1. Complex and Almost-Complex Manifolds

Definition. A complex structure on a real vector space V is a linear endomor-
phism J of V such that J> = —1, where 1 is the identity transformation of V.

e A real vector space with a complex structure can be given the structure of a
complex vector space.
We define scalar multiplication by complex numbers as

(a+i)X =aX +bJX, VX €V and a,beR.

Evidently thedimension m of V' must be even, and we define its complex dimen-
sion to be m/2.

e Conversely, if we are given a complex vector space V of complex dimension n,
we can define a linear endomorphism J of V' by

J(X)=iX, VX eV

Then V', considered as a real vector space of dimension 2n, has J as its complex
structure.

e We now choose a special class of bases related to the complex structure.
More precisely, we prove the following proposition.

Proposition 1. Let J be a complex structure associated with a real 2n di-
mensional vector space V. Then there exist vectors Xi,---,X, of V such that
{X1, -+, Xn,J X1, - ,JX,} is a basis for V.

Proof. Regard V' as a complex vector space of n complex dimensions, for which we

choose as a basis X1,---, X, of V.

- Then Xy, ---,X,,JX1,---,JX, form a basis for V' as a real 2n-dimensional
space. O

e By setting

zk:xk—i—iyk, k=1,---,n,

the complex vector space C" can be identified with the real vector space R?" of

2n-tuples of real numbers (z!,--- 2" yt, -, y").
— The complex structure J induced from that of C*, maps (z!,--- 2™, y', .-+ y")
into (y!,---,y", —at,---,—2") and is called the canonical complex struc-

ture of R?".
— In terms of the natural (coordinate) basis of R?", .J is represented by the matrix

Jo = (_OI Ig) , where I, is the identity matrix of degree n.
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Proposition 2. Let J, J' be complex structures on real vector spaces V and V',
respectively.

Let f be a real linear mapping of V into V'. Then, when V', V' are regarded as
complex vector spaces, f is complex linear iff J' o f = fo J.

Proof. This follows trivially since J and J’ are effectively multiplication by 7 when
V and V' are regarded as complex vector spaces. [J

Corollary 3. Thus the complex linear group GL(n; C) of degree n can be regarded
as a subgroup of GL(2n,R) consisting of matrices which commutes with the matrix
Jo.

o It follows that this representation of GL(n : C) into GL(2n : R), called the real
representation of GL(n,C), is given by

A+iB — (—AB i),

for A+ iB € GL(n,C).

Proposition 4. Let J be a complex structure on the real vector space V' and let
V' be a (real) subspace of V.

Then V' is invarianr under the action of J iff V' is a complex subspace of V' when
V' is considered as a complex vector space.

Proof. This folloes because J means effectively multiplication by J. O

e Let V be a real vector space and let V* denote its dual.
Then a complex structure J on V induces a complex structure J on V*, we
define J by
X*(JX) = JX*(X)

for X € V and X* € V*. We have
J(JX*(X)) = JX*(JX) = X*(J?°X) = —1(X*(X))

giving J?2=—1las required. It will be convenient from now on to use the notation
J instead of J.

Complexification

e Let V be a vector space and consider the tensor product V€ =V ®p C.
We can similarly form tensors of type (r,s) over starting with V' instead of V,
and then tensors of type (r,s) over V form a real subspace of tensors of type
(r,s) over VC.

e The operation of complex conjugation in VC is the real linear endomorphism
defined by .
Z=X+iY -Z=7-1iY, VXY V.

This endomorphism extends in a natural way to the space T7(VC).



Assume that V is a 2n-dimensional real vecor space with a complex structure J.
We can extend the action of J canonically to V¢ and we also denote this extension
by J which retains the property J2? = —1.

Thus the eigenvalues of this extended J are ¢ and —i. Set

V0 —(zeVC:.Jz=iz}, VOl ={zecVC . JZ=-iZ}
Then

VRO =X —iJX; X €V}
VOl (X +iJX: X €V}
V(C :Vl,O D VO,I'
Moreover, complex conjugation defines a real linear isomorphism between V1:°
and V01,

Obviously, the complexification ofthe dual space (V*)C is the same space as
(VE)*, the dual space of V.

Again with respect to the eigenvalues ¢ and —i of the complex structure on V*
we have a direct sum decomposition

V' =Vio®Vpa;
here

Vio={X"c (V5 X*(X)=0 VX ¢ VO!}
Vou ={X* e (V)5 X*(X)=0 VX e V1O

The decomposition of VC leads to the decomposition of the tensor space T7(V°)

into a direct sum of tensor products of vector spaces identical to one of the spaces
Vl’o, Vo’l, VLO and VO,l-

In particulat the exterior algebra AV*C decomposes, and the exterior algebras
AVi o and AV*C are subalgebras of AV*C.

