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Abstract The purpose of this paper is to provide a com-
prehensive presentation and interpretation of the Ensemble
Kalman Filter (EnKF) and its numerical implementation. The
EnKF has a large user group and numerous publications have
discussed applications and theoretical aspects of it. This pa-
per reviews the important results from these studies and also
presents new ideas and alternative interpretations which fur-
ther explain the success of the EnKF. In addition to providing
the theoretical framework needed for using the EnKF, there is
also a focus on the algorithmic formulation and optimal nu-
merical implementation. A program listing is given for some
of the key subroutines. The paper also touches upon specific
issues such as the use of nonlinear measurements,in situpro-
files of temperature and salinity, and data which are avail-
able with high frequency in time. An ensemble based optimal
interpolation (EnOI) scheme is presented as a cost effective
approach which may serve as an alternative to the EnKF in
some applications.
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1 Introduction

The Ensemble Kalman Filter has been examined and applied
in a number of studies since it was first introduced by Evensen
(1994b). It has gained popularity because of it’s simple con-
ceptual formulation and relative ease of implementation, e.g.,
it requires no derivation of a tangent linear operator or ad-
joint equations and no integrations backward in time. Fur-
ther, the computational requirements are affordable and com-
parable with other popular sophisticated assimilation meth-
ods such as the representer method by Bennett (1992); Ben-
nett et al. (1993); Bennett and Chua (1994); Bennett et al.
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(1996) and the 4DVAR method which has been much stud-
ied by the meteorological community (see e.g. Talagrand and
Courtier, 1987; Courtier and Talagrand, 1987; Courtier et al.,
1994; Courtier, 1997).

This paper gives a comprehensive presentation of the EnKF,
and it may serve as an EnKF reference document. For a user
of the EnKF it provides citations to hopefully all previous
publications where the EnKF has been examined or used. It
also provides a detailed presentation of the method both in
terms of theoretical aspects and the practical implementation.
For experienced EnKF users it will provide a better under-
standing of the EnKF through the presentation of a new and
alternative interpretation and implementation of the analysis
scheme.

In the next section, an overview is given of previous works
involving the EnKF. Further, in Section 3, an overview of
the theoretical formulation of the EnKF will be given. There-
after the focus will be on implementation issues starting with
the generation of the initial ensemble in Section 4.1 and the
stochastic integration of the ensemble members in Section 4.2.
The major discussion in this paper relates to the EnKF anal-
ysis scheme which is given in Section 4.3. Section 5 dis-
cusses particular aspects of the numerical implementation.
Appendix A presents an approach for examining the con-
sistency of the EnKF based on comparisons of innovations
and predicted error statistics. In Appendix B an optimal in-
terpolation algorithm is presented. It uses a stationary en-
semble but is otherwise similar to the EnKF, and it can thus
be denoted Ensemble Optimal Interpolation (EnOI). In Ap-
pendix C we have given an algorithm which is currently used
for assimilation of observations of subsurface quantities. In
Appendix D the Ensemble Kalman Smoother (EnKS) is pre-
sented in terms of the terminology developed in this paper.
It is illustrated how the smoother solution can be very ef-
ficiently computed as a reanalysis following the use of the
EnKF. Finally in Appendix E we have reviewed and detailed
the presentation of the algorithm used for the generation of
pseudo random fields.
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2 Chronology of ensemble assimilation developments

This section attempts to provide a complete overview of the
developments and applications related to the EnKF. In addi-
tion it also points to other recently proposed ensemble based
methods and some smoother applications.

2.1 Applications of the EnKF

Applications involving the EnKF are numerous and includes
the initial work by Evensen (1994b) and an additional exam-
ple in Evensen (1994a) which showed that the EnKF resolved
the closure problems reported from applications of the Ex-
tended Kalman Filter (EKF).

An application with assimilation of altimeter data for the
Agulhas region was discussed in Evensen and van Leeuwen
(1996) and later in an intercomparison with the Ensemble
Smoother (ES) by van Leeuwen and Evensen (1996).

An example with the Lorenz attractor was given by Evensen
(1997) where it was shown that the EnKF could track the
phase transitions and find a consistent solution with realistic
error estimates even for such a chaotic and nonlinear model.

Burgers et al. (1998) reviewed and clarified some points
related to the perturbation of measurements in the analysis
scheme, and also gave a nice interpretation supporting the
use of the ensemble mean as the best estimate.

Houtekamer and Mitchell (1998) introduced a variant of
the EnKF where two ensembles of model states are integrated
forward in time, and statistics from one ensemble is used to
update the other. The use of two ensembles was motivated
by claiming that this would reduce possible inbreeding in the
analysis. This has, however, lead to some dispute discussed
in the comment by van Leeuwen (1999a) and the reply by
Houtekamer and Mitchell (1999).

Miller et al. (1999) included the EnKF in a comparison
with nonlinear filters and the Extended Kalman Filter, and
concluded that it performed well, but could be beaten by a
nonlinear and more expensive filter in difficult cases where
the ensemble mean is not a good estimator.

Madsen and Cãnizares (1999) compared the EnKF and
the reduced rank square root implementation of the Extended
Kalman filter with a 2–D storm surge model. This is a weakly
nonlinear problem and good agreement was found between
the EnKF and the extended Kalman filter implementation.

Echevin et al. (2000) studied the EnKF with a coastal ver-
sion of the Princeton Ocean Model and focussed in particular
on the horizontal and vertical structure of multivariate covari-
ance functions from sea surface height. It was concluded that
the EnKF could capture anisotropic covariance functions re-
sulting from the impact of coastlines and coastal dynamics,
and had a particular advantage over simpler methodologies
in such areas.

Evensen and van Leeuwen (2000) rederived the EnKF as
a suboptimal solver for the general Bayesian problem of find-
ing the posterior distribution given densities for the model
prediction and the observations. From this formulation the

general filter could be derived and the EnKF could be shown
to be a suboptimal solver of the general filter where the prior
densities are assumed to be Gaussian distributed.

Hamill and Snyder (2000) constructed a hybrid assimila-
tion scheme by combining 3DVAR and the EnKF. The esti-
mate is computed using the 3DVAR algorithm but the back-
ground covariance is a weighted average of the time evolving
EnKF error covariance and the constant 3DVAR error covari-
ance. A conclusion was that with increasing ensemble size
the best results were found with larger weight on the EnKF
error covariance.

Hamill et al. (2000) report from working groups in a work-
shop on ensemble methods.

Keppenne (2000) implemented the EnKF with a two layer
shallow water model and examined the method in twin ex-
periments assimilating synthetic altimetry data. He focused
on the numerical implementation on parallel computers with
distributed memory and found the approach efficient for such
systems. He also examined the impact of ensemble size and
concluded that realistic solutions could be found using a mod-
est ensemble size.

Mitchell and Houtekamer (2000) introduced an adaptive
formulation of the EnKF where the model error parameter-
ization was updated by incorporating information from the
innovations during the integration.

Park and Kaneko (2000) presented an experiment where
the EnKF was used to assimilate acoustic tomography data
into a barotropic ocean model.

Gronnevik and Evensen (2001) examined the EnKF for
use in fish stock assessment, and also intercompared it with
the Ensemble Smoother (ES) and the Ensemble Kalman Smoother
(EnKS).

Heemink et al. (2001) have been examining different ap-
proaches which combine ideas from RRSQRT filtering and
the EnKF to derive computationally more efficient methods.

Houtekamer and Mitchell (2001) have continued the ex-
amination of the two-ensemble approach and introduced a
technique for computing the global EnKF analysis in the case
with many observations, and also a method for filtering of
eventual long range spurious correlations caused by a lim-
ited ensemble size. As will be seen below the current paper
presents a much more efficient way to compute the global
analysis and also argues against filtering of covariances.

Pham (2001) reexamined the EnKF in an application with
the Lorenz attractor and intercompared results with those ob-
tained from versions of the Singular Evolutive Extended Kalman
(SEEK) filter and a particle filter. Ensembles with very few
members were used and this favoured methods like the SEEK
where the “ensemble” of EOFs is selected to best possible
represent the model attractor.

Verlaan and Heemink (2001) applied the RRSQRT and
EnKF filters in test examples with the purpose of classifying
and defining a measure of the degree of nonlinearity of the
model dynamics. Such an estimate may have an impact on
the choice of assimilation method.

Hansen and Smith (2001) proposed a method for produc-
ing analysis ensembles based on integrated use of the 4DVAR
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method and the EnKF. A probabilistic approach was used and
lead to high numerical cost, but an improved estimate could
be found compared to 4DVAR and the EnKF used separately.

Hamill et al. (2001) examined the impact of ensemble size
on noise in distant covariances. They evaluated the impact
of using an “inflation factor” as introduced by Anderson and
Anderson (1999), and also the use of a Schur product of the
covariance with a correlation function to localize the back-
ground covariances as previously discussed by Houtekamer
and Mitchell (2001). The inflation factor is used to replace
the forecast ensemble according to

ψj = ρ(ψj −ψ) +ψ, (1)

with ρ slightly greater than one (typically 1.01). The purpose
is to account for a slight under representation of variance due
to the use of a small ensemble.

