1. Complex and Almost-Complex Manifolds

Definition. A complex structure on a real vector space V is a linear endomorphism J of V such that $J^2 = -1$, where 1 is the identity transformation of V.

• A real vector space with a complex structure can be given the structure of a complex vector space.

We define scalar multiplication by complex numbers as

 $(a+ib)X = aX + bJX, \quad \forall X \in V \text{ and } a, b \in \mathbb{R}.$

Evidently the dimension m of V must be even, and we define its complex dimension to be m/2.

• Conversely, if we are given a complex vector space V of complex dimension n, we can define a linear endomorphism J of V by

$$J(X) = iX, \quad \forall X \in V.$$

Then V, considered as a real vector space of dimension 2n, has J as its complex structure.

• We now choose a special class of bases related to the complex structure. More precisely, we prove the following proposition.

Proposition 1. Let J be a complex structure associated with a real 2n dimensional vector space V. Then there exist vectors X_1, \dots, X_n of V such that $\{X_1, \dots, X_n, JX_1, \dots, JX_n\}$ is a basis for V.

Proof. Regard V as a complex vector space of n complex dimensions, for which we choose as a basis X_1, \dots, X_n of V.

- Then $X_1, \dots, X_n, JX_1, \dots, JX_n$ form a basis for V as a real 2*n*-dimensional space. \Box
- By setting

$$z^k = x^k + iy^k, \quad k = 1, \cdots, n,$$

the complex vector space \mathbb{C}^n can be identified with the real vector space \mathbb{R}^{2n} of 2*n*-tuples of real numbers $(x^1, \cdots, x^n, y^1, \cdots, y^n)$.

- The complex structure J induced from that of \mathbb{C}^n , maps $(x^1, \dots, x^n, y^1, \dots, y^n)$ into $(y^1, \dots, y^n, -x^1, \dots, -x^n)$ and is called the **canonical complex structure** of \mathbb{R}^{2n} .
- In terms of the natural (coordinate) basis of \mathbb{R}^{2n} , J is represented by the matrix

$$J_0 = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}, \text{ where } I_n \text{ is the identity matrix of degree } n$$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

Proposition 2. Let J, J' be complex structures on real vector spaces V and V', respectively.

Let f be a real linear mapping of V into V'. Then, when V, V' are regarded as complex vector spaces, f is complex linear iff $J' \circ f = f \circ J$.

Proof. This follows trivially since J and J' are effectively multiplication by i when V and V' are regarded as complex vector spaces. \Box

Corollary 3. Thus the complex linear group $GL(n; \mathbb{C})$ of degree *n* can be regarded as a subgroup of $GL(2n, \mathbb{R})$ consisting of matrices which commutes with the matrix J_0 .

• It follows that this representation of GL(n : ℂ) into GL(2n : ℝ), called the **real** representation of GL(n, ℂ), is given by

$$A + iB \to \begin{pmatrix} A & B \\ -B & A \end{pmatrix}$$

for $A + iB \in \operatorname{GL}(n, \mathbb{C})$.

Proposition 4. Let J be a complex structure on the real vector space V and let V' be a (real) subspace of V.

Then V' is invariant under the action of J iff V' is a complex subspace of V when V is considered as a complex vector space.

Proof. This folloes because J means effectively multiplication by J. \Box

• Let V be a real vector space and let V^* denote its dual.

Then a complex structure J on V induces a complex structure \widetilde{J} on V^* ; we define \widetilde{J} by

$$X^*(JX) = JX^*(X)$$

for $X \in V$ and $X^* \in V^*$. We have

$$\widetilde{J}(\widetilde{J}X^*(X)) = \widetilde{J}X^*(JX) = X^*(J^2X) = -1(X^*(X))$$

giving $\widetilde{J}^2 = -1$ as required. It will be convenient from now on to use the notation J instead of \widetilde{J} .

