Covectors

Definition. Let V be a finite-dimensional vector space. A covector on V is
real-valued linear functional on V', that is, a linear map w : V — R.

e The space of all covectors on V is itself a real vector space under the obvious
operations of pairwise addition and scalar multiplication.
— It is denoted by V* and called the dual space to V.

Proposition 6.1. Let V be a finite-dimensional vector space. If (Ey,--- | E,) is
any basis for V, then the covectors (¢!,--- &™) defined by
. . 1, ifi=j,
e'(Ej) = 05 = ey
0, if i #7,

form a basis for V*, called the dual basis to (E;). Therefore, dimV*=dimV .

Example. If (¢;) denote the standard basis for R™, we denote the dual basus by
(e',---,e™) (note the upper indices),

and call it the standard dual basis.
— The basis vectors are the linear functions from R” to R given by

() =éel (vt - u") =0l

— In other words, €’ is just the linear functional that picks out the jth component
of a vector.
— In matrix notation, a linear map from R™ to R is represented by a 1 X n matrix;
i.e. a row matrix.
— The basis covectors can therefore also be thought of as the linear functionals
represented by the row matrix

et=(1 0---0),---,e"=(0---0 1).

e If (E;) is a basis for V and (&7) is its dual basis, then for any matrix X = X'E; €
V', we have
(X)) = X'l (B;) = X' = X7.
Thus as in the case of R™, &7 picks out the jth component of a vector w.r.t. the
basis (E;).
— More generally, Proposition 6.1 shows that we can express an arbitrary covector
w € V* in terms of the dual basis as

(6.1) w=wje’,
where the components w; are determined by

(62) wj Zw(Ej).

o We will write basis covectors with upper indices, and components of a covector
with lower indices, because this helps to ensure that mathematically meaningful
expressions such as (6.1) will always follow our index conventions:

Any index that is to be summed over in a given term appears exactly twice, once
as a subscript and once as a superscript.
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Proposition 6.2. The dual map satisfies the following properties.
(a) (Ao B)* = B* o A*.
(b) (Idy)*; V* — V* is the identity map of V*.

e Apart from the fact that dim V*=dim V', the second important fact is the fol-
lowing characterization of the second dual space V** = (V*)*.

e For each vector space V there is a natural basis-independent map & : V' — V**,
defined as follows.
For each vector X € V, define a linear functional £(X) : V* — R by

EX)(w) =w(X), Vwe V™.

Proposition 6.4. For a finite-dimensional vector space V, the map £ : N — V**
is an isomorphism.

Proof. Since V and V* have the same dimension, it suffices to claim: ¢ is injec-
tive.

Indeed, suppose X € V is not zero. Extend X to a basis (Fy, Ea, -+, E,) for V,
X = E; and let (g!,--- &™) denote the dual basis for V*. Then

EX)(e) =e'(X) =€ (Er) =1#0,
so{(X)#£0. O

e The preceeding proposition shows that when V is finite-dimensional, we can
unambiguously identify V** with V itself, because the map £ is canonically
defined, without reference to any basis.

— It is important to observe that although V* is also isomorphic to V', there is no
canonical isomorphism V & V*.

e Because of Proposition 6.4, the real number w(X) obtained by applying a covec-
tor w to a vector X is sometimes denoted by either of the more symmetric-looking
notations

(w, X), (X,w);

both expressions can be thought of either as the action of the covector w € V*
on the vector X € V, or as the action of the covector £(X) € V** on the element
weV*.

e Whenever one of the arguments is a vector and the other a covector, the notation
(w, X)) is always to be interpreted as the actual pairing between vectors and
covectors, not as an inner product.



Tangent Covectors on Manifolds

Definition. Let M be a smooth manifold. For each p € M, we define the cota-
gent space at p, denoted by T,y M, to be the dual space to T,M:

TyM = (T,M)*".
Elements of T; M are called tangent covectors at p.

e If (2%) are smooth local coordinates on an open subset U C M,

then Vp € U, the coordinate basis (%

) give rise to a dual basis for Ty M,
P

).
P

e Any covector w € T)M can thus be written uniquely as w = wiN| , where

P
— i
w; = w 8:1:1'10 .

e Let (77) be another set of smooth local coordinates whose domain contains p,
and let (A p) denote the basis for T M dual to (32 p).
e We can compute the components of the same covector w w.r.t. the new coordi-

nate system as follows.
— First recall that the coordinate vector fields transform as follows:

which we denote for the moment by (\¢

0
ox?