Bishop et al. (2001) used an implementation of the EnKF
in an observation system simulation experiment. Ensemble
predicted error statistics were used to determine the optimal
configuration of future targeted observations. The application
typically looked at a case where additional targeted measure-
ments could be deployed over the next few days and the de-
ployment could be optimized to minimize the forecast errors
in a selected region. The methodology was named Ensem-
ble Transform Kalman Filter and it was further examined by
Majumdar et al. (2001).

Reichle et al. (2002) give a nice discussion of the EnKF
in relation to the optimal representer solution. They find good
convergence of the EnKF toward the representer solution with
the difference being caused by the Gaussian assumptions used
in the EnKF at analysis steps. These are avoided in the rep-
resenter method which solves for the maximum likelihood
smoother estimate.

Evensen (2002) provided an intercomparison and review
of sequential assimilation methods including some simple ex-
amples.

Bertino et al. (2002) applied the EnKF and the Reduced
Rank Square Root (RRSQRT) filter with a model for the Odra
estuary. The two methods were compared and used to assim-
ilate real observations to assess the potential for operational
forecasting in the lagoon. This is a relatively linear model and
the EnKF and the RRSQRT filter provided similar results.

Eknes and Evensen (2002) examined the EnKF with a 1–
D three component marine ecosystem model with focus on
sensitivity to the characteristics of the assimilated measure-
ments and the ensemble size. It was found that the EnKF
could handle strong nonlinearities and instabilities which oc-
cur during the spring bloom.

Allen et al. (2002) takes the Eknes and Evensen (2002)
work one step further by applying the method with a 1–D
version of ERSEM for a site in the Mediterranean Sea. They
showed that even with such a complex model it is possible to
find an improved estimate by assimilatingin situdata into the
model.

Haugen and Evensen (2002) applied the EnKF to assimi-
late sea level anomalies and sea surface temperature data into
a version of the Miami Isopycnic Coordinate Ocean Model

(MICOM) by Bleck et al. (1992) for the Indian Ocean. The
paper provided an analysis of regionally dependent covari-
ance functions in the tropics and subtropics and also the mul-
tivariate impact of assimilating satellite observations.

Brusdal et al. (2002) discussed a similar application as
Haugen et al. (2002), but focussed on the North Atlantic.
In addition, this paper included an extensive intercompari-
son of the theoretical background of the EnKF, EnKS and
the SEEK filter, and also compared results from these meth-
ods using the same model and measurements. This paper, to-
gether with Haugen et al. (2002), are the first applications of
the EnKF with a full-blown OGCM in a realistic application,
and have proved the feasibility of the assimilation system for
real oceanographic problems.

Natvik and Evensen (2002a,b) presented the first realis-
tic 3–D application of the EnKF with a marine ecosystem
model. These papers proved the feasibility of assimilating
SeaWiFS ocean colour data to control the evolution of a ma-
rine ecosystem model. In addition several diagnostic methods
were introduced which can be used to examine the statistical
and other properties of the ensemble.

Mitchell et al. (2002) examined the EnKF with a global
atmospheric general circulation model with simulated data
resembling realistic operational observations. They assimi-
lated 80 000 observations a day. The system was examined
with respect to required ensemble size, and the effect of lo-
calization (local analysis at a grid point using only nearby
measurements). It was found that severe localization could
lead to imbalance, but with large enough ratio of influence
for the measurements, this was not a problem and no digital
filtering was required. In the experiments they also included
model errors and demonstrated the importance of this to avoid
filter divergence. This work is a significant step forward and it
shows promising results with respect to using the EnKF with
atmospheric forecast models.

Keppenne and Rienecker (2002) implemented a massively
parallel version of the EnKF with the Poseidon isopycnic co-
ordinate ocean model for the tropical Pacific. They demon-
strated the assimilation ofin situ observations and focussed
on the parallelization of the model and analysis scheme for
computers with distributed memory. They also showed that
regionalization of background covariances has negligible im-
pact on the quality of the analysis.

2.2 Other ensemble based filters

The EnKF can also be related to some other sequential filters
such as the Singular Evolutive Extended Kalman (SEEK) fil-
ter by Pham et al. (1998); Brasseur et al. (1999); Carmillet
et al. (2001) (see also Brusdal et al., 2002, for an intercompar-
ison of the SEEK and the EnKF); the Reduced Rank Square
Root (RRSQRT) filter by Verlaan and Heemink (2001); and
the Error Subspace Statistical Estimation (ESSE) filter by
Lermusiaux and Robinson (1999a,b); Lermusiaux (2001) which
can be interpreted as an EnKF where the analysis is computed
in the space spanned by the EOFs of the ensemble.
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Anderson (2001) proposed a method denoted the “En-
semble Adjustment Kalman Filter” where the analysis is com-
puted without adding perturbations to the observations. This
still gives the correct mean of the analyzed ensemble but in
the EnKF it would give too low variance as explained by
Burgers et al. (1998). This is accounted for by deriving a lin-
ear operator which replaces the traditional gain matrix and re-
sults in an updated ensemble which is consistent with theory.
A drawback may be the required inversion of the measure-
ment error covariance when this is nondiagonal. This method
becomes a variant of the square root algorithm used by Bishop
et al. (2001). It is demonstrated that for small ensembles (10–
20 members) the EAKF performs better than the EnKF.

Whitaker and Hamill (2002) proposed another version of
the EnKF where the perturbation of observations are avoided.
The scheme provides a better estimate of the analysis vari-
ance by avoiding the sampling errors of the observation per-
turbations. The scheme was tested for small ensemble sizes
(10–20 members) where it had a clear benefit on the results.
The scheme is based on a redefinition of the Kalman gain
derived from the equation

P a
e = (I −KH)P f(I −HTKT) +KRKT

= (I −KH)P f .
(2)

where the termKRKT = 0 without perturbations of mea-
surements. A solution of this equation is

K = P fHT

[(√
HP fHT +R

)−1
]T

×
[√
HP fHT +R+

√
R
]−1

.

(3)

This is essentially a Monte Carlo implementation of the square
root filter and was named (EnSRF).

2.3 Ensemble smoothers

Some publications have focussed on the extension of the EnKF
to a smoother. The first formulation was given by van Leeuwen
and Evensen (1996) who introduced the Ensemble Smoother
(ES). This method has later been examined in Evensen (1997)
with the Lorenz attractor; applied with a QG model to find a
steady mean flow by van Leeuwen (1999b) and for the time
dependent problem in van Leeuwen (2001); and for fish stock
assessment by Gronnevik and Evensen (2001). Evensen and
van Leeuwen (2000) re-examined the smoother formulation
and derived a new algorithm with better properties named the
Ensemble Kalman Smoother (EnKS). This method has also
been examined in Gronnevik and Evensen (2001) and Brus-
dal et al. (2002).

2.4 Nonlinear filters and smoothers

Another extension of the EnKF relates to the derivation of an
efficient method for solving the nonlinear filtering problem,

i.e., taking non-Gaussian contributions in the predicted error
statistics into account when computing the analysis. These
are discarded in the EnKF (see Evensen and van Leeuwen,
2000), and a fully nonlinear filter is expected to improve the
results when used with nonlinear dynamical models with multi-
modal behaviour where the predicted error statistics are far
from Gaussian. Implementations of nonlinear filters have been
proposed by Miller et al. (1999), Anderson and Anderson
(1999), Pham (2001) and Miller and Ehret (2002), although
they are still not practical for high dimensional systems due to
large numerical cost. A promising exception is the approach
taken by van Leeuwen (2002) based on importance sampling.

3 Sequential data assimilation

This section gives a brief introduction to sequential data as-
similation methodologies such as the Kalman Filter (KF) and
the Extended Kalman Filter (EKF) and outline the general
theory of the EnKF.

3.1 A variance minimizing analysis

The Kalman Filter is a sequential filter method, which means
that the model is integrated forward in time and whenever
measurements are available these are used to reinitialize the
model before the integration continues. We neglect the time
index and denote a model forecast and analysis asψf andψa

respectively and the measurements are contained ind. Fur-
ther, the respective covariances for model forecast, analysis
and measurements are denotedP f , P a andR, and the anal-
ysis equation becomes

ψa = ψf + P fHT(HP fHT +R)−1(d−Hψf), (4)

with the analysis error covariances given as

P a = P f − P fHT(HP fHT +R)−1HP f . (5)

HereH is the measurement operator relating the true model
stateψt to the observationsd allowing for measurement er-
rorsε, i.e.

d = Hψt + ε. (6)

The reinitialization,ψa, is determined as a weighted lin-
ear combination of the model prediction,ψf , and the mea-
surements,d. The weights are the inverses of the error co-
variances for the model prediction and the measurements, and
the optimal linear-combination becomes the Best Linear Un-
biased Estimator (BLUE).

The error covariances for the measurements,R, need to
be prescribed based on our best knowledge about their accu-
racy and the methodologies used to collect them. The error
covariances for the model prediction is computed by solving
an equation for the time evolution of the error covariance ma-
trix of the model state.

A derivation of these equations can be found in several
publications (see e.g. Burgers et al., 1998).
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3.2 The Kalman Filter

Given a linear dynamical model written on discrete form as

ψk+1 = Fψk, (7)

the error covariance equation becomes

P k+1 = FP kF
T +Q, (8)

where the matrixQ is the error covariance matrix for the
model errors. The model is assumed to contain errors, e.g.
due to neglected physics and numerical approximations. The
equations (7) and (8) are integrated to produce the forecasts
ψf andP f , used in the analysis equations (4) and (5).