Complexification

- Let V be a vector space and consider the tensor product $V^{\mathbb{C}} = V \otimes_{\mathbb{R}} C$. We can similarly form tensors of type (r, s) over starting with $V^{\mathbb{C}}$ instead of V, and then tensors of type (r, s) over V form a real subspace of tensors of type (r, s) over $V^{\mathbb{C}}$.
- The operation of complex conjugation in $V^{\mathbb{C}}$ is the real linear endomorphism defined by

$$Z = X + iY \to \overline{Z} = Z - iY, \quad \forall X, Y \in V.$$

This endomorphism extends in a natural way to the space $T_s^r(V^{\mathbb{C}})$.

• Assume that V is a 2*n*-dimensional real vecor space with a complex structure J. We can extend the action of J canonically to V^c and we also denote this extension by J which retains the property $J^2 = -1$.

Thus the eigenvalues of this extended J are i and -i. Set

$$V^{1,0} = \{ Z \in V^{\mathbb{C}} : JZ = iZ \}, \quad V^{0,1} = \{ Z \in V^{\mathbb{C}} : JZ = -iZ \}$$

Then

$$V^{1,0} = \{X - iJX; X \in V\}$$
$$V^{0,1} = \{X + iJX : X \in V\}$$
$$V^{\mathbb{C}} = V^{1,0} \oplus V^{0,1}.$$

Moreover, complex conjugation defines a real linear isomorphism between $V^{1,0}$ and $V^{0,1}$.

- Obviously, the complexification of the dual space $(V^*)^{\mathbb{C}}$ is the same space as $(V^{\mathbb{C}})^*$, the dual space of $V^{\mathbb{C}}$.
- Again with respect to the eigenvalues i and -i of the complex structure on V^* we have a direct sum decomposition

$$V^* = V_{1,0} \oplus V_{0,1};$$

here

$$V_{1,0} = \{ X^* \in (V^*)^{\mathbb{C}}; X^*(X) = 0 \ \forall X \in V^{0,1} \}$$
$$V_{0,1} = \{ X^* \in (V^*)^{\mathbb{C}}; X^*(X) = 0 \ \forall X \in V^{1,0} \}.$$

The decomposition of $V^{\mathbb{C}}$ leads to the decomposition of the tensor space $T_s^r(V^{\mathbb{C}})$ into a direct sum of tensor products of vector spaces identical to one of the spaces $V^{1,0}$, $V^{0,1}$, $V_{1,0}$ and $V_{0,1}$.

- In particulat the exterior algebra $\Lambda V^{*\mathbb{C}}$ decomposes, and the exterior algebras $\Lambda V_{1,0}$ and ΛV^{*C} are subalgebras of $\Lambda V^{*\mathbb{C}}$.
- If we denote by $\Lambda^{p,q}V^{*\mathbb{C}}$ the subspace spanned by $\alpha \wedge \beta$ where $\alpha \in \Lambda^p V_{1,0}$ and $\beta \in \Lambda^q_{0,1}$, then

$$\Lambda V^{*\mathbb{C}} = \sum_{r=0}^{n} \Lambda^{r} V^{*\mathbb{C}} \text{ with } \Lambda^{r} V^{*\mathbb{C}} = \sum_{p+q=r} \Lambda^{p,q} V^{*\mathbb{C}}$$

Moreover complex conjugation in $V^{*\mathbb{C}}$ extends in a natural way to $\Lambda V^{*\mathbb{C}}$, and this gives a real linear isomorphism between $\Lambda^{p,q}V^{*\mathbb{C}}$ and $\Lambda^{q,p}V^{*\mathbb{C}}$.

2. Hermitian Metrics

Definiton. A Hermitian metric is an inner product defined over a real vector space with complex structure J such that

$$h(JX, JY) = h(X, Y)$$
 for all $X, Y \in V$.

Lemma 5. For an inner metric h, h(X, JX) = 0 for every vector X.

Proof. $h(X, JX) = h(JX, J^2X) = -h(JX, X) = -h(X, JX).$

• This property gives rise to the following result.

