mean equal to zero and variance equal to one.

The covariance in time between andg;, determined by
equation (27), is

q,q; =o'l (28)

Determination of. The factora should be related to the
time step used and a specified time decorrelation length
The equation (27), when excluding the stochastic term, re
sembles a difference approximation to

9q _
ot

1

T

(29)

q,

which states thay is damped with a ratie—! over a time
periodt = 7. A numerical approximation becomes

At
qk = (1 - > qk—1, (30)
T
whereAt is the time step. Thus, we ‘defireas
A
a=1-— —t, (32)
T

wherer > At.

Physical model. Based on random walk theory (see below),
the physical model can be written as
Yy, = f(h_1) + VAtopgy, (32)

whereo is the standard deviation of the model error and

a factor to be determined. The choice of the stochastic term

is explained next.

The variance can be found by squaring (34) and taking

the ensemble average, i.e.,
< ) ( )T

n—1

Z Ar+1
k=0

n—1

Z Ar+1
k=0

(35)
n—1n-1
=Pty + Ato® > > g, q7, (36)
j=0 i=0
n—1n—1
=Pyt + Atop® > Y ol (37)
j=0 i=0

n—1
= Paby + Ata?p? (—n +2 Z(n — i)oﬂ) (38)
i=0

— 20 4+ na? + 2nant!
(I-a)?

= ohy + Ato®p’ =
(39)

where the expression (28) has been used. The double sum
in equation (37) is just summing elements in a matrix and is
replaced by a single sum operating on diagonals of constant
values. The summation in (38) has an explicit solution (Grad-
shteyn and Ryzhik, 1979, formula 0.113).

If the sequence of model noigg, is white in time ¢ =
0), this equation implies an increase in variance equafi&
when equation (33) is iteratedtime steps of lengti\¢, over
one time unit At = 1). Thus, in this casg = 1 is a natural
choice since this leads to the correct increase in ensemble
variance given by2.

In the case with red model errors the increase in ensemble
variance over one time unit will increase up to a maximum of
a?p? /At inthe case when = 1 (not covered by the formula
37).

The two equations (27) and (32) provides the standard
framework for introducing stochastic model errors when us-
ing the EnKF. The formula (39) provides the mean for scaling
the perturbations in (32) when changingnd/or the number
of time steps per time unit, to ensure that the ensemble
variance growth over a time unit remains the same.

Thus, the constraint that

n — 2a + na? + 2na™t!
(1—a)?

1= p2At (40)

)

defines the factor
2 _ i (1- 04)2
At n — 2a + na? + 2nantt’

p (41)
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whic ensures that the variance growth over time becomes in- The ensemble mean is stored in each columd efhich
dependent ofv and At (as long as the dynamical model is can be defined as
linear). A= Aly, (44)

wherel y € RV*Y s the matrix where each element is equal

4.2.2 Estimation of model errorswhen red model noise is 1 /i \we can then define the ensemble perturbation matrix

used, correlations will develop between the red noise and th

model \(arlables. Thus, during the aanyS|s it is also possible A= A-A=AI-1y). (45)
to consistently update the model noise as well as the model . .
state. This was illustrated in an example by Reichle et al.The ensemble covariance mat#k. € R"*" can be defined
(2002). We introduce a new state vector which consists oRS

+ augmented withy. The two equations (27) and (32) can P, — A'(A')T_ (46)
then be written as N -1
( q aq Given a vector of measuremendse R™, with m being the
k > = ( k=1 ) number of measurements, we can definetheectors of per-
py, F(by_1) + VAtopg, (42)  turbed observations as

V1 —a?wy,_,
t 0 : d; =d+e;, j=1,...,N, (47
During the analysis we can now compute covariances bewhich can be stored in the columns of a matrix
tween the observed model variable and the model noise vec- D= (d d d Y 48
tor ¢ and update this together with the state vector. This will = (di,dy,....dy) € ’ (48)

lead to a correction of the mean gfas well as a reduction i the perturbations can be stored in the matrix
of the variance in the model noise ensemble. Note that this

procedure estimates the actual error in the model for each en- Y = (€1,€,...,ex) € RN, (49)
semble member, given the prescribed model error statistics.
The form of equation (27) ensures that, over tigewill from which we can construct the ensemble representation of
approach a distribution with mean equal to zero and variancéh€ measurement error covariance matrix
equal to one, as long as we don’t updaiein the analysis T
rr
scheme. R, = N_1 (50)

_ The standard analysis equation, expressed in terms of the
4.3 The EnKF analysis scheme ensemble covariance matrices, is