3.3 The Extended Kalman Filter

With a nonlinear model

ψk+1 = f(ψk), (9)

the error covariance equation would still be (8) but withF
being the tangent linear operator (Jacobian) off(ψ). Thus,
a linearized and approximate equation is used for the predic-
tion of error statistics in the Extended Kalman Filter (EKF).
A comprehensive discussion of the properties of the EKF
can be found in the literature, but for a convenient summary
which intercompares the EKF with Ensemble Kalman Filter
(EnKF), to be discussed next, see Evensen (2002).

3.4 The Ensemble Kalman Filter

The ensemble Kalman filter as proposed by Evensen (1994b)
and later clearified by Burgers et al. (1998) is now introduced.
We will adapt a three stage presentation starting with the rep-
resentation of error statistics using an ensemble of model
states, then an alternative to the traditional error covariance
equation is proposed for the prediction of error statistics, and
finally a consistent analysis scheme is presented.

3.4.1 Representation of error statisticsThe error covariance
matrices for the forecasted and the analyzed estimate,P f and
P a, are in the Kalman filter defined in terms of the true state
as

P f = (ψf −ψt)(ψf −ψt)T, (10)

P a = (ψa −ψt)(ψa −ψt)T, (11)

where the overline denotes an expectation value,ψ is the
model state vector at a particular time and the superscripts
f, a, andt represent forecast, analyzed, and true state, respec-
tively. However, since the true state is not known, it is more
convenient to consider ensemble covariance matrices around
the ensemble mean,ψ,

P f ' P f
e = (ψf −ψf)(ψf −ψf)T, (12)

P a ' P a
e = (ψa −ψa)(ψa −ψa)T, (13)

where now the overline denote an average over the ensemble.
Thus, we can use an interpretation where the ensemble mean
is the best estimate and the spreading of the ensemble around
the mean is a natural definition of the error in the ensemble
mean.

Since the error covariances as defined in (12) and (13) are
defined as ensemble averages, there will clearly exist infini-
tively many ensembles with an error covariance equal toP f

e

andP a
e . Thus, instead of storing a full covariance matrix, we

can represent the same error statistics using an appropriate
ensemble of model states. Given an error covariance matrix,
an ensemble of finite size will always provide an approxima-
tion to the error covariance matrix. However, when the size
of the ensembleN increases the errors in the representation
will decrease proportional to1/

√
N .

Suppose now that we haveN model states in the ensem-
ble, each of dimensionn. Each of these model states can be
represented as a single point in ann-dimensional state space.
All the ensemble members together will constitute a cloud
of points in the state space. Such a cloud of points in the
state space can be approximately described using a proba-
bility density function

φ(ψ) =
dN

N
, (14)

wheredN is the number of points in a small unit volume and
N is the total number of points. With knowledge about either
φ or the ensemble representingφ we can calculate whichever
statistical moments (such as mean, covariances etc.) we want
whenever they are needed.

The conclusion so far is that the information contained
by a full probability density function can be represented by
an ensemble of model states.

3.4.2 Prediction of error statistics The EnKF was designed
to resolve two major problems related to the use of the EKF
with nonlinear dynamics in large state spaces. The EKF ap-
plies a closure scheme where third- and higher order mo-
ments in the error covariance equation are discarded. This
linearization has been shown to be invalid in a number of ap-
plications, e.g., Evensen (1992) and Miller et al. (1994). In
fact, the equation is no longer the fundamental equation for
the error evolution when the dynamical model is nonlinear.
In Evensen (1994b) it was shown that a Monte Carlo method
can be used to solve an equation for the time evolution of
the probability density of the model state, as an alternative to
using the approximate error covariance equation in the EKF.

For a nonlinear model where we appreciate that the model
is not perfect and contains model errors, we can write it as a
stochastic differential equation (on continuous form) as

dψ = f(ψ)dt+ g(ψ,dq). (15)

This equation states that an increment in time will yield an
increment inψ, which in addition, is influenced by a random
contribution from the stochastic forcing term,g(ψ,dq), rep-
resenting the model errors. Thedq describe a vector Brown-
ian motion process with covarianceQdt. Because the model
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is nonlinear,g is not an explicit function of the random vari-
abledq so the Ito interpretation of the stochastic differential
equation has to be used instead of the Statonovitz interpreta-
tion Jazwinski (1970).

When the model errors are additive, i.e., when the stochas-
tic forcing term can be written asg(ψ,dq) = g(ψ)dq, one
can derive the Fokker-Planck equation (also named Kolmogorov’s
equation) which describes the time evolution of the probabil-
ity densityφ(ψ) of the model state,

∂φ

∂t
+
∑

i

∂(fiφ)
∂ψi

=
1
2

∑
i,j

∂2φ(gQgT )ij

∂ψi∂ψj
, (16)

wherefi is the component numberi of the model operatorf
andgQgT is the covariance matrix for the model errors.

This equation does not apply any important approxima-
tions and can be considered as the fundamental equation for
the time evolution of error statistics. A detailed derivation is
given in Jazwinski (1970). The equation describes the change
of the probability density in a local “volume” which is depen-
dent on the divergence term describing a probability flux into
the local “volume” (impact of the dynamical equation) and
the diffusion term which tends to flatten the probability den-
sity due to the effect of stochastic model errors. If (16) could
be solved for the probability density function, it would be
possible to calculate statistical moments like the mean state
and the error covariance for the model forecast to be used in
the analysis scheme.

The EnKF applies a socalled Markov Chain Monte Carlo
(MCMC) method to solve (16). The probability density can
be represented using a large ensemble of model states and by
integrating these model states forward in time according to
the model dynamics described by the stochastic differential
equation (15), this ensemble prediction is equivalent to solv-
ing the Fokker Planck equation using a MCMC method. This
procedure forms the backbone for the EnKF.

A linear model for a Gauss-Markov process in which the
initial condition is assumed to be taken from a normal dis-
tribution will have a probability density which is completely
characterized by its mean and covariance matrix for all times.
One can then derive exact equations for the evolution of the
mean and the covariance matrix as a simpler alternative than
solving the full Kolmogorov’s equation. Such moments of
Kolmogorov’s equation, including the error covariance equa-
tion (8), are easy to derive, and several methods are illustrated
by Jazwinski (1970, examples 4.19–4.21).

For a nonlinear model, the mean and covariance matrix
will not in general characterizeφ(ψ, t). They do, however,
determine the mean path and the dispersion about that path,
and it is possible to solve approximate equations for the mo-
ments, which is the procedure characterizing the extended
Kalman filter.

An alternative to the approximate stochastic dynamic ap-
proach for solving Kolmogorov’s equation and predicting the
error statistics is to use Monte Carlo methods. A large cloud
of model states (points in state space) can be used to rep-
resent a specific probability density function. By integrating

such an ensemble of states forward in time, it is easy to cal-
culate approximate estimates for moments of the probability
density function at different time levels. In this context the
Monte Carlo method might be considered a particle method
in the state space.

3.4.3 An analysis schemeThe KF analysis scheme was based
on the definitions ofP f andP a as given by equations (10)
and (11). We will now give a derivation of the analysis scheme
where the ensemble covariances are used as defined by (12)
and (13). This is convenient since in practical implementa-
tions one is doing exactly this, and it will also lead to a con-
sistent formulation of the EnKF.

As will be shown later it is essential that the observa-
tions are treated as random variables having a distribution
with mean equal to the first guess observations and covari-
ance equal toR. Thus, we start by defining an ensemble of
observations

dj = d+ εj , (17)

wherej counts from 1 to the number of model state ensemble
membersN . Next we define the ensemble covariance matrix
of the measurements as

Re = εεT, (18)

and, of course, in the limit of an infinite ensemble this matrix
will converge toward the prescribed error covariance matrix
R used in the standard Kalman filter.

The analysis step for the EnKF consists of the follow-
ing updates performed on each of the model state ensemble
members

ψa
j = ψf

j +P f
eH

T(HP f
eH

T +Re)−1(dj −Hψf
j). (19)

Note that equation (19) implies that

ψa = ψf + P f
eH

T(HP f
eH

T +Re)−1(d−Hψf), (20)

whered = d is the first guess vector of measurements. Thus,
the relation between the analyzed and forecasted ensemble
mean is identical to the relation between the analyzed and
forecasted state in the standard Kalman filter in equation (4),
apart from the use ofP f,a

e andRe instead ofP f,a andR.
Note that the introduction of an ensemble of observations
does not make any difference for the update of the ensemble
mean since this does not affect equation (20).

If the mean,ψa, is considered to be the best estimate,
then the linearity of the analysis scheme makes it an arbitrary
choice whether one updates the mean using the first guess
observationsd, or if one updates each of the ensemble mem-
bers using the perturbed observations (17). However, it will
now be shown that by updating each of the ensemble mem-
bers using the perturbed observations one also creates a new
ensemble having the correct error statistics for the analysis.
The updated ensemble can then be integrated forward in time
till the next observation time.