Proposition 6. Let *h* be a hermitian inner product in a real 2*n* dimensional vector space *V* with complex structure *J*. Then there exist vectors X_1, \dots, X_n of *V* such that $\{X_1, \dots, X_n, JX_1, \dots, JX_n\}$ is a orthonormal basis for *V* with respect to *h*.

Proof. The proof is by induction on the dimension of V.

- (i) We know that the claim is valid for n = 1 by using X_1 and JX_1 .
- (ii) Let W be the space spanned by X_1 and JX_1
- and let W^{\perp} be the orthogonal complement in V so that $V = W \oplus W^{\perp}$, and W^{\perp} is invariant undet J.
- Now make use of the induction htpothesis that the proposition is true for n-1, so that W^{\perp} has an orthonormal basis $\{X_2, \dots, X_n, JX_2, \dots, JX_n\}$. Then $[X_1, \dots, X_n, JX_1, \dots, JX_n]$ is the required basis. \Box

Proposition 7. Let h be a hermitian inner product in a real 2n dimensional vector space V with complex structure J. Then h can be uniquely extended to a complex symmetric bilinear form, also denoted by h, of $V^{\mathbb{C}}$, such that

$$\begin{split} h(\overline{Z},\overline{W}) =& \overline{h(Z,W)}, \\ h(Z,\overline{Z}) > 0, \quad \forall Z \neq 0, \\ h(Z,\overline{W}) =& 0 \quad \forall Z \in V^{1,0}, W \in V^{0,1}. \end{split}$$

Conversely, every complex symmetric bilinear form h on $V^{\mathbb{C}}$ satisfying these conditions is the natural extension of a Hermitian inner product of V.

Proof. For example, writine Z = X + iY, W = U + iV, we have

$$\begin{split} h(\overline{Z},\overline{W}) = &h(X - iY, U - iV) = h(X, U) + h(Y, V) - ih(X, V) - ih(Y, U), \\ h(Z,W) = &h(X - iY, U - iV) = h(X, U) + h(Y, V) + ih(X, V) + ih(Y, U). \end{split}$$

• To each hermitian inner product h on a real vector space with complex structure J, there correspond an elemeb=nt ϕ of $\Lambda^2 V^*$ such that

The **skew-symmetry** follows since

$$\phi(X,Y) = h(JX,J^2Y) = -h(JX,Y) = -\phi(Y,JX) = -\phi(Y,X).$$

Moreover ϕ is invariant under J since

$$\phi(JX, JY) = h(JX, J^2Y) = -h(Y, JX) = -\phi(Y, X) = \phi(X, Y).$$

Since $\Lambda^2 V^*$ can be considered as a subspace of $\Lambda^2 V^{*\mathbb{C}}$, it follows that ϕ uniquely determines a skew-symmetric bilinear form on $V^{\mathbb{C}}$, which we still denote by ϕ . Then $\phi \in \Lambda^{1,1} V^{*\mathbb{C}}$.

Lemma 8. Let Z_1, \dots, Z_n be a basis for $V^{1,0}$ over \mathbb{C} and let $\{\omega^1, \dots, \omega^n\}$ be a dual basis of $V_{0,1}$. We write

$$h_{j\bar{k}} = h(Z_j, \overline{Z}_k), \text{ for } j, k = 1, \cdots, n$$

Then

$$h_{j\bar{k}} = \overline{h_{k\bar{j}}}, \text{ for } j, k = 1, \cdots, n.$$

$$\phi(Z, W) = -i \sum_{j,k=1}^{n} h_{j\bar{k}}(\omega^{j}(Z)\overline{\omega}^{k}(W) - \omega^{j}(W)\overline{\omega}^{k}(Z)).$$

Lemma 9. There is a natural 1 - 1 correspondence between the set of complex structures on \mathbb{R}^{2n} and the homogeneous space $\operatorname{GL}(2n, \mathbb{R})/\operatorname{GL}(n, \mathbb{C})$;

the coset represented by an element $T \in GL(2n : \mathbb{R})$ corresponds to the complex structure TJ_0T^{-1} , where J_0 is the canonical complex structure.

