Proposition 1 (Exterior Derivative of a 1-Form). For any smooth 1-form w
and smooth vector fields X and Y,

(1) dw(X,Y) = X (w(Y)) = Y(w(X)) - w([X, Y]).

Proof. Since any smooth 1-form can be expressed locally as a sum of terms of the
form udv for smooth functions u and v, it suffices to consider that case.
Suppose w = udv, and X, Y are smooth vector fields. Then the left-hand side of

(1) is

d(udv)(X,Y) =du A dv(X,Y) = du(X)dv(Y) — dv(X)du(Y)
=XuYv— XvYu.

The right-hand side is

X (udv(Y)) = Y(udv(X)) — udv([X,Y])
= X(wYv) =Y (uXv) —u[X,Y]v
= (XuYv+uXYv) — (YuXv+uYXv) —u(XYv—YXv)
= XuYv—XovYu. O

e (1) shows that the exterior derivative is in a certain sense dual to the
Lie bracket.
— In particular, it shows that if we know all the Lie brackets of basis vector fields
in a smooth local frame, we can compute the exterior derivatives of the dual
covector fields, and vice versa.

Proposition 2. Let M be a smooth n-manifold, let (F;) be a smooth local frame
for M, and let (') be the dual coframe. Let cz-k, i =1,---,n, be the component
functions of the Lie bracket [E;, Ey] in the frame:

[Ej, Ex] = ¢ji.Ei.
Then the exterior derivative of each 1-form €' is given by
de' = —cé-kaj Aek,
Proposition 3 (Invariant Formula for Exterior Derivatives).

Let M be a smooth n-manifold and w € A*(M). For any smooth vector fields
Xlu"' 7X/€+1 on M7

dw(Xy,- -, Xpy1) = Z (=)' X (w(Xq, - Xy , Xi1))
1<i<k+1

(2) + Z (_1)Z+JW([XHXJ]5X17 5X’i5"' 7)?ja"' 7Xk+1)-
1<i<j<k+1
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Proof. Denote the two sums on the right-hand side of (2) by I(X3, -+, Xk11) and
II(X4, -+, Xky1), and the entire right-hand side by Ew (X1, -+, Xk41)-
— Note that Fw is multilinear over R.

e First claim: Fw is multilinear over C* (M), ie., for 1 < p < k+ 1 and

fe =),
EW(X17"' 7pr7"' 7Xk+1) = (_1)p_1wa(X17"' 7Xp7"' 7X/€+1)'
(i) In the expansion of (X1, -, fXp, - Xkt+1)s

B(X1, [ Xpy s Xip1) = Xp (X1, Xy, Xip1))

+Z Z lX (Xlu"'u)?h"'uXk-‘rl))
i#p

The second term on the right-hand side expand as follows:

Z(_l)i_le‘ (fo(X1,-- Xiy Xit1))

i7#p
_Z Z 1fX (le"u)?iu"'an-‘rl))

i#p

+Z Z le (le"'v)?ia"'vXk+1)>'
i#p

(3) SA(Xy e f Xy X)) = fI( X, Xy, X))
+Z Z 1Xf (Xlu"'u)?h"'?Xk-‘rl)'
i£p

(ii) Consider next the expansion I1.
— clearly, f factors out of all the terms in which i # p and j # p.
— To expand the other terms, we observe that

[f X, X5] =f[Xp, X5] — (X5/)Xp
(X, fXp] =f[Xi, Xp] + (Xi f) Xy

Inserting these formulas into the ¢ = p and j = p terms, we obtain

II(Xy o [ Xy Kiwn) = [II(X1, - Xy, Xis)
+Z p+]+1Xf) (vaXlu"'7XP7'."Xj’...7Xk+1)

p<j

+Z 1) (X, f) (Xp7X17"'7Xi7"'7Xp7"'7Xk+1)

i<p

Rearranging the arguments in these two sums so as to put X, into its original
position, we see that they exactly cancel the sum in (3).



This completes the proof that Ew is multilinear over C*°(M).

e By multinearity, to verify that Fw = dw, it suffices to show that both sides give
the same result when applied to any sequence of basis vectors in an arbitrary
local frame.