_%j( )i
, oxl Pl oz

(6.4)

P
— Writing w in both systems as

— O\
=W\
p

w=w;\"

)
p

we can use (6.4) to compute the components w; in terms of w;:

_ ‘%j()i 73_’51( &,
)Nt Wi | ) T aat P

e In the early days of smooth manifold theory, before most of the abstract
coordinate-free definition we are using were developed, mathematicians tended
to think of a tangent vector at a point p as an assignment of an n-tuples
(X1,---,X") and (X!,---, X") assigned to two different systems (z?) and (/)
were related by the transformation law:

(6.5) w; = w<8(?vi

o7 _
(6.6) X = = ()X




e Similarly, a tangent covector was thought of as n-tuple (w1, - ,w,) that trans-
form, by virtue of (6.5), according to the following slightly different rule:

oz,
(6.7) Wi =g (p)w;.

e Thus it becomes customary to call the tangent covectors covariant vectors
because their components transform in the same way as (“vary with”) the coor-
dinate partial derivatives, with the Jacobian matrix (gg ) multiplying the objects
associated with the “new” coordinates (27) to obtain those associated with the
“old” coordinates (z°).

— Analogously, tangent vectors were called contravariant vectors, because their

components transform in the opposite way.




The Cotangent Bundle

Definition. The disjoint union

M= ] T;M
peEM
is called the cotangent bundle of M. It has a natural projection map

Tm:T"M — M

sending w € T*M top e M.

e As above, given any smooth local coordinates (x) on U C M, for each p € U
we denote the basis for Ty M dual to % ) by (A p).

This defines n maps A',--- , A" : U — T*M, called coordinate covector fields.

Proposition 6.5. Let M be a smooth manifold and let T*M be its cotangent
bundle. With the standard projection map and the natural vector space structure
on each fiber, T*M has a unique smooth manifold structure making it into a rank-
n vector bundle over M for which all coordinate covector fields are smooth local
sections.

Proof. Given a smooth chart (U, p) on M, with coordinate functions (z¢), define
®: 771 (U) — U x R" by

(I)(gl)\z ;D) = (p7 (515 e 7571))5

where A’ is the ith coordinate covector field associated with (x?).

— Suppose (U, @) is another smooth chart on M, with coordinate functions (),
and let ® : 7~ 1(U) — U x R" be defined analogously.

— On 7~ YU NV), it follows from (6.5) that

DodL(p, (€1, &) = (p, (g—i(p)gga ,%(p)%))-

The GL(n,R)-valued function (gij )(p) is smooth, so it follows that T*M has a
smooth structure making it into a smooth vector bundle for which the map ®

are smooth local trivilizations. O

e As in the case of the tangent bundle, smooth local coordinates for M yield
smooth local coordinates for its cotangent bundle.

e If (2%) are smooth coordinates on an open set U C M, then the map 7~1(U) to
R?" given by

51)\1 i = (Il(p)a o axn(p)vgla' o 7671)

is a smooth coordinate chart for T*M.
— We will call (2%,¢;) the standard coordinates for T*M associated with (z?).
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Definition. A section of T*M is called a covector field or a (differential) 1-
form.

e In any smooth local coordinates on an open set U C M, a covector field w can be
written in terms of the coordinate covector fields (A\*) as w = w; A* for n functions
w; : U — R called the component functions of w.

They are characterized by
p)

Lemma 6.6 (Smoothness Criteria for Covector Fields). Let M be a smooth
manifold, and let w : M — T*M be a rough section.

0
wi(p) = Wp (@

(1) If w = w;A\" is the coordinate representation for w in any smooth chart
(U, z*) for M, then w is smooth iff its components functions are smooth.

(2) w is smooth iff for every vector field X on an open subset U C M, the
function {(w, X) : U — R defined by

(w, X)(p) = (wp, Xp) = wp(Xp)

is smooth.

Definition. We denote the real vector space of all smooth covector fields on M
by T*(M).

— As smooth sections of a vector bundle, elements of 7*(M) can be multiplied by
smooth real-valued function:
If fe C>®(M) and w e T*(M), the covector field fw is defined by

(6.8) (fw)p = f(p)wp.
— Like the space of smooth vector fields, 7*(M) is a module over C*°(M).

e Geometrically, we think of a vector field on M as a rule that attaches an arrow
to each point of M.
¢ What kind of geometric picture can we form of a covector field?
— The key idea is that a nonzero linear functional w;, € Ty M is completely deter-
mined by two pieces of data:

(1) its kernel, which is a codimension-1 linear subspace of T, M (a hyperplane),
and

(2) the set of vectors X for which w,(X) = 1, which is an affine hyperplane
parallel to the kernel.

e Thus you can visualize a covector field as defining a pair of affine hyper-
planes in each tangent space,
one through the origin and another parallel to it, and varying continuously from
point to point.
— At points where the covector field takes on the value zero, one of the hyperplanes
goes off to infinity.



The Differential of a Function

e In elementary calculus, the gradient of a smooth real-valued function f on R™ is
defined as the vactor field whose components are the partial derivatives of f. In
our notation, this would read

n
af o
df = - —
Unfortunately, in this form, the gradient does not make coordinate indepen-
dent sense.

Example. Let f(z,y) = 22 on R2, and let X be the vctor field

X =grad f = 21:2.
Ox
Compute the coordinate expression of X in polar coordinates of X in polar coor-
dinates (on some open set on which they are defined) and show that grad f is not
equal to
010 00
or or 00 96"

e Although the first partial derivatives of a smooth function cannot be interpreted
in a coordinate-independent way as the components of a vector field, it turns
out that they can be interpreted as the components of a covector field.

e This is the most important application of covector fields.

Definition. Let f be a smooth real-valued function on a smooth manifold M. We
define a covector field df , called the differential of f, by

df,(X,) = X, f, VX, € T,M.

Lemma 6.7. The differential of a smooth function is a smooth covector field.

Proof. (1) It is straightforward to verify that at each point p € M, df,(X,) depends
linearly on X, so that df, is indeed a covector at p.
(2) To see that df is smooth, we use Lemma 6.6 (b).
For any smooth vector field X on an open subset U C M, the function (df, X)
is smooth because it is equal to Xf. O



To see what df looks like more concretely, we need to compute its coordi-
nate representations.

Let (z°) be smooth coordinates on an open subset U C M,

and let (\?) be the corresponding coordinate coframe on U.

Writing df in coordinates as df, = A;(p)\’| for some functions 4; : U — R, the

definition of df implies :
0 0 of
P P
This yields the following formula for the coordinate representation of df:
of ;
6.9 dfy = =)\
(69) fo = Y|

Thus the component functions of df in any smooth coordinate chart are the
partial derivatives of f w.r.t. those coordinates.

Because of this, we can think of df as an anologue of the classical gradient, rein-
terpreted in a way that makes coordinate-independent sense on a manifold.

If we apply (6.9) to the special case in which f is one of the coordinate functions
) : U — R, we obtain

oul
=y
P

dx?
v P 8£CZ

=8N =N

p p

In other words, the coordinate covector field )’ is dz?. Therefore, (6.9) can
be rewritten as
_9f

T Qat

(p)da'|
p

dfp

or as an equation between covector fields instead of covectors:

(’“)f. dz’.

(6.10) df = 5

In particular, in the 1-dimensional case, this reduces to

= ﬁdw

df_dx .

Example 6.8. If f(x,y) = v?ycosx on R?, then

2 2
of :6(:10 ycosgc)da7 N d(z*y cosx)
Or dy
=(2zycosx — xysinz)de + (22 cos x)dy.

dy



e It is important to observe that for a smooth real-valued function f : M — R, we
have now defined two different kinds of derivatives of f at a point p € M.

(1) The pushforward f, is defined as a linear map from T, M to Ty R.

(2) The differential df, as a covector at p; i.e., a linear map from T, M to R.
These are really the same at p, once we take into account the canonical identification
between R and its tangent space at any point; one easy way to see this is to note
that both are represented in coordinates by the row matrix whose components are
the partial derivatives of f.

Proposition 6.11 (Derivative of a Function Along a Curve). Suppose M
is a smoth manifold, v : M — R is a smooth curve, and f : M — R is a smooth
function. Then the derivative of the real-valued function f o~ : R — R is given by

(f 0 7) (&) = dfy ) (' (1))
Proof. Directly from the definition, for any ¢y € J,

dfyt0) (Y (t0)) = ' (to) f
d
= (gl )

=4 vom
=(foy)(ty). O

e If v is smooth curve in M, we have two different meanings for the expression
(f o) (®).

(1) fory can be interpreted as a smooth curve in R. Thus (fo~y)(¢) is its tangent
vector at the point f o~(t), an element of the tangent space T’y R. This
tangent vector is equal to f.(7/(t)).

(2) f o~ can also be considered simply as a real-valued function of one real
variable, and then (f o v)'(t) is just its ordinary derivative. Proposition
6.11 shows that this derivative is equal to the real number df, ) (7'(t)).
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Pullbacks

e Let FF: M — N be a smooth map and p € M be arbitrary. The pushroward

map
F* : TpM — TF(p)N
yields a dual linear map

which is characterized by

(F*w)(X) = w(F.X), Yw € Tp,)N, X € T,M.

e When we introduced the pushforward map, we made a point of noting that
vector fields do not pushforward to vector fields, except in the special case of a
diffeomorphism.

e The surprising thing about pullbacks is that smooth vector fields always
pull back to smooth covector fields.

Definition. Given a smoth map G : M — N and a smooth covector field w on N,

define a covector field G*w on M by

(6.12) (G*w)p = G* (wG(p)).

e Observe that there is no ambiguity about what point to pull back from, in
contrast to the vector field case.

Lemma 6.12. Let G : M — N be a smooth map. Suppose f € C*(N) and

w € T*(N). Then

(6.13) G*df =d(f o G);

(6.14) G*(fw) =(f o G)G*w.

Proof. To prove (6.13), we let X,, € T,M be arbitrary and compute

(G df)p(Xp) =(G"(dfc(p))(Xp)  (by (6.12))
=dfcap) (G« Xp) (by definition of G*)
=(G.Xp)f (by definition of df)
=X,(foG) (by definition of G.)
=d(f o G)p(Xp)  (by definition of d(f o G)).

Similarly, for (6.14) we compute

(G*(fw))p =(G"(fw)ap) (by (6.12))

=G (f(G(p)wap)  (by (6.8))
=f(G(p))G*(wa(p))  (by linearity of G*)

=f(GP)(G" w)p (by (6.12))

=((f 0 G)G"w)p (by (6.8)). O
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Proposition 6.13. Suppose G : M — N is smooth, and let w be a smooth
covector field on N. Then G*w is a smooth vector field on M.

Proof. Let p € M be arbitrary, and choose smooth coordinates (z*) for M near p
and (y7) for N near G(p).

Writing w in coordinates as w = w;dy’ for smooth functions w; defined near G(p)
and using Lemma 6.12 twice, we have the following computation in a nbhd of p:

G'w =G (wjdy’) = (wj 0 G)G*dy’ = (w; 0 G)d(y’ 0 G),
which is smooth. O
e In the couse of the preceeding proof we derived the following formula for the

pullback of a covector field w.r.t. smooth coordinates (z¢) on the domain and
(y7) on the range:

(6.15) Gfw = G*(wjdyj) = (w; 0 G)d(yj 0oG) = (w;o G)de,

where G7 is the jth component function of G in these coordinates.
e In other words, to compute G*w, all we need to do is to substitute the component
functions of G for the coordinate functions of N everywhere that appear in w.

Example. Let G : R® — R? be the map given by
(u,v) = G(z,y,2) = (2%y,ysin z),
and let w € 7*(R?) be the covector field
w=udv+vdu.
According to (6.15), the pullback G*w is given by
G'w=(uo@)d(voG)+ (voG)d(uoQ)
=(2?)d(ysin z) + (ysin z)d(x?y)
=x2y(sin z dy 4 y cos z dz) + ysin z(2xy dx + 22 dy)
=222y sin zdx + 222y sin zdy + x?y? cos zdz.
Example. Let (r,0) be polar coordinates on the half-plane H = {(z,y) : > 0}.
— We can think of the change of coordinates (x,y) = (r cosf,rsinf) as the coor-
dinate expression for the identity map on H,
but using (r, ) as coordinates for the domain and (z,y) for the range.
— Then the pullback formula (6.15) tells us what we can compute the polar coordi-

nate expression for a covector field simply by substituting = r cosf, y = sin 6
and expanding. For example,

xdy —ydx =Id*(xdy — ydx)
=7 cos Od(r sin ) — rsin Od(r cos 9)
=rcosf(sin 0 dr + r cos 0 df) — rsin O(cos§ dr — rsin 6 df)
=(rcosfsin@ — rsinf cos)dr + (12 cos? @ + r? sin® 0)d6

=r2d0.