Proof. Note that every element $T \in GL(2n; \mathbb{R})$ sends every complex structure J of \mathbb{R}^{2n} into a complex structure TJT^{-1} of \mathbb{R}^{2n} .

– Consider $\operatorname{GL}(2n;\mathbb{R})$ as a group of transformations acting on the set of complex structures of \mathbb{R}^{2n} .

It suffices to **claim**: this action is **transitive** and the subgroup which leaves J_0 invariant is $GL(n; \mathbb{C})$.

- Indeed, let J and J' be two complex structures of \mathbb{R}^{2n} , and let

$$\{e_1, \cdots, e_n, Je_1, \cdots, Je_n\}$$
 and $\{e'_1, \cdots, e'_n, J'e'_1, \cdots, J'e'_n\}$

be bases of \mathbb{R}^{2n} . Define an element T of $GL(2n; \mathbb{R})$ by

$$Te_k = e'_k$$
, $TJe_k = J'e'_k$, for $k = 1, \cdots, n$.

Then $J' = TJT^{-1}$, proving that the group acts transitively.

- Moreover, an element T of $\operatorname{GL}(2n : \mathbb{R})$ belongs to $\operatorname{GL}(n : \mathbb{C})$ iff it commutes with J_0 , that is, $J_0 = TJ_0T^{-1}$. \Box

Lemma 10. ,There is a natural 1-1 correspondence between the set of hermitian inner product in \mathbb{R}^{2n} with respect to the complex structure J_0 and the homogeneous space $\operatorname{GL}(2n, \mathbb{C})/\operatorname{U}(n)$.

The coset represented by an element $T \in GL(n : \mathbb{C})$ corresponds to the hermitian inner produch h defined by

$$h(X,Y) = h_0(TX,TY), \quad \forall X,Y \in \mathbb{R}^{2n},$$

where h_0 is the canonical hermitian inner product in \mathbb{R}^{2n} .

Proof. Note that every element $T \in GL(n; \mathbb{C})$ sends a Hermitian inner product h (with respect to J_0) into a Hermitian inner product h' according to

$$h'(X,Y) = h(TX,TY), \quad \forall X,Y \in \mathbb{R}^{2n}$$

– Consider $\operatorname{GL}(n; \mathbb{C})$ as a group of transformations acting on the set of hermitian inner product in \mathbb{R}^{2n} with respect to J_0 .

It suffices to **claim**: this action is **transitive** and the subgroup which leaves h_0 invariant is U(n).

- We have already seen that there are orthogonal bases

$$\{e_1, \dots, e_n, Je_1, \dots, Je_n\}$$
 and $\{e'_1, \dots, e'_n, J'e'_1, \dots, J'e'_n\}$

with respect to h and h' in \mathbb{R}^{2n} .

– The element T of $GL(2n; \mathbb{R})$ defined by

$$Te'_{k} = e_{k}, \ TJ_{0}e'_{k} = J_{0}e_{k}, \ \text{for } k = 1, \cdots, n$$

is an element of $\operatorname{GL}(n; \mathbb{C})$ which sends h into h'.

- Moreove, the elements of $\operatorname{GL}(n; \mathbb{C})$ which leaves h_0 invariant is the intersection of $\operatorname{GL}(n; \mathbb{C})$ and $\operatorname{O}(2n)$, both being considered as subgroups of $\operatorname{GL}(2n; \mathbb{R})$. But these elements are precisely those of $\operatorname{U}(n)$, considered as a subgroup of $\operatorname{GL}(2n; \mathbb{R})$. \Box

3. Almost Complex Manifolds

Definiton. An almost complex structure on a real differentiable manifold M is a tensor field J which at each point $x \in M$ is an endomorphism of the tangent space T_xM such that $J^2 = -1$, where 1 denotes the identity transformation of T_xM .