This section attempts to explain in some detail how the EnKF A* = A+ P.H' (HP.H" + R.,)"'(D — HA). (51)
analysis can be computed efficiently for practical applica-
tions. In particular it discusses how the filter can be used to
compute a global analysis to an affordable cost, even with D —-D_HA (52)

a very large number of measurements. It presents a storage

scheme which requires only one copy of the ensemble to b@nd the definitions of the ensemble error covariance matrices
kept in memory, and an efficient algorithm for computation in Equations (50) and (46) the analysis can be expressed as

of the expensive final matrix multiplication. The concept of a

local analysis is discussed in Section 4.4, A discussionisalso ga _ g4 4 A’A'THT (HA’A’THT +7rY" - D.

given on the assimilation of nonlinear measurements in Sec- (53)

tion 4.5, a problem which is solved by augmenting the model

state with the model's measurement equivalents. MoreoverZl . . . . .
this algorithm also allows for the efficient assimilation of 4-3-2 Practical formulation and implementationrhe tradi-

in situ measurements in a consistent manner where one erfion@l way of solving the analysis equation (53) would in-

tirely relies on the ensemble predicted error statistics (see ApYC!Ve the computation of the eigenvalue decomposition di-

pendix C). Finally a discussion is given on the assimilation offectly from them x m matrix,
non-synoptic measurements in Section 4.6. HAATHT + 7Y = ZAZ", (54)

Using the ensemble of innovation vectors defined as

4.3.1 Definitions and the analysis equatioefine the ma-  which has the inverse
trix holding the ensemble membeys € R,

A= (1,4, y) € RN, 43

(W12 v 43) The cost of the eigenvalue decomposition is proportional to
where N is the number of ensemble members ani the  m? and becomes un-affordable for large Note, however
size of the model state vector. that the rank ofZAZ7 is less than or equal t&/. Thus, A

(HAATHY + YY"y =2A"'2Z".  (55)
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will have N or less non-zero eigenvalues and it may there-nonzero since the rank of the inverted matriypis. N from
fore be possible to use a more efficient eigenvalue decompd’57). This can be exploited using the following scheme:
sition algorithm which only computes and stores the fivst

columns ofZ. X, =A"'U" € RV O(mp),  (61)
It is important to note that if different measurement types X, =X,D c RNXN O(mNp), (62)
are assimilated simultaneously, the model observed model X; = UX, c XN O(mNp),  (63)

variables need to be made non-dimensional or scaled to have
similar variability. This is required to ensure that the eigenval- X1 = (HA)TX3 e ®RVN  O(mNN), (64)
ues to each of the measurement types have the same magni- A» — A4 + A’X, c prxN O(nNN). (65)
tude. The standard approach for resolving this is to assimilate
different measurement types, which normally have uncorreSincep < N andm < n for all practical applications, the
lated errors, sequentially one data set at the time. The validitglominant cost is now the last computation whicki§? and
of this approach has been shown, e.g. by Evensen and vamhich is independent of:. All the steps including the sin-
Leeuwen (2000). gular value decomposition have a cost which is linear in the
number of measurements rather than quadratic. A practical
approach for performing this last multiplication will be dis-
cussed later.
If we use a full rank matrix P.H"* + R, whereR is
not represented using an ensemble of perturbations, the com-
putation of the analysis will be significantly more expensive.
_ . First, the full matrix HP. H" = (HA')(HA')™ must be
meaning that the ensemble perturbations and the measurggnstructed to a cost @(m?2N), followed by the eigenvalue
ment errors are uncorrelated (equivalent to the common aSjecomposition (54) which requires anott@¢m?) floating
sumption of uqcor_relatgd forecast and measurement errorsk,oint operations. In this case, the steps (62) and (63) also
then the following is valid comes at a cost aD(m?N). Thus, the introduction of low
rank by representing the measurement error covariance ma-
HAATH" + YY" = (HA'+ T)(HA +Y)". (57)  trix with an ensemble of perturbations, leads to a significant
saving by transforming all th@(m?N') operations to be lin-
This is an important point since it means that the inverse carar inm.
be computed to a cost proportionaltaN rather thanm?!

Alternative solution for largen. If the perturbations used
for measurements are chosen such that

HATYT =o, (56)

decomposition (SVD) of thex x N matrix the analysis as a first guess plus a linear combination of en-
semble perturbations, i.el’ X 4. From the discussion above
HA +T=UxV" (58)  we could also write the analysis equation as
The equation (57) then becomes A*= A+ A'(HA)"X3= A+P.H'(N-1)X;. (66)

This is the standard notation used in Kalman filters where one
measures the error covariance matrix to compute the influ-
ence functions, one for each measurement, which are added
to the forecast.

