
Covectors

Definition. Let V be a finite-dimensional vector space. A covector on V is
real-valued linear functional on V , that is, a linear map ω : V → R.

• The space of all covectors on V is itself a real vector space under the obvious
operations of pairwise addition and scalar multiplication.

— It is denoted by V ∗ and called the dual space to V .

Proposition 6.1. Let V be a finite-dimensional vector space. If (E1, · · · , En) is
any basis for V , then the covectors (ε1, · · · , εn) defined by

εi(Ej) = δi
j =

{
1, if i = j,

0, if i 6= j,

form a basis for V ∗, called the dual basis to (Ei). Therefore, dim V ∗=dim V .

Example. If (ei) denote the standard basis for Rn, we denote the dual basus by

(e1, · · · , en) (note the upper indices),

and call it the standard dual basis.
— The basis vectors are the linear functions from Rn to R given by

ej(v) = ej(v1, · · · , vn) = vj .

— In other words, ej is just the linear functional that picks out the jth component
of a vector.

— In matrix notation, a linear map from Rn to R is represented by a 1×n matrix;
i.e. a row matrix.

– The basis covectors can therefore also be thought of as the linear functionals
represented by the row matrix

e1 = (1 0 · · · 0), · · · , en = (0 · · · 0 1).

• If (Ei) is a basis for V and (εj) is its dual basis, then for any matrix X = X iEi ∈
V , we have

εj(X) = X iεj(Ei) = X iδj
i = Xj .

Thus as in the case of Rn, εj picks out the jth component of a vector w.r.t. the
basis (Ei).

— More generally, Proposition 6.1 shows that we can express an arbitrary covector
ω ∈ V ∗ in terms of the dual basis as

(6.1) ω = ωjε
j ,

where the components ωj are determined by

(6.2) ωj = ω(Ej).

• We will write basis covectors with upper indices, and components of a covector
with lower indices, because this helps to ensure that mathematically meaningful
expressions such as (6.1) will always follow our index conventions:
Any index that is to be summed over in a given term appears exactly twice, once
as a subscript and once as a superscript.
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Proposition 6.2. The dual map satisfies the following properties.
(a) (A ◦ B)∗ = B∗ ◦ A∗.
(b) (IdV )∗; V ∗ → V ∗ is the identity map of V ∗.

• Apart from the fact that dim V ∗=dim V , the second important fact is the fol-
lowing characterization of the second dual space V ∗∗ = (V ∗)∗.

• For each vector space V there is a natural basis-independent map ξ : V → V ∗∗,
defined as follows.
For each vector X ∈ V , define a linear functional ξ(X) : V ∗ → R by

ξ(X)(ω) = ω(X), ∀ω ∈ V ∗.

Proposition 6.4. For a finite-dimensional vector space V , the map ξ : N → V ∗∗

is an isomorphism.

Proof. Since V and V ∗ have the same dimension, it suffices to claim: ξ is injec-
tive.
Indeed, suppose X ∈ V is not zero. Extend X to a basis (E1, E2, · · · , En) for V ,
X = E1 and let (ε1, · · · , εn) denote the dual basis for V ∗. Then

ξ(X)(ε1) = ε1(X) = ε1(E1) = 1 6= 0,

so ξ(X) 6= 0. �

• The preceeding proposition shows that when V is finite-dimensional, we can
unambiguously identify V ∗∗ with V itself, because the map ξ is canonically
defined, without reference to any basis.

– It is important to observe that although V ∗ is also isomorphic to V , there is no
canonical isomorphism V ∼= V ∗.

• Because of Proposition 6.4, the real number ω(X) obtained by applying a covec-
tor ω to a vector X is sometimes denoted by either of the more symmetric-looking
notations

〈ω, X〉, 〈X, ω〉;

both expressions can be thought of either as the action of the covector ω ∈ V ∗

on the vector X ∈ V , or as the action of the covector ξ(X) ∈ V ∗∗ on the element
ω ∈ V ∗.

• Whenever one of the arguments is a vector and the other a covector, the notation
〈ω, X〉 is always to be interpreted as the actual pairing between vectors and
covectors, not as an inner product.