A manifold with such a structure is called an **almost-complex manifold**.

Lemma 11. An almost-complex manifold must be orientable.

Lemma 12. If $A \in M(n; \mathbb{C})$, then $\det_{\mathbb{R}} A = |\det_{\mathbb{C}} A|^2$.

Proof of Lemma 11. Fix a basis $X_1, \dots, X_n, JX_1, \dots, JX_n$ in each T_xM .

- By Lemmaa 12, any two such bases differ by a linear transformation with positive determinant.
- To fix an orientation on M we consider the family of all coordinate systems x^1, \dots, x^{2n} of M such that in each coordinate neighborhood, the coordinate basis

$$(\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^{2n}})$$

of $T_x M$ at x differ from the chosen basis $(X_1, \dots, X_n, JX_1, \dots, JX_n)$ by a linear transformation of positive determinant.

These coordinate systems determine a complete atlas for M, which is thus oriented. \Box

• However, an even-dimensional, oriented real manifold does not necessarily have an almost complex structure.

For example, Ehresmann and Hopf proved that the 4-sphere \mathbb{S}^4 cannot have an almost complex structure.

Definition. A complex manifold is a paracompact Hausdorff space which has a covering by neighborhoods each homeomorphic to an open set in \mathbb{C}^n such that when two neighborhoods overlap the local coordinates transform by a **holomorphic** transformation.

In other words, if z^1, \dots, z^n are local coordinates in one such neighborhood, and w^1, \dots, w^n are local coordinates of another neighborhood, then when these are both defined, we have

$$w^i = f^i(z^1, \cdots, z^n),$$

where each f^i is a holomorphic function of the z's, and the function determinant

$$\frac{\partial(w^1,\cdots,w^n)}{\partial(z^1,\cdots,z^n)}\neq 0.$$

• We proceed to prove the following.

Proposition 13. A complex manifold admits an almost complex structure.

Proof. We consider first the space \mathbb{C}^n of *n*-tuples of complex numbers (z^1, \dots, z^n) with $z^k = x^k + iy^k$, $k = 1, \dots, n$.

With respect to the coordinate system $x^1, \dots, x^n, y^1, \dots, y^n$, we define an almost complex structure J on \mathbb{C}^n by

$$J\left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial y^i}, \quad J\left(\frac{\partial}{\partial y^i}\right) = -\frac{\partial}{\partial x^i}, \quad i = 1, \cdots, n$$

Lemma 14. A mapping f of an open set of \mathbb{C}^n into \mathbb{C}^m preserves the almostcomplex structure J defined in the above manner, that is $f_* \circ J = J \circ f_*$ iff f is holomorphic.

Proof of Lemma 14. Let (w^1, \dots, w^m) be the natural coordinate system of \mathbb{C}^m with $w^k = u^k + i v^k$. Then the map f is defined locally by

$$u^{k} = u^{k}(x^{1}, \cdots, x^{n}, y^{1}, \cdots, y^{n}) \quad v^{k} = v^{k}(x^{1}, \cdots, x^{n}, y^{1}, \cdots, y^{n}), \quad k = 1, \cdots, m.$$

The mapping f is holomorphic iff the following Cauchy-Riemann equations are satisfied:

$$\frac{\partial u^k}{\partial x^j} = \frac{\partial v^k}{\partial y^j}, \quad \frac{\partial u^k}{\partial y^j} = -\frac{\partial v^k}{\partial x^j},$$

with $j = 1, \dots, n, k = 1, \dots, m$. However, for any f we have

$$f_*\left(\frac{\partial}{\partial x^j}\right) = \sum_{k=1}^m \left(\frac{\partial u^k}{\partial x^j}\right) \frac{\partial}{\partial u^k} + \sum_{k=1}^m \left(\frac{\partial v^k}{\partial x^j}\right) \frac{\partial}{\partial v^k},$$
$$f_*\left(\frac{\partial}{\partial y^j}\right) = \sum_{k=1}^m \left(\frac{\partial u^k}{\partial y^j}\right) \frac{\partial}{\partial u^k} + \sum_{k=1}^m \left(\frac{\partial v^k}{\partial y^j}\right) \frac{\partial}{\partial v^k},$$