Note also that the Equation (65) can be written as

HAATH +rYyT =Uuxv'vE'UT =UXX"U".
(59)
Here the productZ X" will be identical to the upper left
N x N quadrant ofA which corresponds to th& non-zero
eigenvalues. Further, th¥ singular vectors contained il
are also identical to thé/ first eigenvectors irZ. Thus, the A=A+ (A-A)X, (67)
inverse is again (55). The numerical cost is how proportional

to mN which is a huge benefit whem is large. This pro- = A+ A -1n) X, (68)
cedure allows us to efficiently compute the inversion for a = Al + X4) (69)
global analysis in most practical situations. = AXs, (70)

) o ) where we have used thaty X, = 0. Obviously, the first
Update costs. As soon as the inversion just discussed hasghservation to make is that the analyzed ensemble becomes

been completed, the analysis can be computed from a linear combination of the predicted ensemble. It then be-
) or - comes of interest to examink 5 to study the properties of
A"=A+A(HA)'UATU D' (60)  this particular linear combination. Each column Xif; will

hold the linear combination defining the corresponding new
The matrixA ™! will only have non-zero elements on the di- ensemble member. For this estimate to be unbiased the sum of
agonal. If we use the pseudo inverse taking into account e.geach column ofX 5 should be equal to one, which is actually
99% of the variance, only the first few< N, terms willbe  agood test for the numerical coding leading¥@. Also, one
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can in most applications expect th¥t is diagonal dominant 3. The covariances are only important for computing the
since the diagonal holds the coefficient for the first guess en- best possible linear combination, i.e., the mafkix. As
semble member, while all off-diagonal elements introduces long as the ensemble bas&t; is a good approximation,
corrections imposed by the measurements. By examining the the accuracy of the final analysis will be determined by
rows of the matrixX 5 one can determine if some ensem- the relevance and dimension of the space spanned by the
ble members appear to be more important than others. Note ensemble members, relative to the dominant degrees of
that the off-diagonal elements X 5 will also have negative freedom of the model state.
values. Thus, the new ensemble members are not weight
averages of the original ensemble, but rather linear combina-
tions.

Computation of the mean of the analyzed ensemble can
be written as follows:

eIgased on the points given above it is not wise to filter covari-
ance functions as has been proposed in a number of studies,
e.g. by Houtekamer and Mitchell (2001). Clearly, from equa-
tion (70), the analysis becomes a linear combination of model
states even if equation (66) is used for the actual computation
since these equations are identical. However, if equation (66)

= — Z ¥3, (72) is used for the computation of the analysis but with filtering
j=1 applied to the covariance functions, one actually introduces
N spurious or nondynamical modes in the analysis.

4.4 Local analysis

2=

=N Z > %Xy, (72)
i=1
N
Z ot (73) _ . .
= To avoid the problems associated with a largemany op-
erational assimilation schemes have made an assumption that
Ilf Yi, wherey; = Z X (74) on_Iy mgasu_rements located Wit_hir_1 a c_erta_in dis_tance_from a
grid point will impact the analysis in this grid point. This al-
lows for an algorithm where the analysis is computed grid
Thus, the sumy;, of the elements in each row i 5 defines  point by grid point. Only a subset of observations, which are
the coefficients for the linear combination of forecast mem-located near the current grid point, is used in the analysis for
bers defining the mean of the analysis. Thealues therefore this particular grid point. This algorithm is approximative and
also determines which of the ensemble members contribute$ does not solve the original problem posed. Further, it is not

2=

ﬂMz HMZ i

most strongly to the analysis. clear how serious the approximation is.
If we compute an SVD decomposition of the forecast en-  Such an approach is not needed for handling a laige
semble, the equation (65) can be written as in the EnKF if the algorithm just described is used. However,
there are other arguments for computing local analyses grid
A* = AX, (75)  point by grid point. The analysis in the EnKF is computed in
—UxvTXx,, (76) ~ @space spanned by the ensemble members. This is a subspace
—UX,. (77) which is rather small compared to the total dimension of the

model state. Computing the analysis grid point by grid point

Thus, it is possible to visualize the analysis as a linear comimplies that a small model state is solved for in a relatively
bination of orthogonal singular vectors. This procedure may/2r9€ €nsemble space. Further, the analysis will use a different
be useful since it allows us to reject eventual dependent erfinear gombmaﬂon of ensemble men"!b_e.rs f_or each grid point,
semble members and possibly add new orthogonal membefid thl§ also allows for a I_arger flexibility in the scheme to
if these are needed. In particular it can be used to examin&ach different model solutions.