— The computations are greatly simplified by working in a coordinate frame, for
which all the Lie brackets vanish.
— Thus let (U, (2%)) be an arbitrary smooth chart on M.
— Because both dw and Fw depend linearly on w, we may assume that

w = fda' for some function f and increasing multi-index I = (iy,- - - , i),
codw =df Ndx' = 8—]2513;4 Ada’.
7 ox

- If J=(j1, -, Jks+1) is any multi-index of length k + 1, it follows that

) ) o« Of
d“’(axa‘l""’axa‘k+1>_ - 92707

The only term in this sum that can possibly be nonzero are those for which ¢ is
equal to one of the indices in J, say ¢ = jp,.

In this case, 6% = (—1)7”*15%’, where J, = (j1,- - ,}p, v k1), SO
0 0 of
= —1)p1 L
g (g ogm) = X 0GR
1<p<k+1

— On the other hand, because all the Lie brackets are zero, we have

0 0
Ew<8:vj1 o 6xjk+l>

B} B} e} o
_1)p—1 I ... -
Z ( 1) axjp (deC <6$J1 ! ’ axjp ’ ’ axjk+1 >>

1<p<k+1

1 Of o1
- Y (st
1<p<k+1 Oxie I

which agrees with (4). O
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e Let X be a smooth vector field on smooth mfd M, and let 6 be its flow.
® For any p € M, it is sufficiently close to zero, 6, is a diffeomorphism from a nbhd
of p to a nbhd of 6,(p), so 6} pulls back tensors at 6;(p) to ones at p.

Definition. Given a smooth covariant tensor field = on M, we define the Lie
derivative of 7 with respect to X, denoted by LxT, by

_d e O (Te,0) — )
(5) (LxT)p = = t:0(9t T)p = lim —————,

provided the derivative exists.

e Because the expression being differentiate lies in T*(T,M) for all ¢, (LxT),
makes sense as an element of T (T}, M)

Lemma 4. If X is a smooth vector field and T is a smooth covaiant tensor field on
a smooth manifold M, then the derivatives in (5) exists Vp € M, and the assignment
p — (LxT), defines a smooth tensor field on M.

Proposition 5. Suppose X, Y are smooth vector fields; f is a smooth real-valued
function (regarded as O-tensor field); o, T are smooth covariant tensor fields; and
w, n are smooth fifferential forms.

(a) Lxf =X/,

(b) Lx(fo)=(Lxf)o+ fLxo.

(c) Lx(c®@T)=(Ly) ®T+0 Q@ LxT.

(d) Lx(w®n) = (Lxw)®n+w®Lxn.

(e) If Y1, -+ , Y}, are smooth vector fields and o is a smooth k-tensor field, then

(6) ['X(U(Ylv"' 7Y/€)) :(['XU)(Ylv"' 7Y7€)
+"'+O’(Y1,"~ ,EXYk).

Proof. (a) The first assertion is just a reinterpretation of the definition in the case
of a O-tensor field: Because 6} f = f o 0;, the definition implies

Cxf®) =2 160.0) = X ().

~ dtli=o
(c) We have

(Lx(c®7T))p =lim 0i (0 ®@ 7)o, () — (0@ T)p

t—0 t
lim 07 (00, (p)) ® 07 (To,(p)) —0p ® Tp
t—0 t
_ i 2 (90:0) ® 05 (To,) — 07 (00,0) © T
t—0 t
+ lim 07 (00,(p)) ®Tp —0p @ Tp
t—0 t

eg(TGt(p)) —Tp 4 lin(l) oF (Uet(z;)) — Op
t—

=0p @ (LxT)p + (Lx0)p @ Tp. O

= 1im 07 (99 p)) © ® 7
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Corollary 6. If X is a smooth vector field and o is a smooth covariant k-tensor
field, then for any smooth vector fields Y7,--- , Yk,

(7) (‘CXU)(Ylv"' 7Y/€)) :X(U(Ylv"' 7Y7€)) _0'([X7Y1]7Y27"' 7Y7€) -
—U(Yl,"' ,Yk_l,[X,Yk]).