Moreover, the error covariance,P a
e , of the analyzed en-

semble is reduced in the same way as in the standard Kalman
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Filter. We now derive the analyzed error covariance estimate
resulting from the analysis scheme given above, but using the
standard Kalman filter form for the analysis equations. First,
note that equations (19) and (20) are used to get

ψa
j −ψ

a = (I −KeH)(ψf
j −ψ

f) +Ke(dj − d), (21)

where we have used the definition of the Kalman gain,

Ke = P f
eH

T(HP f
eH

T +Re)−1. (22)

The derivation is then as follows,

P a
e = (ψa −ψa)(ψa −ψa)T

= (I −KeH)P f
e(I −H

TKT
e ) +KeReK

T
e

= P f
e −KeHP

f
e − P

f
eH

TKT
e

+Ke(HP f
eH

T +Re)KT
e

= (I −KeH)P f
e.

(23)

Note that this derivation clearly states that the observationsd
must be treated as random variables to get the measurement
error covariance matrixRe into the expression.

3.4.4 Summary We now have a complete system of equa-
tions which constitutes the ensemble Kalman filter (EnKF),
and the resemblance with the standard Kalman filter is main-
tained. This is also true for the forecast step. Each ensemble
member evolves in time according to the model dynamics.
The ensemble covariance matrix of the errors in the model
equations, given by

Qe = dqkdqk
T, (24)

converges toQ in the limit of infinite ensemble size. The en-
semble mean then evolves according to the equation

ψk+1 = f(ψk)

= f(ψk) + n.l.,
(25)

where n.l. represents the terms which may arise iff is non-
linear. One of the advantages of the EnKF is that the effect of
these terms is retained since each ensemble member is inte-
grated independently by the model.

The error covariance of the ensemble evolves according
to

P k+1
e = FP k

eF
T +Qe + n.l., (26)

whereF is the tangent linear operator evaluated at the current
time step. This is again an equation of the same form as is
used in the standard Kalman filter, except of the extra terms
n.l. that may appear iff is non-linear. Implicitly, the EnKF
retains these terms also for the error covariance evolution.

Thus, if the ensemble mean is used as the best estimate,
with the ensemble covarianceP e interpreted as the error co-
varianceP , and by defining the observation error covariance
matrixRe = R and the model error covarianceQe = Q,
the EnKF and the standard Kalman filter become identical.
This discussion shows that there is a unique correspondence

between the EnKF and the standard Kalman filter (for linear
dynamics), and that one can certainly interpret the ensemble
covariances as error covariances while the ensemble mean is
used as the best guess trajectory.

For nonlinear dynamics the so called extended Kalman
filter may be used and is given by the evolution equations
(25) and (26) with the n.l. terms neglected. The ensemble
Kalman filter includes the full effect of these terms and there
are no linearizations or closure assumptions applied. In addi-
tion, there is no need for a tangent linear operator, such asF ,
or its adjoint, and this makes the EnKF very easy to imple-
ment for practical applications.

This leads to an interpretation of the EnKF as a purely
statistical Monte Carlo method where the ensemble of model
states evolves in state space with the mean as the best esti-
mate and the spreading of the ensemble as the error variance.
At measurement times each observation is represented by an-
other ensemble, where the mean is the actual measurement
and the variance of the ensemble represents the measurement
errors.

4 Practical formulation and interpretation

This section discusses the EnKF in more detail with focus on
the practical formulation and interpretation. It is shown that
an interpretation in the “ensemble space” provides a better
understanding of the actual algorithm and also allows for very
efficient algorithms to be developed.

4.1 The initial ensemble

The initial ensemble should ideally be chosen to properly rep-
resent the error statistics of the initial guess for the model
state. However, a modest mis-specification of the initial en-
semble does normally not influence the results very much
over time. The rule of thumb seems to be that one needs to
create an ensemble of model states by adding some kind of
perturbations to a best guess estimate, and then integrate the
ensemble over a time interval covering a few characteristic
time scales of the dynamical system. This will ensure that the
system is in dynamical balance and that proper multivariate
correlations have developed.

The perturbations can be created in different ways. The
simplest is to sample random numbers (for a scalar model),
random curves (for a 1–D model) or random fields (for a
model with 2 or higher dimensions), from a specified distri-
bution. In Appendix E there is an example of a procedure for
generating such random perturbations.

4.2 The ensemble integration

The ensemble of model states is integrated forward in time
according to the stochastic equation (15). In a practical im-
plementation this becomes just a standard integration of the
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numerical model but subject to a stochastic noise which re-
sembles the uncertainties in the model. Note that the EnKF
allows for a wide range of noise models. Stochastic terms
can be added to all poorly known model parameters and one
is not restricted to use Gaussian distributed noise. Further, it
is possible to use time correlated (red) noise.

4.2.1 Simulation of model errorsThe following equation
can be used for simulating the time evolution of model er-
rors:

qk = αqk−1 +
√

1− α2wk−1. (27)

Here we assume thatwk is a sequence of white noise drawn
from a distribution of smooth pseudo random fields with mean
equal to zero and variance equal to one. Such fields can be
generated using the algorithm presented in the Appendix E.
The coefficientα ∈ [0, 1) determines the time decorrelation
of the stochastic forcing, e.g.,α = 0 generates a sequence
which is white in time, whileα = 1 will remove the stochas-
tic forcing and represent the model errors with a random field
which is constant in time.

This equation ensures that the variance ofqk is equal to
one as long as the variance ofqk−1 is one. Thus, this equation
will produce a sequence of time correlated pseudo random
fields with mean equal to zero and variance equal to one.

The covariance in time betweenqi andqj , determined by
equation (27), is

qiqj = α|i−j|. (28)

Determination ofα. The factorα should be related to the
time step used and a specified time decorrelation lengthτ .
The equation (27), when excluding the stochastic term, re-
sembles a difference approximation to

∂q

∂t
= −1

τ
q, (29)

which states thatq is damped with a ratioe−1 over a time
periodt = τ . A numerical approximation becomes

qk =
(

1− ∆t

τ

)
qk−1, (30)

where∆t is the time step. Thus, we ‘defineα as

α = 1− ∆t

τ
, (31)

whereτ ≥ ∆t.

Physical model. Based on random walk theory (see below),
the physical model can be written as

ψk = f(ψk−1) +
√
∆tσρqk, (32)

whereσ is the standard deviation of the model error andρ is
a factor to be determined. The choice of the stochastic term
is explained next.

Variance growth due to the stochastic forcing.To explain
the choice of the stochastic term in Equation (32) we will use
a simple random walk model for illustration, i.e.,

ψk = ψk−1 +
√
∆tσρqk. (33)

This equation can be rewritten as

ψk = ψ0 +
√
∆tσρ

k−1∑
i=0

qi+1. (34)

The variance can be found by squaring (34) and taking
the ensemble average, i.e.,

ψnψ
T
n = ψ0ψ

T
0 +∆tσ2ρ2

(
n−1∑
k=0

qk+1

)(
n−1∑
k=0

qk+1

)T

(35)

= ψ0ψ
T
0 +∆tσ2

n−1∑
j=0

n−1∑
i=0

qi+1q
T
j+1 (36)

= ψ0ψ
T
0 +∆tσ2ρ2

n−1∑
j=0

n−1∑
i=0

α|i−j| (37)

= ψ0ψ
T
0 +∆tσ2ρ2

(
−n+ 2

n−1∑
i=0

(n− i)αi

)
(38)

= ψ0ψ
T
0 +∆tσ2ρ2n− 2α+ nα2 + 2nαn+1

(1− α)2
(39)

where the expression (28) has been used. The double sum
in equation (37) is just summing elements in a matrix and is
replaced by a single sum operating on diagonals of constant
values. The summation in (38) has an explicit solution (Grad-
shteyn and Ryzhik, 1979, formula 0.113).

If the sequence of model noiseqk is white in time (α =
0), this equation implies an increase in variance equal toσ2ρ2

when equation (33) is iteratedn time steps of length∆t, over
one time unit (n∆t = 1). Thus, in this caseρ = 1 is a natural
choice since this leads to the correct increase in ensemble
variance given byσ2.

In the case with red model errors the increase in ensemble
variance over one time unit will increase up to a maximum of
σ2ρ2/∆t in the case whenα = 1 (not covered by the formula
37).

The two equations (27) and (32) provides the standard
framework for introducing stochastic model errors when us-
ing the EnKF. The formula (39) provides the mean for scaling
the perturbations in (32) when changingα and/or the number
of time steps per time unit,n, to ensure that the ensemble
variance growth over a time unit remains the same.

Thus, the constraint that

1 = ρ2∆t
n− 2α+ nα2 + 2nαn+1

(1− α)2
, (40)

defines the factor

ρ2 =
1
∆t

(1− α)2

n− 2α+ nα2 + 2nαn+1
, (41)
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whic ensures that the variance growth over time becomes in-
dependent ofα and∆t (as long as the dynamical model is
linear).

4.2.2 Estimation of model errorsWhen red model noise is
used, correlations will develop between the red noise and the
model variables. Thus, during the analysis it is also possible
to consistently update the model noise as well as the model
state. This was illustrated in an example by Reichle et al.
(2002). We introduce a new state vector which consists of
ψ augmented withq. The two equations (27) and (32) can
then be written as(

qk

ψk

)
=
(

αqk−1

f(ψk−1) +
√
∆tσρqk

)
+
( √

1− α2wk−1

0

)
.

(42)

During the analysis we can now compute covariances be-
tween the observed model variable and the model noise vec-
tor q and update this together with the state vector. This will
lead to a correction of the mean ofq as well as a reduction
of the variance in the model noise ensemble. Note that this
procedure estimates the actual error in the model for each en-
semble member, given the prescribed model error statistics.