how linearly independent the ensemble of model states is. For each horizontal grid point, we can now compute the

Some interesting conclusions which can be drawn are: correspondingX 5 using only the selected measurements con-
tributing to that particular grid point and update the ensemble

1. The covariances are only used to createRhP H™ ma-  for that particular grid point. The analysis at grid painty),
trix, which only includes covariances between the observeg. A({; j) then becomes
variables at the locations of the observations. The actual
covariances are never computed when the SVD algorithm — Af; ;) = A Xs5.3i.) (78)
in Section 4.3..2 is used although they are _used |mpI|c!tIy. — A X5+ A (X560 — Xs), (79)

2. The analysis is not really computed as a linear combina-
tion of covariance functions. It is in fact computed as awhere X5 is the global solution whileX 5 (; ;) becomes the
linear combination of the forecasted ensemble memberssolution for a local analysis corresponding to grid pding)
Each of these members can be considered as drawn fromvhere only the nearest measurements are used in the analysis.
an infinite sample of dynamically consistent model statesThus, it is possible to compute the global analysis first, and
where the correct multivariate correlations are present irthen add the corrections from the local analysis if these are
each ensemble member. significant.
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At this time it is not clear how large the ensemble needsone time instant by exploiting the time correlations in the en-
to be to explore a large enough part of the state space to pr@semble. Thus, a measurement collected at a previous time al-
vide a more consistent result for the global analysis versusows for the computation of théf A at that time and thereby
the local analysis scheme. However, we expect this to be aplso the innovations. By treating these as augmented model
plication dependent. variables the equation (82) can again be used but with the

h(,...) now denoting the measurements collected at ear-
lier times.
4.5 Nonlinear measurements

The expressiolD’ = D — H A is just the difference between 5 Numerical implementation of the EnKF

the ensemble of measurements and the ensemble of observed

model states. If the observations are nonlinear functions off he algorithm as explained in the previous sections provides
the model state this matrix formulation usiifjbecomes in-  an optimal approach for computing the EnKF analysis. The
valid. The traditional solution is to linearize and iterate. In following provides a basis explaining the implementation of
the EnKF we have the possibility to augment the model stateshe EnKF analysis scheme. It assumes access to the BLAS,
with a diagnostic variable which is the model prediction of LAPACK and EISPACK libraries, where highly optimized
the measurement. Thus,df = h(v,...) + € then a new numerical subroutines are available for most computer sys-
model state can be defined for each ensemble member as tems and which can be obtained for free throughw.netlib.no

b =@ R W, ). (80)

. _ 5.1 Storing the ensemble on disk
By defining the new ensemble matrix as

- ~ A ~ A For most practical applications one will not want to keep the
— nxX N
A= (19 hy) ER ’ (81) whole ensemble in memory during the ensemble integrations.

with 7 being then plus the number of measurement equiv- Rather, an approach where ensemble members are kept in a

alents added to the original model state, the analysis can b€ residing on disk is convenient. This allows for the system
written to read a particular member from file, integrate it forward in

time, and then store it on disk again following the integra-
A — A+ A’E/TﬁT (ﬁﬁlﬁ/TﬁT T TTT)il D tion. An approach where each member is stored in a record
(é2) in a direct Fortran file is most convenient. This allows us to

. . . — . read and write specific records containing individual ensem-
where the now linear innovations (wit being a direct and

. . ble members.
linear measurement functional) becomes

D' =D - HA. 83 . .
(83) 5.2 Analysis implementation
From this expression, where the ensemble members have ) ) )
been augmented with the observation equivalent, we can cont-he algorithm for the analysis exploits that we can compute
pute the following: the innovatiod®’ using a linear (direct) Once and store alhnovations measurement perturbatl_ons
measurement functional; the model predicted error covaridnd themeasurements of the ensemilaus, we start with

ot ~1T T
ance of the observation’s equivalesA' A" H™; and the the following:

covariance between the observations and all prognostic model. Read the whole ensemble forecast ito
variables froma’ A" H . 2. Compute the matridd A.

The analysis is a linear combination of model predicted 3- Compute the measurement perturbatihs

error covariances between the observation equivalepts. . .) 4. Compute the innovationE)’._ )
and all other model variables. Thus, we have a fully multivari- 2- COmputeH A and subtract it front{ A to getH A" (re-
ate analysis scheme. quiresH to be linear).

