Manifolds of Constant Curvature

e In Riemannian normal coordinates, half of the Jacobi fields are easy to write
down explicitly.

Lemma 1. Let p € M, let (x*) be normal coordinates on a nbhd U of p, and let
7 be a radial geodesic starting at p. For any W = W'9; € T,M, the Jacobi field J
along ~ such that J(0) = 0 and D;J(0) = W is given in normal coordinates by

(1) J(t) = tW'o;.

Proof. An easy consequence using formula for covariant derivatives in coordinates
shows that J satisfies the specified initial conditions.

® Thus it suffices to claim: J is a Jacobi field.

— If we set V =+/(0) € T, M, then we know that + is given in coordinates by

() = (tVE - V™).
Now consider the variation I' given in coordinates by
D(s,t) = (VI +sWh), - (V" +sW™)).

We see that I' is a variation through geodesics.
— Therefore its variation field 9,T°(0,¢) is a Jacobi field.
— Differentiating I'(s, t) with restect to s shows that its variation field is J(¢). O

e For metrics with constant sectional curvature, we have a different kind of explicit
formula for Jacobi fields—this one expresses a Jacobi field as a scalar multiple
of a parallel vector field.

Lemma 2. Suppose (M, g) is a Riemannian manifold with constant sectional cur-
vature C, and vy is a unit speed geodesic in M. The normal Jacobi fields along -y
vanishing at t = 0 are precisely the vector fields

J(t) = u(t) E(t),
where E is any parallel normal vector field along ~y, and u(t) is given by
t, C =0;
(2) u(t) = { Rsin &, C=z>0;
Rsinh%7 Cz—% < 0.
Proof. Since g has constant curvature, its curvature endomorphism is given by
RX,Y)Z=C{Y,Z)X — (X, 2)Y).

Substituting this into the Jacobi equation, we find that a normal Jacobi field J
satisfies

(3) 0=D?J+C(Y,Z)X — (X, Z)Y)
=D*J 4+ CJ,

where we have used the fact that |7'| =1 and (J,~") = 0.
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— Since (3) says that the second covariant derivative of J is a multiple of J itself, it
is reasonable to try to construct a solution by choosing a parallel normal vector
field E along v and setting J(t) = u(t)E(t) for some solution u to be determined.

— Plugging this into (3), we find that J is a Jacobi field provided u is a solution to
the differential equation

v’ + Cu(t) = 0.

It is an easy matter to sove this ODE explicitly.

— In particular, the solutions satisfying w(0) = 0 are constant multiple of the
functions given in (2).

— The construction yields all the normal Jacobi fields vanishing at 0, since there
is an (n — 1)-dimensional space of them, and the space of parallel normal vector
fields has the same dimension. [

e Combining the formula in the last two lemmas, we obtain our first application
of Jacobi fields: explicit expressions for constant curvature metrics in
normal coordinates.

Proposition 3. Let (M, g) be of constant sectional curvature C.

— Let (2') be Riemannian normal coordinates on a normal nbhd U of p,
let | - |5 be the Euclidean norm in these coordinates,
and let 7 be the radial distance function.

— For any g € U\ {p} and V € T,M, write V=V T + VL, where V' is tangent
to the sphere {r = constant} through q and V- is a multiple of %. The metric
can be written

VA2 + VT, C=0;
(4) gV, V)= [VEE+ B VTR, C=4 >0

VAR + B (sinh® VT2, C=—7% <0.

Proof. By the Gauss lemma, the decomposition V = VT 4+ V1 is orthogonal, so
2 _ 172 12
Vig=1V"'Ig+ V-3

Since % is a unit vector in both the g and g norms, it is immediate that

Vg =1V g
Thus we need only compute [V '|,.
® Set X = VT, and let v denote the unit speed radial geodesic from p to q.

— By Lemma 1, X is the value of a Jacobi field J along v that vanishes at p, namely
X = J(r), where r = d(p, q) and

(5) ﬂﬂ::X%%

Because J is orthogonal to 4" at p and g, it is normal.
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— Now J can also be written in the form J(t) = u(t)E(t) as in Lemma 2. In this

representation,
D¢ J(0) = u'(0)E(0) = E(0),

since u/(0) = 1 in each of the cases of (2).
— Therefore, since F ia parallel and thus of constant length,

6)  [XP =T = [u@)PIE@)? = [u()P[EO) = |u(r)*[D:(0)]*.

— Observe that )
mﬂm:;xab

by (5). Since g agrees with g at p, we have

1
= | X5
~|Xl;
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|&ﬂw:;kﬂb
g

Inserting this into (6) and using (5) for u(r) completes the proof. O

Proposition 4 (Local Uniqueness of Constant Curvature Metrics).

Let (M,g) and (M ,g) be Riemannian manifolds with constant sectional curvature
C. For any points p € M, p € ]T/L there exist nbhds U of p and u of p and an
isometry F : U — u.

Proof. Choosep € M and p € M , and let U and U be geodesic balls of small radius
¢ around p and p, respectively.
— Riemannian normal coordinated give maps

¢:U— B.(0)CR" and @:U — B.(0) C R",

under which both metrics are given by (4).
— Therefore ! o ¢ is the required local isometry. O