We have

$$f_* \circ J\left(\frac{\partial}{\partial x^j}\right) = f_*\left(\frac{\partial}{\partial y^j}\right)$$
$$J \circ f_*\left(\frac{\partial}{\partial x^j}\right) = \sum_{k=1}^m \left(\frac{\partial u^k}{\partial x^j}\right) \frac{\partial}{\partial v^k} - \sum_{k=1}^m \left(\frac{\partial v^k}{\partial x^j}\right) \frac{\partial}{\partial u^k}.$$

From the Cauchy-Riemann equations, we have

$$f_* \circ J\left(\frac{\partial}{\partial x^j}\right) = J \circ f_*\left(\frac{\partial}{\partial x^j}\right).$$

Similarly we have

$$f_* \circ J\left(\frac{\partial}{\partial y^i}\right) = J \circ f_*\left(\frac{\partial}{\partial y^i}\right).$$

Proof of Proposition 13 (continued). . To define an almost-complex structure on a complex manifold we transfer the almost-complex structure on \mathbb{C}^m to M by means of the charts.

- This can be done unambiguously, for, by the previous result, the process is independent of the particular charts chosen. \Box

We have shown that a complex manifold admits an almost complex structure and therefore it must be orientable. However, it is interesting to given an independent proof as follows.

An Alernate Proof of That A Complex Manifold Must Be Orientable.

– Let z^1, \dots, z^m be a system of local coordinates on the *m*-dimensional complex manifold M.

Set $z^k = x^k + iy^k$ so that x^k and y^k form a real system of local coordinates for the real 2m-dimensional manifold. We write

$$x^{k} = \frac{1}{2}(z^{k} + \overline{z}^{k}), \quad y^{k} = -\frac{i}{2}(z^{k} - \overline{z}^{k}).$$

Then we see that

$$dx^{1} \wedge \dots \wedge dx^{m} \wedge dy^{1} \wedge dy^{m} = \left(-\frac{i}{2}\right)^{m} dz^{1} \wedge \dots \wedge dz^{m} \wedge d\overline{z}^{1} \wedge d\overline{z}^{m}$$

Thus the form

$$\Theta(z) = (-\frac{i}{2})^m dz^1 \wedge \dots \wedge dz^m \wedge d\overline{z}^1 \wedge d\overline{z}^m$$

is a real form of maximal order 2m.

- Claim: $\Theta(z)$ is well-defined up to a positive factor. Let w^1, \dots, w^m be another system of local coordinates. Then

$$dw^1 \wedge \dots \wedge dw^m = \mathcal{D}dz^1 \wedge dz^m$$

where $\mathcal{D} = \det \partial(w^1, \cdots, w^m) / \partial(z^1, \cdots, z^m)$. Then

$$d\bar{w}^1 \wedge \dots \wedge d\bar{w}^m = \mathcal{D}d\bar{z}^1 \wedge d\bar{z}^m$$

Hence

$$\Theta(w) = \mathcal{D}\overline{\mathcal{D}}\Theta(z)$$

and our claim is justified.

- To define Θ globally, we choose a locally finite coverong and a partition of unity subordinate to the covering.

This gives rise to a globally defined 2m form over M and hence M is orientable.