The following subroutine can then be used without any mod-

o ] ification to compute the analysis for all kinds of model states.
4.6 Assimilation of “non-synoptic” measurements
subroutine analysis (A,D,E,S,ndim, nrens, nrobs)
i X .! Computes the analysed ensemble for A
In some cases measurements occur with high frequency in use m_multa

time. An example is along track satellite data. It is not practi- ~ 'MPlicit none

cal to perform an analysis every time there is a measurement. dimension of model state
Further, the normal approach of assimilating, at one time in-  nteger. intent(in) :: ndim
stant, all data collected within a time interval, is not optimal. | number of ensemble members
Based on the theory from Evensen and van Leeuwen (2000), '"teger. intent(in) :: nrens
it is possible to assimilate the non-synoptic measurements at number of measurements
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integer, intent(in) :: nrobs

ensemble matrix
real, intent(inout) :: A(ndim,nrens)
innovations
real, intent(in) :: D(nrobs, nrens)
measurement of ensemble perturbations
real, intent(in) : S(nrobs, nrens)

measurement perturbations
real, intent(in) :: E(nrobs,nrens)

real, allocatable, dimension(:,:) :: &
X1,X2,X3,X4,X5,U,V,P,ES,UU

real, allocatable, dimension(:) &
sig,work

integer, allocatable, dimension(:) &
ipvt

real sigsum,sigsuml,rtc,tl,t2
integer ierr,nrsigma,i,m,lwork,j,iblkmax

allocate(ES(nrobs, nrens))
ES=S+E

compute SVD of HA'+E using dgesvd from EISPACK
allocate (U(nrobs,min(nrens,nrobs)) )
allocate (sig(min(nrens,nrobs)) )
allocate (V(nrens,nrens) )
lwork=2«xmax (3« nrens+nrobs,snrens)
allocate(work (lwork))
sig=0.0
call dgesvd('S’,’N’, nrobs,nrens ,ES, nrobs,&
sig,U,nrobs,V, nrens,work, lwork, ierr)
deallocate(work)
if (ierr /= 0) then
print «,’ierr from call dgesvd= " ierr
stop
endif

from singular values to eigenvalues
do i=1,min(nrens,nrobs)

sig (i)=sig (i)x=*2
enddo

! determine number of significant eigenvalues

sigsum=sum ( sig (1:min(nrens,nrobs)) )
sigsum1=0.0
nrsigma=0
do i=1,min(nrens,nrobs)
sigsuml=sigsuml+sig (i)
if (sigsuml/sigsum< 0.999) then
nrsigma=nrsigma+1
sig(i) = 1.0/sig (i)
else
sig(i:min(nrens,nrobs))=0.0
exit
endif
enddo

! compute X1

allocate (X1(min(nrens,nrobs), nrobs))
do m=1,min(nrens,nrobs)
do i=1,nrobs
X1(m,i)=sig (m)U(i,m)
enddo
enddo
deallocate(sig)

! compute X2

allocate (X2(min(nrens,nrobs), nrens))
X2=matmul (X1,D)
deallocate(X1)

! compute X3

allocate (X3(nrobs,nrens))
X3=matmul (U, X2)
deallocate(U)
deallocate(X2)

| compute X4

allocate (X4(nrens,nrens))
X4=matmul (transpose (S), X3)
deallocate(X3)

I compute X5
allocate(X5(nrens, nrens))
X5=X4
do i=1,nrens

X5(i,i)=X5(i,i)+1.0
enddo
deallocate(X4)

! compute analysis
iblkmax=min (ndim,200)
call multa(A,X5,ndim,nrens,iblkmax)
deallocate(X5)

end subroutine analysis

5.3 Final update

The most demanding step in the EnKF analysis is the final
step when evaluating the analysis ensemble from equation
(70). The largest matrix to be held in memory is the ensem-
ble matrixA € ">~ . Further, the number of floating point
operations (a multiply and add)igV?2 which is likely to be
several orders of magnitude more than for the previous steps
in the algorithm. Thus, this step will be treated in some detail.

