
Lie Derivatives

• The Lie derivative is a method of computing the “directional derivative” of a
vector field with respect to another vector field.

• We already know how to make sense of a “directional” derivative of real valued
functions on a manifold.
(1) A tangent vector V ∈ TpM is by definition an operator that acts on a

smooth function f to give a number V f that we interpret as a directional
derivative of f at p.

(2) This number can also be interpreted as the ordinary derivative of f along
any curve whose initial tangent vector is V .

• What about the directional derivative of a vector field?
• In Euclidean space, we can just differentiate the component functions of the

vector field.
• But making sense of directional derivatives of a vector field W on a manifold is

not so easy as it is in Euclidean space, and thus cannot be compared directly.
— This problem can be circumvented if we replace the vector V ∈ TpM with a

vector field.
— In this case, we can use the flow of the vector field to push values of W back

to p and then differentiate.
— This result is called the Lie derivative of W w.r.t. the given vector field.
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• In Euclidean space, it makes perfectly good sense to define the directional de-
rivative of a smooth vector field W in the directional of a vector V ∈ TpRn. It
is the vector

(1) DV W (p) =
d

dt

∣∣∣
t=0

Wp+tV = lim
t→0

Wp+tV − Wp

t
.

An easy computation shows that DV W can be evaluated by applying V to each
component of W seperately:

DV W (p) = V W i(p)
∂

∂xi

∣∣∣
p
.

• Unfortunately, this definition is heavily dependent upon the fact that Rn is a
vector space, so that the tangent vectors Wp+tV and Wp can both be viewed as
elements of Rn.

• We search for a way to make invariant sense of (1) on a manifold.
— To begin with, we can replace p + tV by a curve γ(t) that starts at p and whose

initial tangent vector is V .
— But even with this substitution, the difference quotient still makes no sense

because Wγ(t) and Wγ(0) are elements of different vector spaces Tγ(t)M and
Tγ(0)M .

— We got away with it in Euclidean space because there is a canonical identi-
fication of each tangent space with Rn itself; but on a manifold there is no
such identification.

— Thus there is no coordinate-independent way to make sense of the direc-
tional derivative of W in the direction of the vector V .

• Now suppose that V itself is a smooth vector field instead of a single vector.
In this case, we can use the flow of V to push values of W back to p and then
differentiate.

Definition. For any smooth vector fields V and W on a manifold M , let θ be the
flow of V , and define a vector (LV W )p at each p ∈ W , called the Lie Derivative
of W with respect to V at p, by

(LV W )p =
d

dt

∣∣∣
t=0

(θ−t)∗Wθt(p) = lim
t→0

(θ−t)∗Wθt(p) − Wp

t
.

provided the derivative exists.
(For small t 6= 0, the difference quotient makes sense at least, because θt is defined
in a nbhd of p, and both (θ)∗Wθt(p) and Wp are elements of TpM .)

• By (2), we have

(LV W )p = − lim
t→0

(θt)∗Wθ−t(p) − Wp

t
=

d

dt

∣∣∣
t=0

(θt)∗Wθ−t(p).
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Lemma 1. If V and W are smooth vector fields on a smooth manifold M , then
(LV W )p exists ∀p ∈ M , and the assignment p → (LV W )p defines a smooth vector
field.

Proof. Let θ be the flow of V . For arbitrary p ∈ M , let (U, (xi)) be a smooth
coordinate chart containing p.
— Choose an open interval J0 containing 0 and an open set U0 ⊂ U containing

p such that θ maps J0 × U0 into U . For (t, x) ∈ J0 × U0, we can write the
component functions of θ as (θ1(t, x), · · · , θn(t, x)).
Then for any (t, x) ∈ J0 × U0, the matrix of (θ−t)∗ : Tθt(x)M → TxM is

(
∂θi(−t, θ(t, x))

∂xj

)
.

∴ (θ−t)∗Wθt(x) =
∂θi(−t, θ(t, x))

∂xj
W j(θ(t, x))

∂

∂xi

∣∣∣∣
x

.

— Because θi and W j are smooth, the coefficients ∂
∂xi

∣∣
x

depends smoothly on (t, x).
– It follows that (LV W )x, which is obtained by taking the derivative of the ex-

pression with respect to t and setting t = 0 exists for each x ∈ U0 and depends
smoothly on x. �

Theorem 2. For any smooth vector field X and Y on a smooth manifold M ,

LXY = [X, Y ].