The form of equation (27) ensures that, over time,qk will
approach a distribution with mean equal to zero and variance
equal to one, as long as we don’t updateqk in the analysis
scheme.

4.3 The EnKF analysis scheme

This section attempts to explain in some detail how the EnKF
analysis can be computed efficiently for practical applica-
tions. In particular it discusses how the filter can be used to
compute a global analysis to an affordable cost, even with
a very large number of measurements. It presents a storage
scheme which requires only one copy of the ensemble to be
kept in memory, and an efficient algorithm for computation
of the expensive final matrix multiplication. The concept of a
local analysis is discussed in Section 4.4, A discussion is also
given on the assimilation of nonlinear measurements in Sec-
tion 4.5, a problem which is solved by augmenting the model
state with the model’s measurement equivalents. Moreover,
this algorithm also allows for the efficient assimilation of
in situ measurements in a consistent manner where one en-
tirely relies on the ensemble predicted error statistics (see Ap-
pendix C). Finally a discussion is given on the assimilation of
non-synoptic measurements in Section 4.6.

4.3.1 Definitions and the analysis equationDefine the ma-
trix holding the ensemble membersψi ∈ <n,

A = (ψ1,ψ2, . . . ,ψN ) ∈ <n×N , (43)

whereN is the number of ensemble members andn is the
size of the model state vector.

The ensemble mean is stored in each column ofA which
can be defined as

A = A1N , (44)

where1N ∈ <N×N is the matrix where each element is equal
to 1/N . We can then define the ensemble perturbation matrix
as

A′ = A−A = A(I − 1N ). (45)

The ensemble covariance matrixP e ∈ <n×n can be defined
as

P e =
A′(A′)T

N − 1
. (46)

Given a vector of measurementsd ∈ <m, with m being the
number of measurements, we can define theN vectors of per-
turbed observations as

dj = d+ εj , j = 1, . . . , N, (47)

which can be stored in the columns of a matrix

D = (d1,d2, . . . ,dN ) ∈ <m×N , (48)

while the perturbations can be stored in the matrix

Υ = (ε1, ε2, . . . , εN ) ∈ <m×N , (49)

from which we can construct the ensemble representation of
the measurement error covariance matrix

Re =
ΥΥT

N − 1
. (50)

The standard analysis equation, expressed in terms of the
ensemble covariance matrices, is

Aa = A+ P eH
T(HP eH

T +Re)−1(D −HA). (51)

Using the ensemble of innovation vectors defined as

D′ = D −HA (52)

and the definitions of the ensemble error covariance matrices
in Equations (50) and (46) the analysis can be expressed as

Aa = A+A′A′THT
(
HA′A′THT + ΥΥT

)−1

D′.

(53)

4.3.2 Practical formulation and implementationThe tradi-
tional way of solving the analysis equation (53) would in-
volve the computation of the eigenvalue decomposition di-
rectly from them×m matrix,

HA′A′THT + ΥΥT = ZΛZT, (54)

which has the inverse

(HA′A′THT + ΥΥT)−1 = ZΛ−1ZT. (55)

The cost of the eigenvalue decomposition is proportional to
m2 and becomes un-affordable for largem. Note, however
that the rank ofZΛZT is less than or equal toN . Thus,Λ
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will haveN or less non-zero eigenvalues and it may there-
fore be possible to use a more efficient eigenvalue decompo-
sition algorithm which only computes and stores the firstN
columns ofZ.

It is important to note that if different measurement types
are assimilated simultaneously, the model observed model
variables need to be made non-dimensional or scaled to have
similar variability. This is required to ensure that the eigenval-
ues to each of the measurement types have the same magni-
tude. The standard approach for resolving this is to assimilate
different measurement types, which normally have uncorre-
lated errors, sequentially one data set at the time. The validity
of this approach has been shown, e.g. by Evensen and van
Leeuwen (2000).

Alternative solution for largem. If the perturbations used
for measurements are chosen such that

HA′ΥT ≡ 0, (56)

meaning that the ensemble perturbations and the measure-
ment errors are uncorrelated (equivalent to the common as-
sumption of uncorrelated forecast and measurement errors),
then the following is valid

HA′A′THT + ΥΥT = (HA′ + Υ )(HA′ + Υ )T. (57)

This is an important point since it means that the inverse can
be computed to a cost proportional tomN rather thanm2!
This is seen by the following: first compute the singular value
decomposition (SVD) of them×N matrix

HA′ + Υ = UΣV T. (58)

The equation (57) then becomes

HA′A′THT +ΥΥT = UΣV TV ΣTUT = UΣΣTUT.
(59)

Here the productΣΣT will be identical to the upper left
N ×N quadrant ofΛ which corresponds to theN non-zero
eigenvalues. Further, theN singular vectors contained inU
are also identical to theN first eigenvectors inZ. Thus, the
inverse is again (55). The numerical cost is now proportional
to mN which is a huge benefit whenm is large. This pro-
cedure allows us to efficiently compute the inversion for a
global analysis in most practical situations.

Update costs. As soon as the inversion just discussed has
been completed, the analysis can be computed from

Aa = A+A′(HA′)TUΛ−1UTD′. (60)

The matrixΛ−1 will only have non-zero elements on the di-
agonal. If we use the pseudo inverse taking into account e.g.,
99% of the variance, only the first fewp ≤ N , terms will be

nonzero since the rank of the inverted matrix isp ≤ N from
(57). This can be exploited using the following scheme:

X1 = Λ−1UT ∈ <N×m O(mp), (61)

X2 = X1D
′ ∈ <N×N O(mNp), (62)

X3 = UX2 ∈ <m×N O(mNp), (63)

X4 = (HA′)TX3 ∈ <N×N O(mNN), (64)

Aa = A+A′X4 ∈ <n×N O(nNN). (65)

Sincep ≤ N andm � n for all practical applications, the
dominant cost is now the last computation which isnN2 and
which is independent ofm. All the steps including the sin-
gular value decomposition have a cost which is linear in the
number of measurements rather than quadratic. A practical
approach for performing this last multiplication will be dis-
cussed later.

If we use a full rank matrix,HP eH
T +R, whereR is

not represented using an ensemble of perturbations, the com-
putation of the analysis will be significantly more expensive.
First, the full matrixHP eH

T = (HA′)(HA′)T must be
constructed to a cost ofO(m2N), followed by the eigenvalue
decomposition (54) which requires anotherO(m2) floating
point operations. In this case, the steps (62) and (63) also
comes at a cost ofO(m2N). Thus, the introduction of low
rank by representing the measurement error covariance ma-
trix with an ensemble of perturbations, leads to a significant
saving by transforming all theO(m2N) operations to be lin-
ear inm.

4.3.3 Remarks on analysis equationEquation (65) expresses
the analysis as a first guess plus a linear combination of en-
semble perturbations, i.e.A′X4. From the discussion above
we could also write the analysis equation as

Aa = A+A′(HA′)TX3 = A+P eH
T(N−1)X3. (66)

This is the standard notation used in Kalman filters where one
measures the error covariance matrix to compute the influ-
ence functions, one for each measurement, which are added
to the forecast.

Note also that the Equation (65) can be written as

Aa = A+ (A−A)X4 (67)

= A+A(I − 1N )X4 (68)

= A(I +X4) (69)

= AX5, (70)

where we have used that1NX4 ≡ 0. Obviously, the first
observation to make is that the analyzed ensemble becomes
a linear combination of the predicted ensemble. It then be-
comes of interest to examineX5 to study the properties of
this particular linear combination. Each column ofX5 will
hold the linear combination defining the corresponding new
ensemble member. For this estimate to be unbiased the sum of
each column ofX5 should be equal to one, which is actually
a good test for the numerical coding leading toX5. Also, one
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can in most applications expect thatX5 is diagonal dominant
since the diagonal holds the coefficient for the first guess en-
semble member, while all off-diagonal elements introduces
corrections imposed by the measurements. By examining the
rows of the matrixX5 one can determine if some ensem-
ble members appear to be more important than others. Note
that the off-diagonal elements inX5 will also have negative
values. Thus, the new ensemble members are not weighted
averages of the original ensemble, but rather linear combina-
tions.

Computation of the mean of the analyzed ensemble can
be written as follows:

ψa =
1
N

N∑
j=1

ψa
j , (71)

=
1
N

N∑
j=1

N∑
i=1

ψiXij , (72)

=
1
N

N∑
i=1

ψi

N∑
j=1

Xij , (73)

=
1
N

N∑
i=1

ψiyi, whereyi =
N∑

j=1

Xij . (74)

Thus, the sum,yi, of the elements in each row inX5 defines
the coefficients for the linear combination of forecast mem-
bers defining the mean of the analysis. Theyi values therefore
also determines which of the ensemble members contributes
most strongly to the analysis.

If we compute an SVD decomposition of the forecast en-
semble, the equation (65) can be written as

Aa = AX5, (75)

= UΣV TX5, (76)

= UX6. (77)

Thus, it is possible to visualize the analysis as a linear com-
bination of orthogonal singular vectors. This procedure may
be useful since it allows us to reject eventual dependent en-
semble members and possibly add new orthogonal members
if these are needed. In particular it can be used to examine
how linearly independent the ensemble of model states is.

Some interesting conclusions which can be drawn are:

1. The covariances are only used to create theHPHT ma-
trix, which only includes covariances between the observed
variables at the locations of the observations. The actual
covariances are never computed when the SVD algorithm
in Section 4.3.2 is used although they are used implicitly.