3

Tangent Covectors on Manifolds

Definition. Let M be a smooth manifold. For each p ∈ M , we define the cota-
gent space at p, denoted by T ∗

p M , to be the dual space to TpM :

T ∗
p M = (TpM)∗.

Elements of T ∗
p M are called tangent covectors at p.

• If (xi) are smooth local coordinates on an open subset U ⊂ M ,
then ∀p ∈ U , the coordinate basis ( ∂

∂xi

∣∣∣
p
) give rise to a dual basis for T ∗

p M ,

which we denote for the moment by (λi
∣∣∣
p
).

• Any covector ω ∈ T ∗
p M can thus be written uniquely as ω = ωiλ

i
∣∣∣
p
, where

ωi = ω

(
∂

∂xi

∣∣∣∣
p

)
.

• Let (x̃j) be another set of smooth local coordinates whose domain contains p,
and let (λ̃i

∣∣∣
p
) denote the basis for T ∗

p M dual to ( ∂
∂x̃j

∣∣∣
p
).

• We can compute the components of the same covector ω w.r.t. the new coordi-
nate system as follows.

— First recall that the coordinate vector fields transform as follows:

(6.4)
∂

∂xi

∣∣∣∣
p

=
∂x̃j

∂xi
(p)

∂

∂x̃j

∣∣∣∣
p

.

— Writing ω in both systems as

ω = ωiλ
i
∣∣∣
p

= ω̃jλ
j
∣∣∣
p
,

we can use (6.4) to compute the components ωi in terms of ω̃j :

(6.5) ωi = ω

(
∂

∂xi

∣∣∣∣
p

)
= ω

(
∂x̃j

∂xi
(p)

∂

∂x̃j

∣∣∣∣
p

)
=

∂x̃j

∂xi
(p)ω̃j .

• In the early days of smooth manifold theory, before most of the abstract
coordinate-free definition we are using were developed, mathematicians tended
to think of a tangent vector at a point p as an assignment of an n-tuples
(X1, · · · , Xn) and (X̃1, · · · , X̃n) assigned to two different systems (xi) and (x̃j)
were related by the transformation law:

(6.6) X̃j =
∂x̃j

∂xi
(p)X i.
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• Similarly, a tangent covector was thought of as n-tuple (ω1, · · · , ωn) that trans-
form, by virtue of (6.5), according to the following slightly different rule:

(6.7) ωi =
∂x̃j

∂xi
(p)ω̃j .

• Thus it becomes customary to call the tangent covectors covariant vectors
because their components transform in the same way as (“vary with”) the coor-
dinate partial derivatives, with the Jacobian matrix (∂x̃j

∂xi ) multiplying the objects
associated with the “new” coordinates (x̃j) to obtain those associated with the
“old” coordinates (xi).

— Analogously, tangent vectors were called contravariant vectors, because their
components transform in the opposite way.
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The Cotangent Bundle

Definition. The disjoint union

T ∗M =
∐

p∈M

T ∗
p M

is called the cotangent bundle of M . It has a natural projection map

π : T ∗M → M

sending ω ∈ T ∗M to p ∈ M .

• As above, given any smooth local coordinates (xi) on U ⊂ M , for each p ∈ U

we denote the basis for T ∗
p M dual to ∂

∂xi

∣∣∣
p

by (λi
∣∣∣
p
).

This defines n maps λ1, · · · , λn : U → T ∗M , called coordinate covector fields.

Proposition 6.5. Let M be a smooth manifold and let T ∗M be its cotangent
bundle. With the standard projection map and the natural vector space structure
on each fiber, T ∗M has a unique smooth manifold structure making it into a rank-
n vector bundle over M for which all coordinate covector fields are smooth local
sections.

Proof. Given a smooth chart (U, ϕ) on M , with coordinate functions (xi), define
Φ : π−1(U) → U × Rn by

Φ(ξiλ
i
∣∣∣
p
) = (p, (ξ1, · · · , ξn)),

where λi is the ith coordinate covector field associated with (xi).
— Suppose (Ũ , ϕ̃) is another smooth chart on M , with coordinate functions (x̃i),

and let Φ̃ : π−1(Ũ) → Ũ × Rn be defined analogously.
— On π−1(U ∩ V ), it follows from (6.5) that

Φ ◦ Φ̃−1(p, (ξ̃1, · · · , ξ̃n)) =
(

p,

(
∂x̃j

∂x1
(p)ξ̃j , · · · ,

∂x̃j

∂xn
(p)ξ̃j

))
.

The GL(n, R)-valued function (∂x̃j

∂xi )(p) is smooth, so it follows that T ∗M has a
smooth structure making it into a smooth vector bundle for which the map Φ
are smooth local trivilizations. �

• As in the case of the tangent bundle, smooth local coordinates for M yield
smooth local coordinates for its cotangent bundle.

• If (xi) are smooth coordinates on an open set U ⊂ M , then the map π−1(U) to
R2n given by

ξiλ
i
∣∣∣
i
7→ (x1(p), · · · , xn(p), ξ1, · · · , ξn)

is a smooth coordinate chart for T ∗M .
— We will call (xi, ξi) the standard coordinates for T ∗M associated with (xi).
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Definition. A section of T ∗M is called a covector field or a (differential) 1-
form.

• In any smooth local coordinates on an open set U ⊂ M , a covector field ω can be
written in terms of the coordinate covector fields (λi) as ω = ωiλ

i for n functions
ωi : U → R called the component functions of ω.
They are characterized by

ωi(p) = ωp

(
∂

∂xi

∣∣∣∣
p

)
.

Lemma 6.6 (Smoothness Criteria for Covector Fields). Let M be a smooth
manifold, and let ω : M → T ∗M be a rough section.

(1) If ω = ωiλ
i is the coordinate representation for ω in any smooth chart

(U, xi) for M , then ω is smooth iff its components functions are smooth.
(2) ω is smooth iff for every vector field X on an open subset U ⊂ M , the

function 〈ω, X〉 : U → R defined by

〈ω, X〉(p) = 〈ωp, Xp〉 = ωp(Xp)

is smooth.

Definition. We denote the real vector space of all smooth covector fields on M
by T ∗(M).

— As smooth sections of a vector bundle, elements of T ∗(M) can be multiplied by
smooth real-valued function:
If f ∈ C∞(M) and ω ∈ T ∗(M), the covector field fω is defined by

(6.8) (fω)p = f(p)ωp.

— Like the space of smooth vector fields, T ∗(M) is a module over C∞(M).

• Geometrically, we think of a vector field on M as a rule that attaches an arrow
to each point of M .

• What kind of geometric picture can we form of a covector field?
— The key idea is that a nonzero linear functional ωp ∈ T ∗

p M is completely deter-
mined by two pieces of data:
(1) its kernel, which is a codimension-1 linear subspace of TpM (a hyperplane),

and
(2) the set of vectors X for which ωp(X) = 1, which is an affine hyperplane

parallel to the kernel.

• Thus you can visualize a covector field as defining a pair of affine hyper-
planes in each tangent space,
one through the origin and another parallel to it, and varying continuously from
point to point.

— At points where the covector field takes on the value zero, one of the hyperplanes
goes off to infinity.
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The Differential of a Function

• In elementary calculus, the gradient of a smooth real-valued function f on Rn is
defined as the vactor field whose components are the partial derivatives of f . In
our notation, this would read

grad f =
n∑

i=1

∂f

∂xi

∂

∂xi
.

Unfortunately, in this form, the gradient does not make coordinate indepen-
dent sense.

Example. Let f(x, y) = x2 on R2, and let X be the vctor field

X = grad f = 2x
∂

∂x
.

Compute the coordinate expression of X in polar coordinates of X in polar coor-
dinates (on some open set on which they are defined) and show that grad f is not
equal to

∂f

∂r

∂

∂r
+

∂f

∂θ

∂

∂θ
.

• Although the first partial derivatives of a smooth function cannot be interpreted
in a coordinate-independent way as the components of a vector field, it turns
out that they can be interpreted as the components of a covector field.

• This is the most important application of covector fields.

Definition. Let f be a smooth real-valued function on a smooth manifold M . We
define a covector field df , called the differential of f , by

dfp(Xp) = Xpf, ∀Xp ∈ TpM.

Lemma 6.7. The differential of a smooth function is a smooth covector field.

Proof. (1) It is straightforward to verify that at each point p ∈ M , dfp(Xp) depends
linearly on Xp, so that dfp is indeed a covector at p.

(2) To see that df is smooth, we use Lemma 6.6 (b).
For any smooth vector field X on an open subset U ⊂ M , the function 〈df, X〉
is smooth because it is equal to Xf. �
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• To see what df looks like more concretely, we need to compute its coordi-
nate representations.

— Let (xi) be smooth coordinates on an open subset U ⊂ M ,
and let (λi) be the corresponding coordinate coframe on U .

— Writing df in coordinates as dfp = Ai(p)λi
∣∣∣
p

for some functions Ai : U → R, the

definition of df implies

Ai(p) = dfp

(
∂

∂xi

∣∣∣∣
p

)
=

∂

∂xi

∣∣∣∣
p

f =
∂f

∂xi
(p).

– This yields the following formula for the coordinate representation of df :

(6.9) dfp =
∂f

∂xi
(p)λi

∣∣∣∣
p

.

– Thus the component functions of df in any smooth coordinate chart are the
partial derivatives of f w.r.t. those coordinates.

– Because of this, we can think of df as an anologue of the classical gradient, rein-
terpreted in a way that makes coordinate-independent sense on a manifold.

• If we apply (6.9) to the special case in which f is one of the coordinate functions
xj : U → R, we obtain

dxj
∣∣∣
p

=
∂xj

∂xi
λi

∣∣∣
p

= δj
i λ

i
∣∣∣
p

= λj
∣∣∣
p
.

In other words, the coordinate covector field λj is dxj . Therefore, (6.9) can
be rewritten as

dfp =
∂f

∂xi
(p)dxi

∣∣∣∣
p

,

or as an equation between covector fields instead of covectors:

(6.10) df =
∂f

∂xi
dxi.

In particular, in the 1-dimensional case, this reduces to

df =
df

dx
dx.

Example 6.8. If f(x, y) = x2y cosx on R2, then

df =
∂(x2y cosx)

∂x
dx +

∂(x2y cosx)
∂y

dy

=(2xy cosx − x2y sinx)dx + (x2 cosx)dy.
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• It is important to observe that for a smooth real-valued function f : M → R, we
have now defined two different kinds of derivatives of f at a point p ∈ M .
(1) The pushforward f∗ is defined as a linear map from TpM to Tf(p)R.
(2) The differential dfp as a covector at p; i.e., a linear map from TpM to R.

These are really the same at p, once we take into account the canonical identification
between R and its tangent space at any point; one easy way to see this is to note
that both are represented in coordinates by the row matrix whose components are
the partial derivatives of f .

Proposition 6.11 (Derivative of a Function Along a Curve). Suppose M
is a smoth manifold, γ : M → R is a smooth curve, and f : M → R is a smooth
function. Then the derivative of the real-valued function f ◦ γ : R → R is given by

(f ◦ γ)′(t) = dfγ(t)(γ′(t)).

Proof. Directly from the definition, for any t0 ∈ J ,

dfγ(t0)(γ
′(t0)) = γ′(t0)f

=
(
γ∗

d

dt

∣∣∣
t0

)
f

=
d

dt

∣∣∣
t0

(f ◦ γ)

= (f ◦ γ)′(t0). �

• If γ is smooth curve in M , we have two different meanings for the expression
(f ◦ γ)′(t).
(1) f ◦γ can be interpreted as a smooth curve in R. Thus (f ◦γ)′(t) is its tangent

vector at the point f ◦ γ(t), an element of the tangent space Tf◦γ(t)R. This
tangent vector is equal to f∗(γ′(t)).

(2) f ◦ γ can also be considered simply as a real-valued function of one real
variable, and then (f ◦ γ)′(t) is just its ordinary derivative. Proposition
6.11 shows that this derivative is equal to the real number dfγ(t)(γ′(t)).
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Pullbacks

• Let F : M → N be a smooth map and p ∈ M be arbitrary. The pushroward
map

F∗ : TpM → TF (p)N

yields a dual linear map
F ∗ : T ∗

F (p)N → T ∗
p M,

which is characterized by

(F ∗ω)(X) = ω(F∗X), ∀ω ∈ T ∗
F (p)N, X ∈ TpM.

• When we introduced the pushforward map, we made a point of noting that
vector fields do not pushforward to vector fields, except in the special case of a
diffeomorphism.

• The surprising thing about pullbacks is that smooth vector fields always
pull back to smooth covector fields.

Definition. Given a smoth map G : M → N and a smooth covector field ω on N ,
define a covector field G∗ω on M by

(6.12) (G∗ω)p = G∗(ωG(p)).

• Observe that there is no ambiguity about what point to pull back from, in
contrast to the vector field case.

Lemma 6.12. Let G : M → N be a smooth map. Suppose f ∈ C∞(N) and
ω ∈ T ∗(N). Then

G∗df =d(f ◦ G);(6.13)

G∗(fω) =(f ◦ G)G∗ω.(6.14)

Proof. To prove (6.13), we let Xp ∈ TpM be arbitrary and compute

(G∗df)p(Xp) =(G∗(dfG(p)))(Xp) (by (6.12))

=dfG(p)(G∗Xp) (by definition of G∗)

=(G∗Xp)f (by definition of df)

=Xp(f ◦ G) (by definition of G∗)

=d(f ◦ G)p(Xp) (by definition of d(f ◦ G)).

Similarly, for (6.14) we compute

(G∗(fω))p =(G∗(fω)G(p)) (by (6.12))

=G∗(f(G(p))ωG(p)) (by (6.8))

=f(G(p))G∗(ωG(p)) (by linearity of G∗)

=f(G(p))(G∗ω)p (by (6.12))

=((f ◦ G)G∗ω)p (by (6.8)). �
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Proposition 6.13. Suppose G : M → N is smooth, and let ω be a smooth
covector field on N . Then G∗ω is a smooth vector field on M .

Proof. Let p ∈ M be arbitrary, and choose smooth coordinates (xi) for M near p
and (yj) for N near G(p).
Writing ω in coordinates as ω = ωjdyj for smooth functions ωj defined near G(p)
and using Lemma 6.12 twice, we have the following computation in a nbhd of p:

G∗ω = G∗(ωjdyj) = (ωj ◦ G)G∗dyj = (ωj ◦ G)d(yj ◦ G),

which is smooth. �

• In the couse of the preceeding proof we derived the following formula for the
pullback of a covector field w.r.t. smooth coordinates (xi) on the domain and
(yj) on the range:

(6.15) G∗ω = G∗(ωjdyj) = (ωj ◦ G)d(yj ◦ G) = (ωj ◦ G)dGj ,

where Gj is the jth component function of G in these coordinates.
• In other words, to compute G∗ω, all we need to do is to substitute the component

functions of G for the coordinate functions of N everywhere that appear in ω.

Example. Let G : R3 → R2 be the map given by

(u, v) = G(x, y, z) = (x2y, y sin z),

and let ω ∈ T ∗(R2) be the covector field

ω = u dv + v du.

According to (6.15), the pullback G∗ω is given by

G∗ω =(u ◦ G)d(v ◦ G) + (v ◦ G)d(u ◦ G)

=(x2)d(y sin z) + (y sin z)d(x2y)

=x2y(sin z dy + y cos z dz) + y sin z(2xy dx + x2 dy)

=2x2y sin zdx + 2x2y sin zdy + x2y2 cos zdz.

Example. Let (r, θ) be polar coordinates on the half-plane H = {(x, y) : x > 0}.
— We can think of the change of coordinates (x, y) = (r cos θ, r sin θ) as the coor-

dinate expression for the identity map on H ,
but using (r, θ) as coordinates for the domain and (x, y) for the range.

— Then the pullback formula (6.15) tells us what we can compute the polar coordi-
nate expression for a covector field simply by substituting x = r cos θ, y = sin θ
and expanding. For example,

x dy − y dx =Id∗(x dy − y dx)

=r cos θd(r sin θ) − r sin θd(r cos θ)

=r cos θ(sin θ dr + r cos θ dθ) − r sin θ(cos θ dr − r sin θ dθ)

=(r cos θ sin θ − r sin θ cos θ)dr + (r2 cos2 θ + r2 sin2 θ)dθ

=r2dθ.


