
Manifolds of Constant Curvature

• In Riemannian normal coordinates, half of the Jacobi fields are easy to write
down explicitly.

Lemma 1. Let p ∈ M , let (xi) be normal coordinates on a nbhd U of p, and let
γ be a radial geodesic starting at p. For any W = W i∂i ∈ TpM , the Jacobi field J
along γ such that J(0) = 0 and DtJ(0) = W is given in normal coordinates by

(1) J(t) = tW i∂i.

• For metrics with constant sectional curvature, we have a different kind of explicit
formula for Jacobi fields—this one expresses a Jacobi field as a scalar multiple
of a parallel vector field.

Lemma 2. Suppose (M, g) is a Riemannian manifold with constant sectional cur-
vature C, and γ is a unit speed geodesic in M . The normal Jacobi fields along γ
vanishing at t = 0 are precisely the vector fields

J(t) = u(t)E(t),

where E is any parallel normal vector field along γ, and u(t) is given by

(2) u(t) =





t, C = 0;
R sin t

R , C = 1
R2 > 0;

R sinh t
R , C = − 1

R2 < 0.

• Combining the formula in the last two lemmas, we obtain our first application
of Jacobi fields: explicit expressions for constant curvature metrics in
normal coordinates.

Proposition 3. Let (M, g) be of constant sectional curvature C.

– Let (xi) be Riemannian normal coordinates on a normal nbhd U of p,

let | · |g be the Euclidean norm in these coordinates,

and let τ be the radial distance function.

– For any g ∈ U \ {p} and V ∈ TpM , write V = V > + V ⊥, where V > is tangent

to the sphere {r = constant} through q and V ⊥ is a multiple of ∂
∂r . The metric

can be written

(4) g(V, V ) =





|V ⊥|2g + |V >|2g , C = 0;

|V ⊥|2g + R2

r2 (sin2 r
R )|V >|2g , C = 1

R2 > 0;

|V ⊥|2g + R2

r2 (sinh2 r
R )|V >|2g , C = − 1

R2 < 0.
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Proposition 4 (Local Uniqueness of Constant Curvature Metrics).
Let (M, g) and (M̃, g̃) be Riemannian manifolds with constant sectional curvature

C. For any points p ∈ M , p̃ ∈ M̃ , there exist nbhds U of p and Ũ of p̃ and an

isometry F : U → Ũ .

Proof. Choose p ∈ M and p̃ ∈ M̃ , and let U and Ũ be geodesic balls of small radius
ε around p and p̃, respectively. Riemannian normal coordinated give maps

ϕ : U → Bε(0) ⊂ Rn and ϕ̃ : Ũ → Bε(0) ⊂ Rn,

under which both metrics are given by (4). Therefore ϕ̃−1 ◦ ϕ is the required local
isometry. �

Theorem 5. Suppose M̃ and M are connected Riemannian manifolds, with M̃

complete, and π : M̃ → M is a local isometry. Then M is complete and π is a
covering map.

Theorem 6 (Uniqueness of Constant Curvature Metrics). Let M be a com-
plete, simply-connected Riemannian n-manifold with constant sectional curvature
C. Then M is isometric to one of the model spaces Rn, Sn

R or Hn
R.

Proof. Handle the cases of positive and nonpositive sectional curvature seperately.
(I) First suppose C ≤ 0. Choosing any point Q ∈ Hn

R and any linear isometry
ϕ : TQHn

R → TpM , the map Φ : Hn
R → M given by

Φ : expp ◦ϕ ◦ exp−1
Q

is a globally defined local isometry.
— By Theorem 5, Φ : Hn

R → M is covering map for any p ∈ M .
— Since M is simply-connected, it is a diffeomorphism.

(II) Secondly suppose C = 1
R2 > 0.

� Let {N,−N} be the north and south poles in Sn
R,

and observe that expN is a diffeomorphism from BπR(0) ⊂ TNSn
R to Sn

R \ {−N}.
— On the other hand, choosing any point p ∈ M , the conjugate point compar-

ison theorem shows that p has no conjugate point closer than πR,
so expp is at least a local diffeomorphism on BπR(0) ⊂ TpM .

— If we choose any linear isometry ϕ : TNSn
R → TpM , then (expp ◦ϕ)∗g and

exp∗
N

◦
gR are both metrics of constant curvature 1

R2 on BR(0) ⊂ TNSn
R,

and Euclidean coordinates on TNSn
R are normal coordinates for both

(since the radial line segments are geodesics).
— Therefore, Proposition 4 shows that they are equal, so the map Φ : Sn

R\{−N} →
M given by

Φ : expp ◦ϕ ◦ exp−1
N

is a local isometry.
� Now choose any point Q ∈ Sn

R other than N or −N , and let q = Φ(Q) ∈ M .
— Using the isometry

ϕ̃ = Φ∗ : TQSn
R → TqM,
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we can construct a similar map

Φ̃ = expq ◦ϕ̃ ◦ exp−1
Q : Sn

R \ {−Q} → M,

and the same argument shows that Φ̃ is a local isometry.
— Because Φ(Q) = Φ̃(Q) and Φ∗ = Φ̃∗ at Q by construction, Φ and Φ̃ must agree

where they overlap.
— Putting them together, therefore, we obtain a globally defined local isometry

F : Sn
R → M . �

• Theorem 6 is a special case of a rather more complicated result, the Cartan-
Ambrose-Hicks theorem, which says roughly that two simply-connected
manifolds, all of whose sectional curvatures at corresponding points
are equal to each other, must be isometric.

— The main idea of the proof is very similar to what we have done here;
the trick is in making precise sense of the notion of “corresponding points”,
and of what it means for nonconstant sectional curvatures to be equal at different
points of different manifolds.

Corollary 7 (Classification of Constant Curvature Metrics). Suppose M
is a complete, connected Riemannian manifold with constant sectional curvature.

Then M is isometric to M̃/Γ, where M̃ is one of the constant curvature medel

spaces Rn, Sn
R or Hn

R, and Γ is a discrete subgroup of T (M̃), isometric to π1(M),
and acting freely and properly discontinuous on M̃ .

Proof. If π : M̃ → M is the universal covering of M with the lifted metric g̃ = π∗g,
the preceeding theorem shows that (M̃, g̃) is isometric to one of the model spaces.
— From covering space theory it follows that the group Γ of covering (deck)

transformations is isometric to π1(M)
and acts freely and properly discontinuously on M̃ ,
and M is diffeomorphic to the quotient M̃/Γ.

— Moreover, if ϕ is any covering transformation, π ◦ ϕ = π, and so

ϕ∗g̃ = ϕ∗π∗g = π∗g = g̃

so Γ acts by isometries.
— Claim: Γ is discrete in T (M̃).
– Suppose {ϕi} ⊂ Γ is an infinite set with an accumulation point in T (M).
– Since the action of Γ is fixed-poinf free, for any point p̃ ∈ M̃ the set {ϕi(p̃)} is

infinite, and by continuity of the action, it has an accumulation point in M̃ .
– But this is impossible, since the points {ϕi(p̃)} all project to the same point in

M , and so form a discrete set. �

Definition. A complete, connected Riemannian manifold with constant sectional
curvature is called a space form.

• This result essentially reduces the classification of space forms to group theory.