- We have seen that a vector space carrying a complex structure determines a splitting of the complexified space into the direct sum of vectors of type (1,0) and those of type (0,1).
- Conversely, a decomposition of this nature detemines a complex structure on the original vector space.
- An almost-complex structure determines vector fields of type (1,0) and (0,1), and dually it determines 1-forms of type (1,0) and (0,1).
- Conversely, if we are given the space of complex-valued 1-forms $T_{1,0}$ of type (1,0),

and if $T_{0,1}$ denotes the space of forms which are conjugate complex to those of $T_{1,0}$ so that we have the decomposition

$$T_x^{*\mathbb{C}} = T_{1,0} \oplus T_{0,1}$$

then this determines the almost complex structure on the manifold.

An Alternate Proof of That A Complex Manifold Determines an Almost-Complex Structure.

- For on a complex-manifold the complex-valued 1-forms expressed in terms of local coordinates z^{α} are linear combinations of dz^{α} .

We define these to be the space of forms of type (1,0), and the space of forms of type (0,1) are similarly formed with $d\overline{z}^{\alpha}$.

Since dz^{α} , $d\overline{z}^{\alpha}$ are linearly independent, they define an almost-complex structure. – To describe J in terms of local coordinates, let $z^{\alpha} = x^{\alpha} + iy^{\alpha}$. We have

$$dz^{\alpha}\left(\frac{\partial}{\partial x^{\beta}}\right) = \delta^{\alpha}_{\beta}, \quad dz^{\alpha}\left(\frac{\partial}{\partial y^{\beta}}\right) = i\delta^{\alpha}_{\beta}.$$

Then, using the fact that dz^{α} is of type (1,0) we obtain

$$dz^{\alpha}\left(\frac{J\partial}{\partial x^{\beta}}\right) = i\,\delta^{\alpha}_{\beta}, \quad dz^{\alpha}\left(\frac{J\partial}{\partial y^{\beta}}\right) = -\delta^{\alpha}_{\beta}.$$

These relations give

$$J\left(\frac{\partial}{\partial x^{\beta}}\right) = \frac{\partial}{\partial y^{\beta}}, \quad J\left(\frac{\partial}{\partial y^{\beta}}\right) = -\frac{\partial}{\partial x^{\beta}},$$

and hence $J^2 = -1$ as it should.

- The **question** arises naturally whether all almost-complex structures arise only from complex-manifolds
- -more precisely, whether every almost-complex manifold is complex.
- This indeed is the case for real dimension 2 but not in general.
- We now find necessary conditions that an almost-complex manifold should arise from a complex manifold.
- Consider the differential operators

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial x^j} - i \frac{\partial}{\partial y^j} \right) (dx^j + i \, dy^j)$$

and

$$\overline{\partial} = \frac{1}{2} \left(\frac{\partial}{\partial x^j} + i \frac{\partial}{\partial y^j} \right) (dx^j - i \, dy^j),$$

which operate on such a form

$$\omega(z) = \eta(z) dz^{i_1} \wedge \dots \wedge dz^{i_p} \wedge d\overline{z}^{j_1} \wedge \dots \wedge d\overline{z}^{j_q}$$

by

$$\partial \omega = \frac{\partial \eta}{\partial z^i} dz^i \wedge dz^{i_1} \wedge \dots \wedge d\overline{z}^{j_1} \wedge \dots \wedge d\overline{z}^{j_q},$$

and

$$\overline{\partial}\omega = \frac{\partial\eta}{\partial\overline{z}^j}d\overline{z}^j \wedge dz^{i_1} \wedge \dots \wedge d\overline{z}^{j_1} \wedge \dots \wedge dz^{\overline{j}_q}.$$

Lemma 15. On a complex manifold, the following relations hold:

$$d = \partial + \overline{\partial}, \quad \partial \partial = 0, \quad \overline{\partial \partial} = 0.$$

- These relations need hold for an arbitrary, almost complex manifold, but it is readily verified that if one of them holds, so do the other two. In such a case, the almost complex structure is said to be integrable. Thus, for a complex manifold, the almost complex structure is said to be integrable.
- The converse to this is known as the Newlander-Nirenberg theorem: any manifold with an integrable, almost complex structure has a holomorphic coordinate chart.