It is possible to develop a multiplication algorithm which
only requires one copy of the ensemble to be kept in memory.
This matrix multiplication can easily be done while overwrit-
ing row by row of A using the following call to the subroutine
multa using

Xs=I+X,e RV, (84)

The following subroutine has been found to perform this
multiplication very efficiently. It uses optimized BLAS rou-
tines and includes a block representation which can be used
to optimize cache performance.
modulg m_multa
contains

subroutine multa(A, X, ndim, nrens, iblkmax)
implicit none

integer, intent(in) :: ndim
integer, intent(in) :: nrens
integer, intent(in) :: iblkmax

real, intent(in) 12 X(nrens,nrens)
real, intent(inout) :: A(ndim,nrens)
real v(iblkmax,nrens) ! Automatic work array

integer if,il
do if = 1,ndim,iblkmax
il = min(if+iblkmax—1,ndim)
v(1l:il—if+1,1:nrens) = A@{f:il,1:nrens)
call dgemm(’'n’,’n’, il—if +1, nrens, nrens, &
1.0, v(1,1), iblkmax, &
X(1,1), nrens, &
0.0, A(if ,1), ndim)
enddo
end subroutine multa
end module m_multa

5.3.1 Remark 1 Note that this routine does not care about
the order of which the elements Mare stored for each en-
semble member. Thus, in the callitwilta , A can be a multi
dimensional matrix e.gA(nx,ny,nz,nrens) holding an
ensemble of a uni-variate three dimensional model state. A
multi-variate model state can be stored in a structure or type
declaration, and still be input toulta .
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5.3.2 Remark 2: In principle the multiplication has a seri- where correlations between the forecast error and the mea-
ous drawback caused by the striddim copies. Here the surement error have been neglected.

routine relies on BLAS for the inner matrix multiplication, Thus, it is possible to compute the variance of the inno-
since the BLAS routines have already been designed to optivation sequence in time, subtract the measurement variance
mize cache performance. The varialtlkmax isonlyused and compare this with the predicted error variance from the
for storage considerations and a typical value of 200 seems tensemble. This provides a solid consistency test on the pre-
work fine. This routine also opens for a possible block repre-scribed error statistics used in the EnKF.

sentation of the model state.

B Ensemble Optimal Interpolation (EnOl)

5.4 A block algorithm for large ensemble matrices . . . . .
g g Traditional optimal interpolation (Ol) schemes have estimated

Itis still possible to use the EnKF even if the whole ensemble®! Préscribed covariances using an ensemble of model states
does not fit in memory. In this case a block algorithm can pevhich has been sampled during a long time integration. Nor-

used for the final update, using additional reads and writes tgnally the estimated covariances are fitted to simple functional
file. The algorithm goes as follows: forms which are used uniformly throughout the model grid.

Based on the discussion in this paper itis natural to device
1. Read each individual ensemble member into a vector onéin Ol scheme where the analysis is computed in the space
at the time while computing and storing the columns of spanned by a stationary ensemble of model states sampled,

HA. e.g., during a long time integration. This approach is denoted
2. Compute the measurement perturbatiths Ensemble Ol (EnOl).
3. Compute the innovation®’. The EnOl analysis is computed by solving an equation

4. ComputeH A and subtract it fronH{ A to getH A’ (re-  similar to (89) but written as
quiresH to be linear).

-1
a __ 1 AT ¢y T 1 AT T T _
So far we have only kept one full model state in mem—w =¢+tad A H (O‘HA A"H +TY ) (d—H1p).

ory at the time. It remains to solve the Equation (70). Using o ) (89)

the block algorithm just discussed above it is possible to perT h€ analysis is now computed for only one single model state,
form this computation without keeping all of the ensemble in@nd & parameter < (0, 1] is introduced to allow for different
memory at once. A proposed strategy would be to store thaveights on the .en.semble versus measurements. Naturally, an
ensemble in several files, say one file for the temperature, on@Semble consisting of model states sampled over a long time
for the salinity, etc. Then the analysis can be done easily b>per|od will have a chmatologpal variance which is too 'Iarge
first one read of the part of the ensemble that is required fof® represent the actual error in the model forecast, il

the computation off A, followed by one additional read and US€d to reduce the variance to a realistic level. _

write of the whole ensemble, i.e., to update the full ensemble ~ The practical implementation introducesn (58), which

based on the information iff A. is now written as
VaHA + Y =UXVT, (90)
A Consistency checks on error statistics and the coefficient matriX 4 in (64) is further scaled with

before X 5 is computed.
The EnKF provides error statistics for the results. To validate  The EnOI method allows for the computation of a mul-
the predicted error statistics it is possible to compare statisticivariate analysis in dynamical balance, just like the EnKF.
computed from the innovation sequence with the predictedHowever, a larger ensemble may be useful to ensure that it

error statistics. spans a large enough space to properly represent the correct
If the model forecast is written as analysis.
; . The EnOl is an attractive approach to save computer time.
Y =19 +gq, (85)  Once the stationary ensemble is created, only one single model