2. The analysis is not really computed as a linear combina-
tion of covariance functions. It is in fact computed as a
linear combination of the forecasted ensemble members.
Each of these members can be considered as drawn from
an infinite sample of dynamically consistent model states
where the correct multivariate correlations are present in
each ensemble member.

3. The covariances are only important for computing the
best possible linear combination, i.e., the matrixX5. As
long as the ensemble basedX5 is a good approximation,
the accuracy of the final analysis will be determined by
the relevance and dimension of the space spanned by the
ensemble members, relative to the dominant degrees of
freedom of the model state.

Based on the points given above it is not wise to filter covari-
ance functions as has been proposed in a number of studies,
e.g. by Houtekamer and Mitchell (2001). Clearly, from equa-
tion (70), the analysis becomes a linear combination of model
states even if equation (66) is used for the actual computation
since these equations are identical. However, if equation (66)
is used for the computation of the analysis but with filtering
applied to the covariance functions, one actually introduces
spurious or nondynamical modes in the analysis.

4.4 Local analysis

To avoid the problems associated with a largem, many op-
erational assimilation schemes have made an assumption that
only measurements located within a certain distance from a
grid point will impact the analysis in this grid point. This al-
lows for an algorithm where the analysis is computed grid
point by grid point. Only a subset of observations, which are
located near the current grid point, is used in the analysis for
this particular grid point. This algorithm is approximative and
it does not solve the original problem posed. Further, it is not
clear how serious the approximation is.

Such an approach is not needed for handling a largem
in the EnKF if the algorithm just described is used. However,
there are other arguments for computing local analyses grid
point by grid point. The analysis in the EnKF is computed in
a space spanned by the ensemble members. This is a subspace
which is rather small compared to the total dimension of the
model state. Computing the analysis grid point by grid point
implies that a small model state is solved for in a relatively
large ensemble space. Further, the analysis will use a different
linear combination of ensemble members for each grid point,
and this also allows for a larger flexibility in the scheme to
reach different model solutions.

For each horizontal grid point, we can now compute the
correspondingX5 using only the selected measurements con-
tributing to that particular grid point and update the ensemble
for that particular grid point. The analysis at grid point(i, j),
i.e.,Aa

(i,j) then becomes

Aa
(i,j) = A(i,j)X5,(i,j) (78)

= A(i,j)X5 +A(i,j)(X5,(i,j) −X5), (79)

whereX5 is the global solution whileX5,(i,j) becomes the
solution for a local analysis corresponding to grid point(i, j)
where only the nearest measurements are used in the analysis.
Thus, it is possible to compute the global analysis first, and
then add the corrections from the local analysis if these are
significant.
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At this time it is not clear how large the ensemble needs
to be to explore a large enough part of the state space to pro-
vide a more consistent result for the global analysis versus
the local analysis scheme. However, we expect this to be ap-
plication dependent.

4.5 Nonlinear measurements

The expressionD′ = D−HA is just the difference between
the ensemble of measurements and the ensemble of observed
model states. If the observations are nonlinear functions of
the model state this matrix formulation usingH becomes in-
valid. The traditional solution is to linearize and iterate. In
the EnKF we have the possibility to augment the model state
with a diagnostic variable which is the model prediction of
the measurement. Thus, ifd = h(ψ, . . .) + ε then a new
model state can be defined for each ensemble member as

ψ̂
T

= (ψT,hT(ψ, . . .)). (80)

By defining the new ensemble matrix as

Â = (ψ̂1, ψ̂2, . . . , ψ̂N ) ∈ <n̂×N , (81)

with n̂ being then plus the number of measurement equiv-
alents added to the original model state, the analysis can be
written

Aa = A+A′Â
′T
Ĥ

T
(
ĤÂ

′
Â
′T
Ĥ

T
+ ΥΥT

)−1

D′,

(82)
where the now linear innovations (witĥH being a direct and
linear measurement functional) becomes

D′ = D − ĤÂ. (83)

From this expression, where the ensemble members have
been augmented with the observation equivalent, we can com-
pute the following: the innovationD′ using a linear (direct)
measurement functional; the model predicted error covari-

ance of the observation’s equivalentsHÂ
′
Â
′T
HT; and the

covariance between the observations and all prognostic model

variables fromA′Â
′T
Ĥ

T
.

The analysis is a linear combination of model predicted
error covariances between the observation equivalentsh(ψ, . . .)
and all other model variables. Thus, we have a fully multivari-
ate analysis scheme.

4.6 Assimilation of “non-synoptic” measurements

In some cases measurements occur with high frequency in
time. An example is along track satellite data. It is not practi-
cal to perform an analysis every time there is a measurement.
Further, the normal approach of assimilating, at one time in-
stant, all data collected within a time interval, is not optimal.
Based on the theory from Evensen and van Leeuwen (2000),
it is possible to assimilate the non-synoptic measurements at

one time instant by exploiting the time correlations in the en-
semble. Thus, a measurement collected at a previous time al-
lows for the computation of theHA at that time and thereby
also the innovations. By treating these as augmented model
variables the equation (82) can again be used but with the
h(ψ, . . .) now denoting the measurements collected at ear-
lier times.

5 Numerical implementation of the EnKF

The algorithm as explained in the previous sections provides
an optimal approach for computing the EnKF analysis. The
following provides a basis explaining the implementation of
the EnKF analysis scheme. It assumes access to the BLAS,
LAPACK and EISPACK libraries, where highly optimized
numerical subroutines are available for most computer sys-
tems and which can be obtained for free throughwww.netlib.no .

5.1 Storing the ensemble on disk

For most practical applications one will not want to keep the
whole ensemble in memory during the ensemble integrations.
Rather, an approach where ensemble members are kept in a
file residing on disk is convenient. This allows for the system
to read a particular member from file, integrate it forward in
time, and then store it on disk again following the integra-
tion. An approach where each member is stored in a record
in a direct Fortran file is most convenient. This allows us to
read and write specific records containing individual ensem-
ble members.

5.2 Analysis implementation

The algorithm for the analysis exploits that we can compute
once and store allinnovations, measurement perturbations
and themeasurements of the ensemble. Thus, we start with
the following:

1. Read the whole ensemble forecast intoA.
2. Compute the matrixHA.
3. Compute the measurement perturbationsΥ .
4. Compute the innovationsD′.
5. ComputeHA and subtract it fromHA to getHA′ (re-

quiresH to be linear).

The following subroutine can then be used without any mod-
ification to compute the analysis for all kinds of model states.

subrou t ine a n a l y s i s (A,D, E , S , ndim , n r e n s , n robs )
! Computes t h e a n a l y s e d ensemble f o r A

use m multa
i m p l i c i t none

! d imens ion o f model s t a t e
i n t e g e r , i n t e n t ( i n ) : : ndim

! number o f ensemble members
i n t e g e r , i n t e n t ( i n ) : : n r e n s

! number o f measurements
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i n t e g e r , i n t e n t ( i n ) : : n robs

! ensemble m a t r i x
r e a l , i n t e n t ( i nou t ) : : A( ndim , n r e n s )

! i n n o v a t i o n s
r e a l , i n t e n t ( i n ) : : D( n robs , n r e n s )

! measurement o f ensemble p e r t u r b a t i o n s
r e a l , i n t e n t ( i n ) : : S ( n robs , n r e n s )

! measurement p e r t u r b a t i o n s
r e a l , i n t e n t ( i n ) : : E ( n robs , n r e n s )

r e a l , a l l o c a t a b l e , dimension ( : , : ) : : &
X1 , X2 , X3 , X4 , X5 ,U,V, P , ES ,UU

r e a l , a l l o c a t a b l e , dimension ( : ) : : &
s i g , work

i n t e g e r , a l l o c a t a b l e , dimension ( : ) : : &
i p v t

r e a l s igsum , s igsum1 , r t c , t 1 , t 2
i n t e g e r i e r r , n rs igma , i ,m, lwork , j , ib lkmax

a l l o c a t e ( ES ( n robs , n r e n s ) )
ES=S+E

! compute SVD of HA’+E u s i ng dgesvd from EISPACK
a l l o c a t e ( U( n robs , min ( n r e n s , n robs ) ) )
a l l o c a t e ( s i g ( min ( n r e n s , n robs ) ) )
a l l o c a t e ( V( n r e n s , n r e n s ) )
lwork =2∗max(3∗ n r e n s + nrobs ,5∗ n r e n s )
a l l o c a t e ( work ( lwork ) )
s i g =0.0
c a l l dgesvd ( ’ S ’ , ’ N ’ , n robs , n r e n s , ES , n robs ,&

s i g ,U, n robs ,V, n r e n s , work , lwork , i e r r )
d e a l l o c a t e( work )
i f ( i e r r / = 0 ) then

p r i n t ∗ , ’ i e r r from c a l l dgesvd = ’ , i e r r
s top

e n d i f

! from s i n g u l a r v a l u e s t o e i g e n v a l u e s
do i =1 , min ( n r e n s , n robs )

s i g ( i )= s i g ( i )∗∗2
enddo

! d e t e r m i n e number o f s i g n i f i c a n t e i g e n v a l u e s
s igsum=sum ( s i g ( 1 : min ( n r en s , n robs ) ) )
s igsum1 =0.0
nrs igma =0
do i =1 , min ( n r e n s , n robs )

s igsum1=sigsum1+ s i g ( i )
i f ( s igsum1 / s igsum< 0 . 9 9 9 ) then

nrs igma = nrs igma +1
s i g ( i ) = 1 . 0 / s i g ( i )

e l s e
s i g ( i : min ( n r e n s , n robs ) ) = 0 . 0
e x i t

e n d i f
enddo

! compute X1
a l l o c a t e ( X1( min ( n r e n s , n robs ) , n robs ) )
do m=1, min ( n r e n s , n robs )
do i =1 , n robs

X1(m, i )= s i g (m)∗U( i ,m)
enddo
enddo
d e a l l o c a t e( s i g )

! compute X2
a l l o c a t e ( X2( min ( n r e n s , n robs ) , n r e n s ) )
X2=matmul (X1 ,D)
d e a l l o c a t e(X1)

! compute X3
a l l o c a t e ( X3( n robs , n r e n s ) )
X3=matmul (U, X2)
d e a l l o c a t e(U)
d e a l l o c a t e(X2)

! compute X4

a l l o c a t e ( X4( n r e n s , n r e n s ) )
X4=matmul ( t r a n s p o s e ( S ) , X3)
d e a l l o c a t e(X3)

! compute X5
a l l o c a t e (X5( n r e n s , n r e n s ) )
X5=X4
do i =1 , n r e n s

X5( i , i )=X5( i , i ) + 1 . 0
enddo
d e a l l o c a t e(X4)

! compute a n a l y s i s
ib lkmax=min ( ndim , 2 0 0 )
c a l l mul ta (A, X5 , ndim , n r e n s , ib lkmax )
d e a l l o c a t e(X5)

end subrou t ine a n a l y s i s

5.3 Final update

The most demanding step in the EnKF analysis is the final
step when evaluating the analysis ensemble from equation
(70). The largest matrix to be held in memory is the ensem-
ble matrixA ∈ <n×N . Further, the number of floating point
operations (a multiply and add) isnN2 which is likely to be
several orders of magnitude more than for the previous steps
in the algorithm. Thus, this step will be treated in some detail.

It is possible to develop a multiplication algorithm which
only requires one copy of the ensemble to be kept in memory.
This matrix multiplication can easily be done while overwrit-
ing row by row ofA using the following call to the subroutine
multa using

X5 = I +X4 ∈ <N×N . (84)

The following subroutine has been found to perform this
multiplication very efficiently. It uses optimized BLAS rou-
tines and includes a block representation which can be used
to optimize cache performance.

module m multa
con ta i n s
subrou t ine mul ta (A , X , ndim , n r e n s , ib lkmax )
i m p l i c i t none
i n t e g e r , i n t e n t ( i n ) : : ndim
i n t e g e r , i n t e n t ( i n ) : : n r e n s
i n t e g e r , i n t e n t ( i n ) : : ib lkmax
r e a l , i n t e n t ( i n ) : : X( n r e n s , n r e n s )
r e a l , i n t e n t ( i nou t ) : : A( ndim , n r e n s )
r e a l v ( ib lkmax , n r e n s ) ! Automat ic work a r r a y

i n t e g e r i f , i l
do i f = 1 , ndim , ib lkmax

i l = min ( i f + ib lkmax−1,ndim )
v ( 1 : i l−i f + 1 , 1 : n r e n s ) = A(i f : i l , 1 : n r e n s )
c a l l dgemm ( ’ n ’ , ’ n ’ , i l−i f + 1 , n r e n s , n r e n s , &

1 . 0 , v ( 1 , 1 ) , ib lkmax , &
X ( 1 , 1 ) , n r e n s , &
0 . 0 , A( i f , 1 ) , ndim )

enddo
end subrou t ine mul ta
end module m multa

5.3.1 Remark 1 Note that this routine does not care about
the order of which the elements inA are stored for each en-
semble member. Thus, in the call tomulta , A can be a multi
dimensional matrix e.g.,A(nx,ny,nz,nrens) holding an
ensemble of a uni-variate three dimensional model state. A
multi-variate model state can be stored in a structure or type
declaration, and still be input tomulta .
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5.3.2 Remark 2: In principle the multiplication has a seri-
ous drawback caused by the stridendim copies. Here the
routine relies on BLAS for the inner matrix multiplication,
since the BLAS routines have already been designed to opti-
mize cache performance. The variableiblkmax is only used
for storage considerations and a typical value of 200 seems to
work fine. This routine also opens for a possible block repre-
sentation of the model state.

5.4 A block algorithm for large ensemble matrices

It is still possible to use the EnKF even if the whole ensemble
does not fit in memory. In this case a block algorithm can be
used for the final update, using additional reads and writes to
file. The algorithm goes as follows:

1. Read each individual ensemble member into a vector one
at the time while computing and storing the columns of
HA.

2. Compute the measurement perturbationsΥ .
3. Compute the innovationsD′.
4. ComputeHA and subtract it fromHA to getHA′ (re-

quiresH to be linear).

So far we have only kept one full model state in mem-
ory at the time. It remains to solve the Equation (70). Using
the block algorithm just discussed above it is possible to per-
form this computation without keeping all of the ensemble in
memory at once. A proposed strategy would be to store the
ensemble in several files, say one file for the temperature, one
for the salinity, etc. Then the analysis can be done easily by
first one read of the part of the ensemble that is required for
the computation ofHA, followed by one additional read and
write of the whole ensemble, i.e., to update the full ensemble
based on the information inHA.

A Consistency checks on error statistics

The EnKF provides error statistics for the results. To validate
the predicted error statistics it is possible to compare statistics
computed from the innovation sequence with the predicted
error statistics.

If the model forecast is written as

ψf = ψt + q, (85)

i.e., it is given as the truth plus an error, and the measurements
are written as

d = Hψt + ε, (86)

the innovation becomes

d−Hψf = ε−Hq. (87)

By squaring this equation and taking the expectation we get
the expression

(d−Hψf)(d−Hψf)T = R+HP fHT (88)

where correlations between the forecast error and the mea-
surement error have been neglected.

Thus, it is possible to compute the variance of the inno-
vation sequence in time, subtract the measurement variance
and compare this with the predicted error variance from the
ensemble. This provides a solid consistency test on the pre-
scribed error statistics used in the EnKF.

B Ensemble Optimal Interpolation (EnOI)

Traditional optimal interpolation (OI) schemes have estimated
or prescribed covariances using an ensemble of model states
which has been sampled during a long time integration. Nor-
mally the estimated covariances are fitted to simple functional
forms which are used uniformly throughout the model grid.

Based on the discussion in this paper it is natural to device
an OI scheme where the analysis is computed in the space
spanned by a stationary ensemble of model states sampled,
e.g., during a long time integration. This approach is denoted
Ensemble OI (EnOI).

The EnOI analysis is computed by solving an equation
similar to (89) but written as

ψa = ψ+αA′A′THT
(
αHA′A′THT + ΥΥT

)−1

(d−Hψ).
(89)

The analysis is now computed for only one single model state,
and a parameterα ∈ (0, 1] is introduced to allow for different
weights on the ensemble versus measurements. Naturally, an
ensemble consisting of model states sampled over a long time
period will have a climatological variance which is too large
to represent the actual error in the model forecast, andα is
used to reduce the variance to a realistic level.

The practical implementation introducesα in (58), which
is now written as

√
αHA′ + Υ = UΣV T, (90)

and the coefficient matrixX4 in (64) is further scaled withα
beforeX5 is computed.

The EnOI method allows for the computation of a mul-
tivariate analysis in dynamical balance, just like the EnKF.
However, a larger ensemble may be useful to ensure that it
spans a large enough space to properly represent the correct
analysis.

The EnOI is an attractive approach to save computer time.
Once the stationary ensemble is created, only one single model
integration is required in addition to the analysis step where
the final update cost is reduced toO(nN) because only one
model state is updated. The method is numerically extremely
efficient but it will always provide a suboptimal solution com-
pared to the EnKF. In addition it does not provide consistent
error estimates for the solution.

C Assimilation of in situ measurements

The direct assimilation ofin situobservations such as temper-
ature and salinity profiles poses a problem in all ocean mod-
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els unless both temperature and salinity is known simultane-
ously. It is not known, a priori, how to update the water-mass
properties in a consistent manner, see e.g., Troccoli et al.
(2002) and Thacker and Esenkov (2002).

A new solution is proposed here. It is based on the def-
inition of a measurement functional which interpolates the
model temperature and/or salinity to the measurement loca-
tion in depth. The spline interpolation algorithm discussed
below is probably close to the best alternative of a measure-
ment functional for layered models.

The results from the discussion on nonlinear measure-
ment functionals allow us to augment the model state with
observation equivalents for each independentin situmeasure-
ment. Further, the “global” analysis algorithm allows us to
handle a large number of profiles of measurements simulta-
neously still to a low numerical cost. This approach ensures
that the model update in the vertical and horizontal is per-
formed consistently with the error statistics predicted by the
ensemble.

In order to obtain a variable’s value at a specific depth
an interpolation algorithm is needed. We used a second order
spline to interpolate in the vertical. It is important to note
that when interpolating values between different layers the
interpolating spline should not pass exactly through the mean
of the variable at the center of each layer. Instead a criterion
is used where the mean value computed by integrating the
spline function across the layer is equal to the mean of the
variable in that layer. The details of the algorithm follows.