Proof 1. Let R(X) ⊂ M =the set of regular points of X = {p : p ∈ M, Vp 6= 0.
— Note that R(X) is open in M by continuity, and its closure is the support of X .
Step 1: Claim: LXY = [X, Y ] on R(X).
— If p ∈ R(X), we can choose smooth coordinates (ui) on a nbhd of X in which X

has the coordinate representation X = ∂/∂u1.
— In these coordinates, the flow of X is

θt(u) = (u1 + t, u2, · · · , un).

Consequently, for any u ∈ U ,

(θ−t)∗Yθt(u) = (θ−t)∗

(
Y j(u1 + t, u2, · · · , un)

)
∂

∂uj

∣∣∣
u

=
∂Y j

∂u1
(u1, · · · , un)

∂

∂uj

∣∣∣
u
.

Using the definition of the Lie derivative, we obtain

(LXY )u =
d

dt

∣∣∣∣
t=0

Y j(u1 + t, u2, · · · , un)
∂

∂uj

∣∣∣∣
u

=
∂Y j

∂u1
(u1, · · · , un)

∂

∂uj

∣∣∣∣
u

= [X, Y ]u.

Step 2: Claim: LXY = [X, Y ] on supp X .
Because supp X is the closure of R(X), this follows from Step 1 by continuity.

Step 3: Claim: LXY = [X, Y ] on M \ supp X .
— If p ∈ M \ supp X , then X ≡ 0 on a nbhd of p.
– On the one hand, this implies θt is the identity map in a nbhd of p for all t, so

(θ−t)∗Yθt(p) = Yp, which implies (LV W )p = 0.
– On the other hand, [X, Y ]p = 0 . �
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Proof 2. Let Y = Y i ∂
∂xi . We have

LXY =
d

dt
(θ−t)∗(Y i ∂

∂xi
)
∣∣∣
t=0

=
d

dt
(Y i(θt))

∂θj
−t

∂xj

∂

∂xj

∣∣∣
t=0

=
∂Y i

∂xk
Xkδj

i

∂

∂xj
+ Y i

(
−

∂Xj

∂xi

) ∂

∂xj
, (∵ θ0 = id,

d

dt
θ−t

∣∣∣
t=0

= −X),

=(Xk ∂Y j

∂xk
− Y k ∂Xj

∂xk
)

∂

∂xj
= [X, Y ]. �

Proof 3. Let f ∈ C∞(M). Then

XpY f =θ(p)′(0)Y f =
d

dt

∣∣∣∣
t=0

Y f(θ(p)(t))

= lim
t→0

Y f(θ(p)(t)) − Y f(p)
t

= lim
t→0

Y f(θt(p)) − Y f(p)
t

Yθt∗ (p)Xf =Yθt∗ (p)(θ(p)′(t̃)f) = Yθt(p)

(
lim
t→0

(f(θ(p)(t̃)) − f(θ(p)(t̃ − t))
t

)

=Yθt∗ (p)

[(
lim
t→0

f(θt̃(p)) − f(θt̃−t(p))
t

)]

=
[
Yθt∗ (p)

(
lim
t→0

f − f ◦ θ−t

t

)
◦ θt̃−t∗(p)

]
◦ θt∗(p)

=
[
Yθt∗ (p)

(
lim
t→0

f − f ◦ θ−t

t

)]
◦ θt∗(p)

since |t∗− t̃| can be arbitrarily small and Y is smooth. On the other hand, we have

(θ−t)∗Yθt(p)f − Ypf

t
=

Yθt∗ (p)(f ◦ θ−t(p)) − Y f(p)
t

=
(Yθt(p)(f ◦ θ−t(p))) ◦ θt(p) − Y f(θt(p))

t
+

Y f(θt(p)) − Y f(p)
t

=
[
Yθt(p)

(
f ◦ θ−t − f

t

)]
◦ θt(p) +

Y f(θt(p)) − Y f(p)
t

.

Hence

lim
t→0

(θ−t)∗Yθt(p)f − Ypf

t
= − lim

t→0
Yθt(p)Xf + XpY f = XpY f − YpXf. �

• Theorem 2 gives a geometric interpretation of the Lie bracket of two vector fields:
It is the directional derivative of the second vector field along the flow
of the first.

• A number of nonobvious properties of the Lie derivative now follow immediately
from things we already know about Lie brackets.
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Corollary 3. Suppose V , W , X ∈ T (M) and f ∈ C∞(M).
(a) LV W = −LW V .
(b) LV [W, X ] = [LV W, X ] + [W,LV X ].
(c) L[V,W ]X = LV LW X −LWLV X .
(d) LV (fW ) = (V f)W + fLV W .
(e) If F : M → N is a diffeomophism, then F∗(LV W ) = LF∗V F∗W .