S ntegration is required in addition to the analysis step where
i.e., itis given as the truth plus an error, and the measuremen{%e final update cost is reduced@{nN') because only one
are written as P y

d— H' 86 model state is updated. The method is numerically extremely
=Hy +e (86) efficient but it will always provide a suboptimal solution com-
the innovation becomes pared to the EnKF. In addition it does not provide consistent

; error estimates for the solution.
d—Hvy =e—Hgq. (87)

By squaring this equation and taking the expectation we get Assimilation of in situ measurements

the expression

The direct assimilation ah situ observations such as temper-
(d— Hy")(d— Hy" )" = R+ HP'H" (88)  ature and salinity profiles poses a problem in all ocean mod-
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els unless both temperature and salinity is known simultane€.2 Interior layers

ously. It is not known, a priori, how to update the water-mass

properties in a consistent manner, see e.g., Troccoli et alVithin each interior layer;, a function of the form

(2002) and Thacker and Esenkov (2002). 5
A new solution is proposed here. It is based on the def- fi@) = ax” + biw + i, (95)

inition of a measurement functional which interpolates thejs ysed to represent the model variables. For each interior

model temperature and/or salinity to the measurement locauyer there are three conditions which determine the three un-
tion in depth. The spline interpolation algorithm discussedynowns in each layer, i.e., continuity at layer interfaces
below is probably close to the best alternative of a measure-

ment functional for layered models. filhi—1) = fi—1(hi-1), (96)
The results from the discussion on nonlinear measure- . . L .
ment functionals allow us to augment the model state withcommu'ty of derivatives at layer interfaces
observation equivalents for each inerendtgsttu measure- dfi(x) _ Ofima(z)
ment. Further, the “global” analysis algorithm allows us to T or = or ; 7
handle a large number of profiles of measurements simulta- Pzt hiza
neously still to a low numerical cost. This approach ensuresaind a condition for the mean of the variable becomes after
that the model update in the vertical and horizontal is per-some manipulations
formed consistently with the error statistics predicted by the
ensemble. S /hi fi(z)dz = m1 (R?_y + hi—1hi + h)
In order to obtain a variable’s value at a specific depth  hi — hi—1 Jn,_, " g e
an interpolation algorithm is needed. We used a second order 1 _
spline to interpolate in the vertical. It is important to note + bi§ (hi +hiz1) + e = ;. (98)
that when interpolating values between different layers the
interpolating spline should not pass exactly through the mean )
of the variable at the center of each layer. Instead a criterior$-3 Closing the system
is used where the mean value computed by integrating the . i ) i
spline function across the layer is equal to the mean of thé final condition is obtained by sgttlng t.he variable at the sea
variable in that layer. The details of the algorithm follows. ~ 1100F equal to the mean of the variable in the bottom layer,

Jr(hy) = . (99)

C.1 Upper layer Thus, the system is closed.

Layer one is d|y|ded into upper and lower parts wher@T theD Ensemble Kalman Smoother (EnKS)
spline polynomial, used to represent the variable to be inter-

polated is defined as In light of the discussion in this paper it is also possible to

device an efficient implementation of the EnKS. The EnKS,
Filz) = {CO for z €0, %h1) (91) as described in Evensen and van Leeuwen (2000), updates
mz? +biz+c for € [Lhi, by the ensemble at prior times every time new measurements
are available. The update exploits the space-time correlations
Hereh, is the location of the lower interface of layerCon- ~ between the model forecast at measurement locations and the

ditions are specified at = 1, for continuity of the function model state at a prior time. It allows for a sequential process-

and the derivative, i.e., ing of the measurements in time. Thus, every time a new set
of measurements becomes available the ensemble at the cur-
1 rent and all prior times can be updated.
fl(ﬁhl) = €0, (92) Similar to the analysis equation (89) the analysis for a
prior time ¢’ which results from the introduction of a new
and measurement vector at time> ¢’ can be written as
8f1(x) _ 07 (93) Aa(t/) — A(t/) —|—A/(t/)A/T(ﬁ)HT
9z |1y, (100)

o _ (HA'®AT(OHT + 17T ‘D),
and in addition the integral over layer 1 should satisfy
This equation is updated repetitively every time a new set of
measurements are introduced at future times

The EnKS analysis can best be computed using the for-
mulation discussed in the previous sections, and in particular
with w; being the model predicted layer variable in layer one.using the definition ofX 5 in Equation (84). It is easily seen

