
Manifolds of Constant Curvature

• In Riemannian normal coordinates, half of the Jacobi fields are easy to write
down explicitly.

Lemma 1. Let p ∈ M , let (xi) be normal coordinates on a nbhd U of p, and let
γ be a radial geodesic starting at p. For any W = W i∂i ∈ TpM , the Jacobi field J
along γ such that J(0) = 0 and DtJ(0) = W is given in normal coordinates by

(1) J(t) = tW i∂i.

Proof. An easy consequence using formula for covariant derivatives in coordinates
shows that J satisfies the specified initial conditions.
� Thus it suffices to claim: J is a Jacobi field.
— If we set V = γ′(0) ∈ TpM , then we know that γ is given in coordinates by

γ(t) = (tV 1, · · · , tV n).

Now consider the variation Γ given in coordinates by

Γ(s, t) = (t(V 1 + sW 1), · · · , t(V n + sW n)).

We see that Γ is a variation through geodesics.
– Therefore its variation field ∂sΓ(0, t) is a Jacobi field.
– Differentiating Γ(s, t) with restect to s shows that its variation field is J(t). �

• For metrics with constant sectional curvature, we have a different kind of explicit
formula for Jacobi fields—this one expresses a Jacobi field as a scalar multiple
of a parallel vector field.

Lemma 2. Suppose (M, g) is a Riemannian manifold with constant sectional cur-
vature C, and γ is a unit speed geodesic in M . The normal Jacobi fields along γ
vanishing at t = 0 are precisely the vector fields

J(t) = u(t)E(t),

where E is any parallel normal vector field along γ, and u(t) is given by

(2) u(t) =





t, C = 0;
R sin t

R , C = 1
R2 > 0;

R sinh t
R , C = − 1

R2 < 0.

Proof. Since g has constant curvature, its curvature endomorphism is given by

R(X, Y )Z = C(〈Y, Z〉X − 〈X, Z〉Y ).

Substituting this into the Jacobi equation, we find that a normal Jacobi field J
satisfies

0 =D2
t J + C(〈Y, Z〉X − 〈X, Z〉Y )(3)

=D2J + CJ,

where we have used the fact that |γ′| = 1 and 〈J, γ′〉 = 0.
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— Since (3) says that the second covariant derivative of J is a multiple of J itself, it
is reasonable to try to construct a solution by choosing a parallel normal vector
field E along γ and setting J(t) = u(t)E(t) for some solution u to be determined.

— Plugging this into (3), we find that J is a Jacobi field provided u is a solution to
the differential equation

u′′ + Cu(t) = 0.

It is an easy matter to sove this ODE explicitly.
— In particular, the solutions satisfying u(0) = 0 are constant multiple of the

functions given in (2).
— The construction yields all the normal Jacobi fields vanishing at 0, since there

is an (n− 1)-dimensional space of them, and the space of parallel normal vector
fields has the same dimension. �

• Combining the formula in the last two lemmas, we obtain our first application
of Jacobi fields: explicit expressions for constant curvature metrics in
normal coordinates.

Proposition 3. Let (M, g) be of constant sectional curvature C.
– Let (xi) be Riemannian normal coordinates on a normal nbhd U of p,

let | · |g be the Euclidean norm in these coordinates,
and let τ be the radial distance function.

– For any g ∈ U \ {p} and V ∈ TpM , write V = V > + V ⊥, where V > is tangent

to the sphere {r = constant} through q and V ⊥ is a multiple of ∂
∂r . The metric

can be written

(4) g(V, V ) =





|V ⊥|2g + |V >|2g , C = 0;

|V ⊥|2g + R2

r2 (sin2 r
R )|V >|2g, C = 1

R2 > 0;

|V ⊥|2g + R2

r2 (sinh2 r
R )|V >|2g, C = − 1

R2 < 0.

Proof. By the Gauss lemma, the decomposition V = V > + V ⊥ is orthogonal, so

|V |2g = |V >|2g + |V ⊥|2g.

Since ∂
∂r is a unit vector in both the g and g norms, it is immediate that

|V ⊥|g = |V ⊥|g .

Thus we need only compute |V >|g .
� Set X = V >, and let γ denote the unit speed radial geodesic from p to q.
— By Lemma 1, X is the value of a Jacobi field J along γ that vanishes at p, namely

X = J(r), where r = d(p, q) and

(5) J(t) =
t

r
X i∂i.

Because J is orthogonal to γ′ at p and q, it is normal.
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— Now J can also be written in the form J(t) = u(t)E(t) as in Lemma 2. In this
representation,

DtJ(0) = u′(0)E(0) = E(0),

since u′(0) = 1 in each of the cases of (2).
— Therefore, since E ia parallel and thus of constant length,

(6) |X |2 = |J(r)|2 = |u(r)|2|E(r)|2 = |u(r)|2|E(0)|2 = |u(r)|2|DtJ(0)|2.

— Observe that
DtJ(0) =

1
r
X i∂i

∣∣
p

by (5). Since g agrees with g at p, we have

|DtJ(0)| =
1
r

∣∣∣∣X i∂i|g
∣∣∣∣
g

=
1
r
|X |g.

Inserting this into (6) and using (5) for u(r) completes the proof. �

Proposition 4 (Local Uniqueness of Constant Curvature Metrics).
Let (M, g) and (M̃, g̃) be Riemannian manifolds with constant sectional curvature

C. For any points p ∈ M , p̃ ∈ M̃ , there exist nbhds U of p and Ũ of p̃ and an

isometry F : U → Ũ .

Proof. Choose p ∈ M and p̃ ∈ M̃ , and let U and Ũ be geodesic balls of small radius
ε around p and p̃, respectively.
— Riemannian normal coordinated give maps

ϕ : U → Bε(0) ⊂ Rn and ϕ̃ : Ũ → Bε(0) ⊂ Rn,

under which both metrics are given by (4).
— Therefore ϕ̃−1 ◦ ϕ is the required local isometry. �


