
1. Complex and Almost-Complex Manifolds

Definition. A complex structure on a real vector space V is a linear endomor-
phism J of V such that J2 = −1, where 1 is the identity transformation of V .

• A real vector space with a complex structure can be given the structure of a
complex vector space.
We define scalar multiplication by complex numbers as

(a + ib)X = aX + bJX, ∀X ∈ V and a, b ∈ R.

Evidently thedimension m of V must be even, and we define its complex dimen-
sion to be m/2.

• Conversely, if we are given a complex vector space V of complex dimension n,
we can define a linear endomorphism J of V by

J(X) = iX, ∀X ∈ V.

Then V , considered as a real vector space of dimension 2n, has J as its complex
structure.

• We now choose a special class of bases related to the complex structure.
More precisely, we prove the following proposition.

Proposition 1. Let J be a complex structure associated with a real 2n di-
mensional vector space V . Then there exist vectors X1, · · · , Xn of V such that
{X1, · · · , Xn, JX1, · · · , JXn} is a basis for V .

Proof. Regard V as a complex vector space of n complex dimensions, for which we
choose as a basis X1, · · · , Xn of V .
- Then X1, · · · , Xn, JX1, · · · , JXn form a basis for V as a real 2n-dimensional

space. �

• By setting
zk = xk + iyk, k = 1, · · · , n,

the complex vector space Cn can be identified with the real vector space R2n of
2n-tuples of real numbers (x1, · · · , xn, y1, · · · , yn).

– The complex structure J induced from that of Cn, maps (x1, · · · , xn, y1, · · · , yn)
into (y1, · · · , yn,−x1, · · · ,−xn) and is called the canonical complex struc-
ture of R2n.

– In terms of the natural (coordinate) basis of R2n, J is represented by the matrix

J0 =
(

0 In

−In 0

)
, where In is the identity matrix of degree n.
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Proposition 2. Let J , J ′ be complex structures on real vector spaces V and V ′,
respectively.
Let f be a real linear mapping of V into V ′. Then, when V , V ′ are regarded as
complex vector spaces, f is complex linear iff J ′ ◦ f = f ◦ J .

Proof. This follows trivially since J and J ′ are effectively multiplication by i when
V and V ′ are regarded as complex vector spaces. �

Corollary 3. Thus the complex linear group GL(n; C) of degree n can be regarded
as a subgroup of GL(2n, R) consisting of matrices which commutes with the matrix
J0.

• It follows that this representation of GL(n : C) into GL(2n : R), called the real
representation of GL(n, C), is given by

A + iB →
(

A B
−B A

)
,

for A + iB ∈ GL(n, C).

Proposition 4. Let J be a complex structure on the real vector space V and let
V ′ be a (real) subspace of V .
Then V ′ is invarianr under the action of J iff V ′ is a complex subspace of V when
V is considered as a complex vector space.

Proof. This folloes because J means effectively multiplication by J . �

• Let V be a real vector space and let V ∗ denote its dual.
Then a complex structure J on V induces a complex structure J̃ on V ∗; we
define J̃ by

X∗(JX) = J̃X∗(X)

for X ∈ V and X∗ ∈ V ∗. We have

J̃(J̃X∗(X)) = J̃X∗(JX) = X∗(J2X) = −1(X∗(X))

giving J̃2 = −1 as required. It will be convenient from now on to use the notation
J instead of J̃ .

Complexification

• Let V be a vector space and consider the tensor product V C = V ⊗R C.
We can similarly form tensors of type (r, s) over starting with V C instead of V ,
and then tensors of type (r, s) over V form a real subspace of tensors of type
(r, s) over V C.

• The operation of complex conjugation in V C is the real linear endomorphism
defined by

Z = X + iY → Z = Z − iY, ∀X, Y ∈ V.

This endomorphism extends in a natural way to the space T r
s (V C).
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• Assume that V is a 2n-dimensional real vecor space with a complex structure J .
We can extend the action of J canonically to V c and we also denote this extension
by J which retains the property J2 = −1.
Thus the eigenvalues of this extended J are i and −i. Set

V 1,0 = {Z ∈ V C : JZ = iZ}, V 0,1 = {Z ∈ V C : JZ = −iZ}

Then

V 1,0 ={X − iJX ; X ∈ V }
V 0,1 ={X + iJX : X ∈ V }
V C =V 1,0 ⊕ V 0,1.

Moreover, complex conjugation defines a real linear isomorphism between V 1,0

and V 0,1.

• Obviously, the complexification ofthe dual space (V ∗)C is the same space as
(V C)∗, the dual space of V C.

– Again with respect to the eigenvalues i and −i of the complex structure on V ∗

we have a direct sum decomposition

V ∗ = V1,0 ⊕ V0,1;

here

V1,0 ={X∗ ∈ (V ∗)C; X∗(X) = 0 ∀X ∈ V 0,1}
V0,1 ={X∗ ∈ (V ∗)C; X∗(X) = 0 ∀X ∈ V 1,0}.

The decomposition of V C leads to the decomposition of the tensor space T r
s (V C)

into a direct sum of tensor products of vector spaces identical to one of the spaces
V 1,0, V 0,1, V1,0 and V0,1.

• In particulat the exterior algebra ΛV ∗C decomposes, and the exterior algebras
ΛV1,0 and ΛV ∗C are subalgebras of ΛV ∗C.

– If we denote by Λp,qV ∗C the subspace spanned by α ∧ β where α ∈ ΛpV1,0 and
β ∈ Λq

0,1, then

ΛV ∗C =
n∑

r=0

ΛrV ∗C with ΛrV ∗C =
∑

p+q=r

Λp,qV ∗C.

Moreover complex conjugation in V ∗C extends in a natural way to ΛV ∗C, and
this gives a real linear isomorphism between Λp,qV ∗C and Λq,pV ∗C.
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2. Hermitian Metrics

Definiton. A Hermitian metric is an inner product defined over a real vector space
with complex structure J such that

h(JX, JY ) = h(X, Y ) for all X ,Y ∈ V .

Lemma 5. For an inner metric h, h(X, JX) = 0 for every vector X .

Proof. h(X, JX) = h(JX, J2X) = −h(JX, X) = −h(X, JX). �

• This property gives rise to the following result.

Proposition 6. Let h be a hermitian inner product in a real 2n dimensional vector
space V with complex structure J . Then there exist vectors X1, · · · , Xn of V such
that {X1, · · · , Xn, JX1, · · · , JXn} is a orthonormal basis for V with respect to h.

Proof. The proof is by induction on the dimension of V .
(i) We know that the claim is valid for n = 1 by using X1 and JX1.
(ii) Let W be the space spanned by X1 and JX1

and let W⊥ be the orthogonal complement in V so that V = W ⊕W⊥, and W⊥

is invariant undet J .
– Now make use of the induction htpothesis that the proposition is true for n− 1,

so that W⊥ has an orthonormal basis {X2, · · · , Xn, JX2, · · · , JXn}.
Then [X1, · · · , Xn, JX1, · · · , JXn] is the required basis. �

Proposition 7. Let h be a hermitian inner product in a real 2n dimensional vector
space V with complex structure J . Then h can be uniquely extended to a complex
symmetric bilinear form, also denoted by h, of V C, such that

h(Z, W ) =h(Z, W ),

h(Z, Z) >0, ∀Z 6= 0,

h(Z, W ) =0 ∀Z ∈ V 1,0, W ∈ V 0,1.

Conversely, every complex symmetric bilinear form h on V C satisfying these condi-
tions is the natural extension of a Hermitian inner product of V .

Proof. For example, writine Z = X + iY , W = U + iV , we have

h(Z, W ) =h(X − iY, U − iV ) = h(X, U) + h(Y, V ) − ih(X, V ) − ih(Y, U),

h(Z, W ) =h(X − iY, U − iV ) = h(X, U) + h(Y, V ) + ih(X, V ) + ih(Y, U). �

• To each hermitian inner product h on a real vector space with complex structure
J , there corresponda an elemeb=nt φ of Λ2V ∗ such that
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The skew-symmetry follows since

φ(X, Y ) = h(JX, J2Y ) = −h(JX, Y ) = −φ(Y, JX) = −φ(Y, X).

Moreover φ is invariant under J since

φ(JX, JY ) = h(JX, J2Y ) = −h(Y, JX) = −φ(Y, X) = φ(X, Y ).

Since Λ2V ∗ can be considered as a subspace of Λ2V ∗C, it follows that φ uniquely
determines a skew-symmetric bilinear form on V C, which we still denote by φ.
Then φ ∈ Λ1,1V ∗C.

Lemma 8. Let Z1, · · · , Zn be a basis for V 1,0 over C and let {ω1, · · · , ωn} be a
dual basis of V0,1. We write

hjk̄ = h(Zj , Zk), for j, k = 1, · · · , n

Then

hjk̄ = hkj̄ , for j, k = 1, · · · , n.

φ(Z, W ) = −i

n∑

j,k=1

hjk̄(ωj(Z)ωk(W ) − ωj(W )ωk(Z)).

Lemma 9. There is a natural 1 − 1 correspondence between the set of complex
structures on R2n and the homogeneous space GL(2n, R)/GL(n, C);
the coset represented by an element T ∈ GL(2n : R) corresponds to the complex
structure TJ0T

−1, where J0 is the canonical complex structure.

Proof. Note that every element T ∈GL(2n; R) sends every complex structure J of
R2n into a complex structure TJT−1 of R2n.
– Consider GL(2n; R) as a group of transformations acting on the set of complex

structures of R2n.
It suffices to claim: this action is transitive and the subgroup which leaves J0

invariant is GL(n; C).
– Indeed, let J and J ′ be two complex structures of R2n, and let

{e1, · · · , en, Je1, · · · , Jen} and {e′1, · · · , e′n, J ′e′1, · · · , J ′e′n}.

be bases of R2n. Define an element T of GL(2n; R) by

Tek = e′k, TJek = J ′e′k, for k = 1, · · · , n.

Then J ′ = TJT−1, proving that the group acts transitively.
– Moreover, an element T of GL(2n : R) belongs to GL(n : C) iff it commutes with

J0, that is, J0 = TJ0T
−1. �
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Lemma 10. ,There is a natural 1−1 correspondence between the set of hermitian
inner product in R2n with respect to the complex structure J0 and the homogeneous
space GL(2n, C)/U(n).
The coset represented by an element T ∈ GL(n : C) corresponds to the hermitian
inner produch h defined by

h(X, Y ) = h0(TX, TY ), ∀X, Y ∈ R2n,

where h0 is the canonical hermitian inner product in R2n.

Proof. Note that every element T ∈GL(n; C) sends a Hermitian inner product h
(with respect to J0) into a Hermitian inner product h′ according to

h′(X, Y ) = h(TX, TY ), ∀X, Y ∈ R2n.

– Consider GL(n; C) as a group of transformations acting on the set of hermitian
inner product in R2n with respect to J0.
It suffices to claim: this action is transitive and the subgroup which leaves h0

invariant is U(n).
– We have already seen that there are orthogonal bases

{e1, · · · , en, Je1, · · · , Jen} and {e′1, · · · , e′n, J ′e′1, · · · , J ′e′n}

with respect to h and h′ in R2n.
– The element T of GL(2n; R) defined by

Te′k = ek, TJ0e
′
k = J0ek, for k = 1, · · · , n.

is an element of GL(n; C) which sends h into h′.
– Moreove, the elements of GL(n; C) which leaves h0 invariant is the intersection

of GL(n; C) and O(2n), both being considered as subgroups of GL(2n; R).
But these elements are precisely those of U(n), considered as a subgroup of
GL(2n; R). �
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3. Almost Complex Manifolds

Definiton. An almost complex structure on a real differentiable manifold M
is a tensor field J which at each point x ∈ M is an endomorphism of the tangent
space TxM such that J2 = −1, where 1 denotes the identity transformation of
TxM .

A manifold with such a structure is called an almost-complex manifold.

Lemma 11. An almost-complex manifold must be orientable.

Lemma 12. If A ∈ M(n; C), then detR A = | detC A|2.

Proof of Lemma 11. Fix a basis X1, · · · , Xn, JX1, · · · , JXn in each TxM .
– By Lemmaa 12, any two such bases differ by a linear transformation with positive

determinant.
– To fix an orientation on M we consider the family of all coordinate systems

x1, · · · , x2n of M such that in each coordinate neighborhood, the coordinate
basis

(
∂

∂x1
, · · · ,

∂

∂x2n
)

of TxM at x differ from the chosen basis (X1, · · · , Xn, JX1, · · · , JXn) by a linear
transformation of positive determinant.
These coordinate systems determine a complete atlas for M , which is thus ori-
ented. �

• However, an even-dimensional, oriented real manifold does not necessarily have
an almost complex structure.
For example, Ehresmann and Hopf proved that the 4-sphere S4 cannot have an
almost complex structure.

Definition. A complex manifold is a paracompact Hausdorff space which has
a covering by neighborhoods each homeomorphic to an open set in Cn such that
when two neighborhoods overlap the local coordinates transform by a holomorphic
transformation.

In other words, if z1, · · · , zn are local coordinates in one such neighborhood, and
w1, · · · , wn are local coordinates of another neighborhood, then when these are
both defined, we have

wi = f i(z1, · · · , zn),

where each f i is a holomorphic function of the z’s, and the function determinant

∂(w1, · · · , wn)
∂(z1, · · · , zn)

6= 0.

• We proceed to prove the following.
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Proposition 13. A complex manifold admits an almost complex structure.

Proof. We consider first the space Cn of n-tuples of complex numbers (z1, · · · , zn)
with zk = xk + iyk, k = 1, · · · , n.
With respect to the coordinate system x1, · · · , xn, y1, · · · , yn, we define an almost
complex structure J on Cn by

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= − ∂

∂xi
, i = 1, · · · , n

Lemma 14. A mapping f of an open set of Cn into Cm preserves the almost-
complex structure J defined in the above manner, that is f∗ ◦ J = J ◦ f∗ iff f is
holomorphic.

Proof of Lemma 14. Let (w1, · · · , wm) be the natural coordinate system of Cm

with wk = uk + i vk. Then the map f is defined locally by

uk = uk(x1, · · · , xn, y1, · · · , yn) vk = vk(x1, · · · , xn, y1, · · · , yn), k = 1, · · · , m.

The mapping f is holomorphic iff the following Cauchy-Riemann equarions are
satisfied:

∂uk

∂xj
=

∂vk

∂yj
,

∂uk

∂yj
= −∂vk

∂xj
,

with j = 1, · · · , n, k = 1, · · · , m. However, for any f we have

f∗

(
∂

∂xj

)
=

m∑

k=1

(
∂uk

∂xj

)
∂

∂uk
+

m∑

k=1

(
∂vk

∂xj

)
∂

∂vk
,

f∗

(
∂

∂yj

)
=

m∑

k=1

(
∂uk

∂yj

)
∂

∂uk
+

m∑

k=1

(
∂vk

∂yj

)
∂

∂vk
,

We have

f∗ ◦ J

(
∂

∂xj

)
=f∗

(
∂

∂yj

)

J ◦ f∗

(
∂

∂xj

)
=

m∑

k=1

(
∂uk

∂xj

)
∂

∂vk
−

m∑

k=1

(
∂vk

∂xj

)
∂

∂uk
.

From the Cauchy-Riemann equations, we have

f∗ ◦ J

(
∂

∂xj

)
= J ◦ f∗

(
∂

∂xj

)
.

Similarly we have

f∗ ◦ J

(
∂

∂yi

)
= J ◦ f∗

(
∂

∂yi

)
. �
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Proof of Proposition 13 (continued). . To define an almost-complex structure on a
complex manifold we transfer the almost-complex structure on Cm to M by means
of the charts.
- This can be done unambiguously, for, by the previous result, the process is

independent of the particular charts chosen. �

We have shown that a complex manifold admits an almost complex structure and
therefore it must be orientable. However, it is interesting to given an independent
proof as follows.

An Alernate Proof of That A Complex Manifold Must Be Orientable.

– Let z1, · · · , zm be a system of local coordinates on the m-dimensional complex
manifold M .
Set zk = xk + iyk so that xk and yk form a real system of local coordinates for
the real 2m-dimensional manifold. We write

xk =
1
2
(zk + zk), yk = − i

2
(zk − zk).

Then we see that

dx1 ∧ · · · ∧ dxm ∧ dy1 ∧ dym = (− i

2
)mdz1 ∧ · · · ∧ dzm ∧ dz1 ∧ dzm

Thus the form

Θ(z) = (−
i

2
)mdz1 ∧ · · · ∧ dzm ∧ dz1 ∧ dzm

is a real form of maximal order 2m.
– Claim: Θ(z) is well-defined up to a positive factor.

Let w1, · · · , wm be another system of local coordinates. Then

dw1 ∧ · · · ∧ dwm = Ddz1 ∧ dzm

where D = det ∂(w1, · · · , wm)/∂(z1, · · · , zm). Then

dw̄1 ∧ · · · ∧ dw̄m = Ddz̄1 ∧ dz̄m

Hence
Θ(w) = DDΘ(z)

and our claim is justified.
– To define Θ globally, we choose a locally finite coverong and a partition of

unity subordinate to the covering.
This gives rise to a globally defined 2m form over M and hence M is orientable.
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• We have seen that a vector space carrying a complex structure determines a
splitting of the complexified space into the direct sum of vectors of type (1, 0)
and those of type (0, 1).

• Conversely, a decomposition of this nature detemines a complex structure on the
original vector space.

• An almost-complex structure determines vector fields of type (1,0) and (0,1),
and dually it determines 1-forms of type (1, 0) and (0, 1).

• Conversely, if we are given the space of complex-valued 1-forms T1,0 of type
(1, 0),
and if T0,1 denotes the space of forms which are conjugate complex to those of
T1,0 so that we have the decomposition

T ∗C
x = T1,0 ⊕ T0,1

then this determines the almost complex structure on the manifold.

An Alternate Proof of That A Complex Manifold Determines an Almost-
Complex Structure.

– For on a complex-manifold the complex-valued 1-forms expressed in terms of
local coordinates zα are linear combinations of dzα.
We definethese to be the space of forms of type (1, 0), and the space of forms of
type (0, 1) are similarly formed with dzα.
Since dzα, dzα are linearly independent, they define an almost-complex structure.

– To describe J in terms of local coordinates, let zα = xα + iyα. We have

dzα

(
∂

∂xβ

)
= δα

β , dzα

(
∂

∂yβ

)
= iδα

β .

Then, using the fact that dzα is of type (1, 0) we obtain

dzα

(
J∂

∂xβ

)
= i δα

β , dzα

(
J∂

∂yβ

)
= −δα

β .

These relations give

J

(
∂

∂xβ

)
=

∂

∂yβ
, J

(
∂

∂yβ

)
= − ∂

∂xβ
,

and hence J2 = −1 as it should.
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• The question arises naturally whether all almost-complex structures arise only
from complex-manifolds

—more precisely, whether every almost-complex manifold is complex.
• This indeed is the case for real dimension 2 but not in general.
• We now find necessary conditions that an almost-complex manifold should arise

from a complex manifold.

• Consider the differential operators

∂ =
1
2

(
∂

∂xj
− i

∂

∂yj

)
(dxj + i dyj)

and

∂ =
1
2

(
∂

∂xj
+ i

∂

∂yj

)
(dxj − i dyj),

which operate on such a form

ω(z) = η(z)dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq .

by

∂ω =
∂η

∂zi
dzi ∧ dzi1 ∧ · · · ∧ dzj1 ∧ · · · ∧ dzjq ,

and
∂ω =

∂η

∂zj dzj ∧ dzi1 ∧ · · · ∧ dzj1 ∧ · · · ∧ dzjq .

Lemma 15. On a complex manifold, the following relations hold:

d = ∂ + ∂, ∂∂ = 0, ∂∂ = 0.

– These relations need hold for an arbitrary, almost complex manifold,
but it is readily verified that if one of them holds, so do the other two.
In such a case, the almost complex structure is said to be integrable.
Thus, for a complex manifold, the almost complex structure is said to be inte-
grable.

– The converse to this is known as the Newlander-Nirenberg theorem: any
manifold with an integrable, almost complex structure has a holomorphic coor-
dinate chart.