If we denote by APV *C the subspace spanned by a A 3 where a € APV} 5 and
B € Ay, then

AV*C = ZATV*C with A7V*C = Z APy *C,
r=0 p+q=r

Moreover complex conjugation in V*C extends in a natural way to AV*C, and
this gives a real linear isomorphism between A?4V*C and A?PV*C,
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2. Hermitian Metrics

Definiton. A Hermitian metric is an inner product defined over a real vector space
with complex structure J such that

WJX,JY)=h(X,Y) forall X,Y € V.

Lemma 5. For an inner metric h, h(X, JX) = 0 for every vector X.
Proof. h(X,JX)=h(JX,J?2X) = —h(JX,X)=—h(X,JX). O
e This property gives rise to the following result.

Proposition 6. Let h be a hermitian inner product in a real 2n dimensional vector
space V with complex structure J. Then there exist vectors X1, -+, X, of V such
that {X1, -+, X,,JX1, -+ ,JX,} is a orthonormal basis for V with respect to h.

Proof. The proof is by induction on the dimension of V.
(i) We know that the claim is valid for n = 1 by using X; and JX;.
(ii) Let W be the space spanned by X7 and JX;
and let W+ be the orthogonal complement in V so that V =W @ W=, and W+
is invariant undet J.
— Now make use of the induction htpothesis that the proposition is true for n — 1,
so that W+ has an orthonormal basis {Xo, -, X,,, J X2, -+, J X, }.
Then [Xy, -+, X, JX1,--,JX,] is the required basis. O

Proposition 7. Let h be a hermitian inner product in a real 2n dimensional vector
space V with complex structure J. Then h can be uniquely extended to a complex
symmetric bilinear form, also denoted by h, of V©, such that

) >0, VZ#£0,
Wz, W) =0 VZ ¢ VIO W e vl
Conversely, every complex symmetric bilinear form h on V' satisfying these condi-
tions is the natural extension of a Hermitian inner product of V.
Proof. For example, writine Z = X +¢Y, W =U + ¢V, we have
h(Z,
h(Z,

W) =h(X —iY,U —iV) = h(X,U) + h(Y, V) — ih(X, V) — ih(Y, U),
W) =h(X —iY,U —iV) = h(X,U) + h(Y, V) +ih(X, V) +ih(Y,U). O

e To each hermitian inner product h on a real vector space with complex structure
J, there corresponda an elemeb=nt ¢ of A?V* such that



The skew-symmetry follows since
H(X,Y)=h(JX,J?Y)=-h(JX,Y) = —6(Y,JX) = —¢(Y, X).
Moreover ¢ is invariant under J since
H(JX,JY) =hJX,J?Y) = -h(Y,JX) = -6V, X) = ¢(X,Y).

Since A2V* can be considered as a subspace of A2V*C it follows that ¢ uniquely
determines a skew-symmetric bilinear form on VC, which we still denote by ¢.
Then ¢ € AWV,

Lemma 8. Let Z1,---,Z, be a basis for V*Y over C and let {w!,--- ,w"} be a
dual basis of Vi, 1. We write

hir = h(Z;,Zy), forjk=1,---,n

Then
hj,;:h_k;, for j,k=1,--- ,n.

HZ,W) =—i Y hg(W (2@ (W) — ! (W)@*(2)).
jk=1

Lemma 9. There is a natural 1 — 1 correspondence between the set of complex
structures on R*" and the homogeneous space GL(2n,R)/GL(n, C);

the coset represented by an element T' € GL(2n : R) corresponds to the complex
structure T JyT !, where Jy is the canonical complex structure.

Proof. Note that every element T' €GL(2n; R) sends every complex structure J of

R?" into a complex structure TJT ! of R?".

— Consider GL(2n;R) as a group of transformations acting on the set of complex
structures of R?".
It suffices to claim: this action is transitive and the subgroup which leaves Jy
invariant is GL(n; C).

— Indeed, let J and J’ be two complex structures of R??, and let

{e1,-++ ,en,Je1, -+, Je,} and {e},--- e, J'ey, -+, Jel}.
be bases of R?". Define an element T of GL(2n;R) by
Tey =e), TJep=Je), fork=1--- n.
Then J' = TJT~!, proving that the group acts transitively.

— Moreover, an element 7" of GL(2n : R) belongs to GL(n : C) iff it commutes with
Jo, that is, Jy = TJ()Til. O
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Lemma 10. ,There is a natural 1 — 1 correspondence between the set of hermitian
inner product in R?™ with respect to the complex structure Jy and the homogeneous
space GL(2n,C)/U(n).

The coset represented by an element T € GL(n : C) corresponds to the hermitian
inner produch h defined by

h(X,Y) = ho(TX,TY), VX,Y € R*™",

where hg is the canonical hermitian inner product in R?".

Proof. Note that every element T €GL(n;C) sends a Hermitian inner product h
(with respect to Jy) into a Hermitian inner product &' according to

R(X,Y)=h(TX,TY), VX,Y € R*".

— Consider GL(n;C) as a group of transformations acting on the set of hermitian
inner product in R?” with respect to Jp.
It suffices to claim: this action is transitive and the subgroup which leaves hg
invariant is U(n).
— We have already seen that there are orthogonal bases
{e1,-++ ,en,Je1, -+ ,Je,} and {e|, - e, J'e}, -, Je}
with respect to h and k' in R2",
— The element T of GL(2n;R) defined by

116;C = €L, 11]06:7C = J06k7 for k — ]_7 cee M.

is an element of GL(n; C) which sends h into h'.
— Moreove, the elements of GL(n; C) which leaves hg invariant is the intersection
of GL(n;C) and O(2n), both being considered as subgroups of GL(2n; R).

But these elements are precisely those of U(n), considered as a subgroup of
GL(2m;R). O



3. Almost Complex Manifolds

Definiton. An almost complex structure on a real differentiable manifold M
is a tensor field J which at each point x € M is an endomorphism of the tangent
space T, M such that J> = —1, where 1 denotes the identity transformation of
T.M.

A manifold with such a structure is called an almost-complex manifold.

Lemma 11. An almost-complex manifold must be orientable.

Lemma 12. If A € M(n;C), then detg A = | detc AJ*.

Proof of Lemma 11. Fix a basis X1, -+, X, J X1, - ,JX,, in each T, M.

— By Lemmaa 12, any two such bases differ by a linear transformation with positive
determinant.

— To fix an orientation on M we consider the family of all coordinate systems

xb, ... 2?" of M such that in each coordinate neighborhood, the coordinate
basis
0 0
G )

of T, M at x differ from the chosen basis (X1, -, X,,JX3,---,JX,,) by a linear
transformation of positive determinant.

These coordinate systems determine a complete atlas for M, which is thus ori-
ented. [

e However, an even-dimensional, oriented real manifold does not necessarily have
an almost complex structure.
For example, Ehresmann and Hopf proved that the 4-sphere S* cannot have an
almost complex structure.

Definition. A complex manifold is a paracompact Hausdorff space which has
a covering by neighborhoods each homeomorphic to an open set in C"™ such that
when two neighborhoods overlap the local coordinates transform by a holomorphic
transformation.

In other words, if z',--- , 2™ are local coordinates in one such neighborhood, and
w!,--- ,w" are local coordinates of another neighborhood, then when these are

both defined, we have

wi _ fi(21,. . ,Zn),

where each f? is a holomorphic function of the z’s, and the function determinant

e We proceed to prove the following.
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Proposition 13. A complex manifold admits an almost complex structure.

Proof. We consider first the space C" of n-tuples of complex numbers (2!, 2")
with 28 =2 +iy* k=1,--- ,n.

With respect to the coordinate system x
complex structure J on C" by

0 0 0 0 .
Haw) = ap ag) 5w =10

Lemma 14. A mapping f of an open set of C"™ into C™ preserves the almost-
complex structure J defined in the above manner, that is f, o J = Jo f, iff f is
holomorphic.

Lo 2™yt oo y", we define an almost

Proof of Lemma 14. Let (w!,---,w™) be the natural coordinate system of C™
with w* = u* 4+ iv*. Then the map f is defined locally by

k _ k 1 n 1 n kE _ k n 1 n _
u =u (x,"',iE ayv"'vy) v =v (ZZT,"',.I Y Y )a k_lv"'am'

The mapping f is holomorphic iff the following Cauchy-Riemann equarions are

satisfied:
our B vk ouF B vk

o "oy’ op - 0w

with j=1,--- ,n, k=1,--- ,m. However, for any f we have
NEAR SETA R AN
“\ Oz _k:1 oxd ) Ouk Pt Oxd ) vk’

0 " OuFN o " OvkN D
(o) =255 ) o + X5 ) o

0 0
o) 5(3)

0 " OuFN o Uy, LA
Jf(%>—§<%)ﬂ‘z<%)m

=1

We have

From the Cauchy-Riemann equations, we have

0 0
f*OJ(@> :Jof*<@>-
0 0

Similarly we have
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Proof of Proposition 13 (continued). . To define an almost-complex structure on a

complex manifold we transfer the almost-complex structure on C™ to M by means

of the charts.

- This can be done unambiguously, for, by the previous result, the process is
independent of the particular charts chosen. [

We have shown that a complex manifold admits an almost complex structure and
therefore it must be orientable. However, it is interesting to given an independent
proof as follows.

An Alernate Proof of That A Complex Manifold Must Be Orientable.

— Let z',---,2™ be a system of local coordinates on the m-dimensional complex
manifold M.
Set 2z = 2% 4 iy* so that 2% and y* form a real system of local coordinates for
the real 2m-dimensional manifold. We write

, |
=S, Y= —(F -7,

Then we see that
dzt A Ada™ Adyt A dy™ = (—%)mdzl/\~-~/\dzm/\d21/\d2m

Thus the form

1

0(z) = ( 2)mdz1A-~-AdzmAdzlAdzm

is a real form of maximal order 2m.
— Claim: O(z) is well-defined up to a positive factor.
Let w',--- ,w™ be another system of local coordinates. Then

dw* A -+ Adw™ =Ddzt A dz™
where D = det d(w?, -+ ,w™)/d(z1, -+ ,2™). Then
do' Ao Ado™ = Ddzt A dzZ™

Hence
O(w) = DDO(z)

and our claim is justified.

— To define O globally, we choose a locally finite coverong and a partition of
unity subordinate to the covering.
This gives rise to a globally defined 2m form over M and hence M is orientable.
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e We have seen that a vector space carrying a complex structure determines a
splitting of the complexified space into the direct sum of vectors of type (1,0)
and those of type (0,1).

e Conversely, a decomposition of this nature detemines a complex structure on the
original vector space.

e An almost-complex structure determines vector fields of type (1,0) and (0,1),
and dually it determines 1-forms of type (1,0) and (0, 1).

o Conversely, if we are given the space of complex-valued 1-forms T o of type
(1,0),
and if Tp ;1 denotes the space of forms which are conjugate complex to those of
T1,0 so that we have the decomposition

T:C =T o® Toa

then this determines the almost complex structure on the manifold.

An Alternate Proof of That A Complex Manifold Determines an Almost-
Complex Structure.

— For on a complex-manifold the complex-valued 1-forms expressed in terms of
local coordinates z® are linear combinations of dz®.
We definethese to be the space of forms of type (1,0), and the space of forms of
type (0,1) are similarly formed with dz®.
Since dz%, dz® are linearly independent, they define an almost-complex structure.
— To describe J in terms of local coordinates, let z¢ = x® + iy®. We have

«a 9 for «a 9 __ ssa

Then, using the fact that dz® is of type (1,0) we obtain

of JO o of 1O\

These relations give

0 0 0 0
J(W) = By J(a—yﬁ) T

and hence J? = —1 as it should.
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e The question arises naturally whether all almost-complex structures arise only
from complex-manifolds

—more precisely, whether every almost-complex manifold is complex.

e This indeed is the case for real dimension 2 but not in general.

e We now find necessary conditions that an almost-complex manifold should arise
from a complex manifold.

e Consider the differential operators

1/ 0 13} , ,
- | - _,___ J 1 J
0 2((%]. zayj)(d:v +idy?)

and /o .o
9 (2 S J 5 dad
3—2<axj+zayj)(dx 1dy?),
which operate on such a form

w(z) = n(z)dz" A Adze NdZEA - A dFa

on . . , ;
Ow = Lzt N A NN
ZZ

and

T , _
B = —Lzi Ndzt Ao NdE A Ads,
oz’

Lemma 15. On a complex manifold, the following relations hold:
d=0+9, 99=0, 0d=0.

— These relations need hold for an arbitrary, almost complex manifold,
but it is readily verified that if one of them holds, so do the other two.
In such a case, the almost complex structure is said to be integrable.
Thus, for a complex manifold, the almost complex structure is said to be inte-
grable.

— The converse to this is known as the Newlander-Nirenberg theorem: any
manifold with an integrable, almost complex structure has a holomorphic coor-
dinate chart.