Corollary 7. If f € C*°(M), then Lx (df) = d(Lx f).
Proof. Using (7), we compute

(Lxdf)(Y) =X(df(Y)) — df[X,Y] = XY f - [X,Y]f
=XYf—(XYf-YX/)f=YXf
=d(Xf)Y)=d(Lxf)(Y). O

Cartan formula I. Lx(Y.w)=(LxY)iw+Yl Lxw;ie.
Lxiy —iyLx = ’L.[Xﬁy].

Proof. 1t is obvious for O-form w = f. Let w be an arbitrary k-form with k > 0.
Then, for any Xi, -+, Xx_1 € T(TM),

(Exiyw)(Xl, e 7Xk71) :X((iyw)(Xl, cee 7Xk71))

k-1
- Z(iyw)(Xh L [ XX X))
i—1

9) =X(w(Y, Xy, -+, Xg1))

k—1
- Zw(yu X17 e 7[X7Xi]7 e 7Xk—1)'
i=1

On the other hand,

(iyLxw) (X1, -+, Xp—1) =Lxw(Y, X1, , Xp1)
(10) :X(LU(Y, Xla" . 7X/€—1)) —W([X, Y]aXlu' o 7Xk—l)
k—1
- ZW(KXlu 7[X7Xi]7"' 7Xk—1)'
=1

Subtracting (10) from (9), we have

Exiyw—iyﬁxw:w([X,Y],X1,~-~ ;Xk71> :i[xy]w. [l
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Cartan’s Formula II. For any smooth vector field X and any smooth differential
form w,

(11) Lxw=X(dw)+ d(Xw);
that is,

Lx =ixd+dix.

Proof. We will prove that (11) holds for smooth k-forms by induction on k.

(i)

(i)

(iii)

We begin with a smooth O-form f, in which case ix f = 0 and hence
ix(df)+dixf)=ixdf =df(X)=X[f=Lx/f.

Any smooth 1-form can be written locally as a sum of terms of the form u dv for

smooth functions u and v, so to prove (11) for 1-forms it suffices to consider the

case w = udv.
In this case, by Corollary 7,

Lx(udv) = (Lxu)dv +u(Lxdv) = (Xu)dv + ud(Xv).
On the other hand,
ixd(udv) + d(ix (udv)) =ix (du A dv) + d(uXv)
=(ixdu) Adv — du A (ixdv) + ud(Xv) + (Xv)du
(" the interior product is an antiderivation)
(Xu)dv — (Xv)du + ud(Xv) + (Xv)du
=(Xu)dv + ud(Xv).

Now let k£ > 1 and assume (11) has been proved for forms of degree less than k.
Let w be an arbitrary smooth k-form, written in smooth local coordinates as

i
w:Zwldxil A Adatt,
I

Writing _ _ _
a=wrdx" and B =dx? A--- ANdx'*,
we see that w can be written as a sum of terms of the form a A 3, where « is a
smooth 1-form and § is a smooth (k — 1)-form.
For such a term, the induction hypothesis imply

Lx(anpB)=(Lxa)NB+a(Lxp)
(12) :(imda'i‘dixa)/\ﬁ'i‘a/\(ixdﬁ—f'dixﬁ).

On the other hand, using the fact that both d and ix are antiderivations, we
compute

ixdlaApB)+diix(anp)) =ix(daAB—andB)+dixaAB—aNixf)
=(ixda) A B+ da A (ixP)
— (ixa) NdB + a A (ixdf)
+d(ixa) NG+ (ixa) NdS
—da A (ixB) +aA (ixP)
=(ixda) ANB+aAn(ixdB) +dixa) NG+ aAn(dixB3). O
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Corollary 8 (The Lie Derivative Commutes with d). If X is a smooth vector
field and w is a smooth differential form, then

EX (dw) = d(ﬁxw)
Proof. By Cartan’s formula and the fact that dod =0,
Lx(dw) = ixd(dw) + d(ixdw) = d(ixdw);

d/(ﬁxw) = d(Zxdw) + d(d(lxw)) = d(lxdw) O