C.1 Upper layer

Layer one is divided into upper and lower parts where the
spline polynomial, used to represent the variable to be inter-
polated is defined as

f1(x) =

{
c0 for x ∈ [0, 1

2h1)
a1x

2 + b1x+ c1 for x ∈ [ 12h1, h1].
(91)

Herehi is the location of the lower interface of layeri. Con-
ditions are specified atx = 1

2h1 for continuity of the function
and the derivative, i.e.,

f1(
1
2
h1) = c0, (92)

and
∂f1(x)
∂x

∣∣∣∣
1
2 h1

= 0, (93)

and in addition the integral over layer 1 should satisfy

1
h1

∫ h1

0

f1(x) = c0
1
2

+a1
7
24
h2

1+b1
3
8
h1+c1

1
2

= u1, (94)

with u1 being the model predicted layer variable in layer one.

C.2 Interior layers

Within each interior layer,i, a function of the form

fi(x) = aix
2 + bix+ ci, (95)

is used to represent the model variables. For each interior
layer there are three conditions which determine the three un-
knowns in each layer, i.e., continuity at layer interfaces

fi(hi−1) = fi−1(hi−1), (96)

continuity of derivatives at layer interfaces

∂fi(x)
∂x

∣∣∣∣
hi−1

=
∂fi−1(x)

∂x

∣∣∣∣
hi−1

, (97)

and a condition for the mean of the variable becomes after
some manipulations

1
hi − hi−1

∫ hi

hi−1

fi(x)dx = ai
1
3
(
h2

i−1 + hi−1hi + h2
i

)
+ bi

1
2

(hi + hi−1) + ci = ui. (98)

C.3 Closing the system

A final condition is obtained by setting the variable at the sea
floor equal to the mean of the variable in the bottom layer,

fk(hk) = uk. (99)

Thus, the system is closed.

D Ensemble Kalman Smoother (EnKS)

In light of the discussion in this paper it is also possible to
device an efficient implementation of the EnKS. The EnKS,
as described in Evensen and van Leeuwen (2000), updates
the ensemble at prior times every time new measurements
are available. The update exploits the space-time correlations
between the model forecast at measurement locations and the
model state at a prior time. It allows for a sequential process-
ing of the measurements in time. Thus, every time a new set
of measurements becomes available the ensemble at the cur-
rent and all prior times can be updated.

Similar to the analysis equation (89) the analysis for a
prior time t′ which results from the introduction of a new
measurement vector at timet > t′ can be written as

Aa(t′) = A(t′) +A′(t′)A′T(t)HT(
HA′(t)A′T(t)HT + ΥΥT

)−1

D′(t),
(100)

This equation is updated repetitively every time a new set of
measurements are introduced at future timest.

The EnKS analysis can best be computed using the for-
mulation discussed in the previous sections, and in particular
using the definition ofX5 in Equation (84). It is easily seen
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that the linear combinationX5(t) corresponding to the mea-
surements at timet, is also used on the analysis ensemble at
the prior timest′ to update the smoother estimate at timet′.

Thus, the smoother estimate at a timet′ whereti−1 ≤
t′ < ti ≤ tk, using future data from the data times(ti, ti+1, . . . , tk)
is just

Aa
EnKS(t′) = AEnKF(t′)

k∏
j=i

X5(tj). (101)

As long as the previous ensemble files have been stored, it is
straight forward to update them with new information every
time a new set of measurements is available and the matrix
X5 corresponding to these measurements have been com-
puted. This discussion has assumed that a global analysis is
used. The local analysis becomes a little less practical since
there is anX5 matrix for each grid point.

The product in Equation (101) has an important property.
The multiplication of the ensemble withX5 will always re-
sult in a new ensemble with a different mean and a smaller
variance. Thus, each consecutive update through the repet-
itive multiplication in (101) will lead to slight reduction of
variance and slight change of mean. Eventually, there will be
a convergence with only negligible updates of the ensemble
when measurements are taken further into the future than the
actual decorrelation time.

E Generating pseudo random fields

Here a procedure is given which can be used to compute
smooth pseudo random fields with mean equal to zero, vari-
ance equal to one, and a specified covariance which deter-
mines the smoothness of the fields. The algorithm follows
the presentation in the appendix of Evensen (1994a), and ad-
ditional details and explanations are given by Natvik (2001).

Let q = q(x, y) be a continuous field, which may be de-
scribed by its Fourier transform

q(x, y) =
∫ ∞

−∞

∫ ∞

−∞
q̂(k)eik·xdk. (102)

Now, we are using anN ×M grid. Further, we definek =
(κl, γp), wherel andp are counters andκl andγp are wave
numbers in theN andM directions, respectively. We now get
a discrete version of equation (102),

q(xn, ym) =
∑
l,p

q̂(κl, γp)ei(κlxn+γpym)∆k, (103)

wherexn = n∆x andym = m∆y. For the wave numbers,
we have

κl =
2πl
xN

=
2πl
N∆x

, (104)

γP =
2πp
yM

=
2πp
M∆y

, (105)

∆k = ∆κ∆γ =
(2π)2

NM∆x∆y
. (106)

We define (assume) the following form ofq̂(k):

q̂(κl, γp) =
c√
∆k

e−(κ2
l +γ2

p)/σ2
e2πiφl,p , (107)

whereφl,p ∈ [0, 1] is a random number which introduces a
random phase shift. (The exponential function may be writ-
ten as a sum of sine and cosine terms). Note that increasing
wave numbersκl andγp will give an exponentially decreas-
ing contribution to the expression above. Now, equation (107)
may be inserted into equation (103), and we get

q(xn, ym) =∑
l,p

c√
∆k

e−(κ2
l +γ2

p)/σ2
e2πiφl,pei(κlxn+γpym)∆k. (108)

We want equation (108) to produce real fields only. Thus,
when the summation overl, p is performed, all the imaginary
contributions must add up to zero. This is satisfied whenever

q̂(κl, γp) = q̂∗(κ−l, γ−p), (109)

where the star denote complex conjugate, and

Im q̂(κ0, γ0) = 0. (110)

The formula (108) can be used to generate an ensemble of
pseudo random fields with a specific covariance determined
by the parametersc andσ. An expression for the covariance
is given by

q(x1, y1)q(x2, y2) =∑
l,p,r,s

q̂(κl, γp)q̂(κr, γs)ei(κlx1+γpy1+κrx2+γsy2)(∆k)2.

(111)

By using equation (109), and by noting that the summation
goes over both positive and negativer ands, we may insert
the complex conjugate instead, i. e.

q(x1, y1)q(x2, y2)

=
∑

l,p,r,s

q̂(κl, γp)q̂∗(κr, γs)ei(κlx1−κrx2+γpy1−γsy2)(∆k)2

=
∑

l,p,r,s

∆kc2e−(κ2
l +γ2

p+κ2
r+γ2

s )/σ2
e2πi(φl,p−φr,s)

ei(κlx1−κrx2+γpy1−γsy2). (112)

We assume that the fields areδ- correlated in wave space.
That is, we assume that there is a distance dependence only
(isotropy), and we may setl = r andp = s, and the above
expression becomes

q(x1, y1)q(x2, y2)

= ∆kc2
∑
l,p

e−2(κ2
l +γ2

p)/σ2
ei(κl(x1−x2)+γp(y1−y2)). (113)

From this equation, the variance at(x, y) is

q(x, y)q(x, y) = ∆kc2
∑
l,p

e−2(κ2
l +γ2

p)/σ2
. (114)
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Now, we require the variance to be equal to1. Further, we de-
fine a decorrelation lengthrh, and we require the covariance
corresponding torh to be equal toe−1. For the variance, we
get the equation

1 = ∆kc2
∑
l,p

e−2(κ2
l +γ2

p)/σ2
, (115)

which means that

c2 =
1

∆k
∑

l,p e
−2(κ2

l +γ2
p)/σ2 . (116)

If we let x1 − x2 = rh andy1 − y2 = 0, we must have a
covariance equal toe−1 between these points, i. e.,

e−1 = ∆kc2
∑
l,p

e−2(κ2
l +γ2

p)/σ2
eiκlrh

= ∆kc2
∑
l,p

e−2(κ2
l +γ2

p)/σ2
cos(κlrh). (117)

By inserting forc2 from equation (116), we get

e−1 =

∑
l,p e

−2(κ2
l +γ2

p)/σ2
cos(κlrh)∑

l,p e
−2(κ2

l +γ2
p)/σ2 . (118)

This is a nonlinear scalar equation forσ, which may be solved
using some numerical routine. One can thereafter find a value
for c from equation (116).

Once the values forc andσ have been determined, equa-
tion (108) may be used to create an ensemble of pseudo ran-
dom fields with variance 1 and covariance determined by the
decorrelation lengthrh. An efficient approach for finding the
inverse transform in (108) is to use two-dimensional fast Fourier
transform routines (FFT). The inverse FFT is calculated on a
grid which is a few characteristic lengths larger than the com-
putational domain to ensure non-periodic fields in the subdo-
main corresponding to the computational domain (Evensen,
1994a).

To summarize, we are now able to generate (sample) two-
dimensional pseudo random fields with variance equal to one
and a prescribed covariance (isotropic as a function of grid
indices). The simple formulas used in Section 4.2 can be used
to introduce correlations between the fields.
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