1 [

1 7 3 1
— = co=+a;—h3+bi =1 — =7, (94
s fi(x) cogtarg hitbighites uy, (94)
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that the linear combinatioX 5(¢) corresponding to the mea- We define (assume) the following form @fk):
surements at timg, is also used on the analysis ensemble at

the prior timeg’ to update the smoother estimate at tithe q(k1,7p) = \/2—67(“12+7’2’)/0262Wi¢1’p» (107)
Thus, the smoother estimate at a timevheret;_; < k
t' < t; < ty,using future data from the data tim@s t,,1, . . ., txWhere¢; , € [0,1] is a random number which introduces a
is just random phase shift. (The exponential function may be writ-
k ten as a sum of sine and cosine terms). Note that increasing
Bnks () = Apaxr(t) [ Xs(t)- (101)  wave numbers:; and~, will give an exponentially decreas-
j=i ing contribution to the expression above. Now, equation (107)

As long as the previous ensemble files have been stored, it i1ay be inserted into equation (103), and we get
straight forward to update them with new information every
time a new set of measurements is available and the matrix
X 5 corresponding to these measurements have been com- Z
puted. This discussion has assumed that a global analysis is 1,p vV Ak
used. The local analysis becomes a little less practical sinc
there is anX 5 matrix for each grid point.

The product in Equation (101) has an important property.
The multiplication of the ensemble witK 5 will always re-
sult in a new ensemble with a different mean and a smaller qQ(k1,7) = T (F—1,7—p)s (109)
variance. Thus, each consecutive update through the repet-
itive multiplication in (101) will lead to slight reduction of Where the star denote complex conjugate, and
variance and slight change of mean. Eventually, there will be ~ _

a convergence with only negligible updates of the ensemble Im g(ko,70) = 0. (110)
when measurements are taken further into the future than the The formula (108) can be used to generate an ensemble of
actual decorrelation time. pseudo random fields with a specific covariance determined
by the parametersando. An expression for the covariance
is given by

Q(x'ru ym) =
6*(“?+7§)/02627Ti¢z,p6i(mmn+"/pym)Ak' (108)

fve want equation (108) to produce real fields only. Thus,
when the summation ovéyp is performed, all the imaginary
contributions must add up to zero. This is satisfied whenever

E Generating pseudo random fields

q(z1,y1)q(w2,y2) =

Here a procedure is given which can be used to compute ~ ~ i(Riz1+Yp Y1 +r o +Ys Y2 2
smooth Sseudo rando?n fields with mean equal to zero, \F/)ari— Z Q01,3 ) ! ) (AK)*.
ance equal to one, and a specified covariance which deter- ~*" (111)
mines the smoothness of the fields. The algorithm follows
the presentation in the appendix of Evensen (1994a), and adBy using equation (109), and by noting that the summation
ditional details and explanations are given by Natvik (2001). goes over both positive and negativand s, we may insert

Letq = ¢(z,y) be a continuous field, which may be de- the complex conjugate instead, i. e.

scribed by its Fourier transform

(J(Ih yl)(J(Iz,yQ)

q(z,y) = / / q(k)e™*dk. 202) = > qk1, )T (i, ys) el 1T TR Y 2) (A2
—00 J =00 l,p,r,s
Now, we are using atv x M grid. Further, we defink = = Z AkcZe T HRI D) /0% 2mi(d1,p =)
(k1,7p), Wherel andp are counters and; and-~, are wave Lp,rs
numbers in théV and M directions, respectively. We now get (R 1= Ry T2 YY1 —Ysy2) (112)

a discrete version of equation (102),
4 We assume that the fields arecorrelated in wave space.
QT Ym) = > k1, yp)e’ 1T Ak, (103)  That is, we assume that there is a distance dependence only
Lp (isotropy), and we may sét= r andp = s, and the above

expression becomes
wherez,, = nAz andy,, = mAy. For the wave numbers, P

we have q(xlayl)q(x27y2)
2ml 2ml s e s
k= E = NAz' (104) = Akc? 26*2(’% +p)/ 07 pilki(z1—z2)+vp (y1-y2)) (113)
L

_ 2mp  2mp 105 v

P = yv  MAy’ (105) " Erom this equation, the variance(at y) is
(2m)? q(z,y)q(z,y) = Akc? Ze_Q(“%'*"Yi)/"Q. (114)
Ak = AkAy = ————. 106 ’ ’
it NMAxAy (106) Lp
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