Lie Derivatives

- The Lie derivative is a method of computing the "directional derivative" of a vector field with respect to another vector field.
- We already know how to make sense of a "directional" derivative of real valued functions on a manifold.
(1) A tangent vector $V \in T_{p} M$ is by definition an operator that acts on a smooth function f to give a number $V f$ that we interpret as a directional derivative of f at p.
(2) This number can also be interpreted as the ordinary derivative of f along any curve whose initial tangent vector is V.
- What about the directional derivative of a vector field?
- In Euclidean space, we can just differentiate the component functions of the vector field.
- But making sense of directional derivatives of a vector field W on a manifold is not so easy as it is in Euclidean space, and thus cannot be compared directly.
- This problem can be circumvented if we replace the vector $V \in T_{p} M$ with a vector field.
- In this case, we can use the flow of the vector field to push values of W back to p and then differentiate.
- This result is called the Lie derivative of W w.r.t. the given vector field.
- In Euclidean space, it makes perfectly good sense to define the directional derivative of a smooth vector field W in the directional of a vector $V \in T_{p} \mathbb{R}^{n}$. It is the vector

$$
\begin{equation*}
D_{V} W(p)=\left.\frac{d}{d t}\right|_{t=0} W_{p+t V}=\lim _{t \rightarrow 0} \frac{W_{p+t V}-W_{p}}{t} \tag{1}
\end{equation*}
$$

An easy computation shows that $D_{V} W$ can be evaluated by applying V to each component of W seperately:

$$
D_{V} W(p)=\left.V W^{i}(p) \frac{\partial}{\partial x^{i}}\right|_{p}
$$

- Unfortunately, this definition is heavily dependent upon the fact that \mathbb{R}^{n} is a vector space, so that the tangent vectors $W_{p+t V}$ and W_{p} can both be viewed as elements of \mathbb{R}^{n}.
- We search for a way to make invariant sense of (1) on a manifold.
- To begin with, we can replace $p+t V$ by a curve $\gamma(t)$ that starts at p and whose initial tangent vector is V.
- But even with this substitution, the difference quotient still makes no sense because $W_{\gamma(t)}$ and $W_{\gamma(0)}$ are elements of different vector spaces $T_{\gamma(t)} M$ and $T_{\gamma(0)} M$.
- We got away with it in Euclidean space because there is a canonical identification of each tangent space with \mathbb{R}^{n} itself; but on a manifold there is no such identification.
- Thus there is no coordinate-independent way to make sense of the directional derivative of W in the direction of the vector V.
- Now suppose that V itself is a smooth vector field instead of a single vector. In this case, we can use the flow of V to push values of W back to p and then differentiate.

Definition. For any smooth vector fields V and W on a manifold M, let θ be the flow of V, and define a vector $\left(\mathcal{L}_{V} W\right)_{p}$ at each $p \in W$, called the Lie Derivative of W with respect to V at p, by

$$
\left(\mathcal{L}_{V} W\right)_{p}=\left.\frac{d}{d t}\right|_{t=0}\left(\theta_{-t}\right)_{*} W_{\theta_{t}(p)}=\lim _{t \rightarrow 0} \frac{\left(\theta_{-t}\right)_{*} W_{\theta_{t}(p)}-W_{p}}{t}
$$

provided the derivative exists.
(For small $t \neq 0$, the difference quotient makes sense at least, because θ_{t} is defined in a nbhd of p, and both $(\theta)_{*} W_{\theta_{t}(p)}$ and W_{p} are elements of $T_{p} M$.)

- By (2), we have

$$
\left(\mathcal{L}_{V} W\right)_{p}=-\lim _{t \rightarrow 0} \frac{\left(\theta_{t}\right)_{*} W_{\theta_{-t}(p)}-W_{p}}{t}=\left.\frac{d}{d t}\right|_{t=0}\left(\theta_{t}\right)_{*} W_{\theta_{-t}(p)}
$$

Lemma 1. If V and W are smooth vector fields on a smooth manifold M, then $\left(\mathcal{L}_{V} W\right)_{p}$ exists $\forall p \in M$, and the assignment $p \rightarrow\left(\mathcal{L}_{V} W\right)_{p}$ defines a smooth vector field.

Proof. Let θ be the flow of V. For arbitrary $p \in M$, let $\left(U,\left(x^{i}\right)\right)$ be a smooth coordinate chart containing p.

- Choose an open interval J_{0} containing 0 and an open set $U_{0} \subset U$ containing p such that θ maps $J_{0} \times U_{0}$ into U. For $(t, x) \in J_{0} \times U_{0}$, we can write the component functions of θ as $\left(\theta^{1}(t, x), \cdots, \theta^{n}(t, x)\right)$.
Then for any $(t, x) \in J_{0} \times U_{0}$, the matrix of $\left(\theta_{-t}\right)_{*}: T_{\theta_{t}(x)} M \rightarrow T_{x} M$ is

$$
\begin{gathered}
\left(\frac{\partial \theta^{i}(-t, \theta(t, x))}{\partial x^{j}}\right) . \\
\therefore\left(\theta_{-t}\right)_{*} W_{\theta_{t}(x)}=\left.\frac{\partial \theta^{i}(-t, \theta(t, x))}{\partial x^{j}} W^{j}(\theta(t, x)) \frac{\partial}{\partial x^{i}}\right|_{x} .
\end{gathered}
$$

- Because θ^{i} and W^{j} are smooth, the coefficients $\left.\frac{\partial}{\partial x^{2}}\right|_{x}$ depends smoothly on (t, x).
- It follows that $\left(\mathcal{L}_{V} W\right)_{x}$, which is obtained by taking the derivative of the expression with respect to t and setting $t=0$ exists for each $x \in U_{0}$ and depends smoothly on x.

Theorem 2. For any smooth vector field X and Y on a smooth manifold M,

$$
\mathcal{L}_{X} Y=[X, Y]
$$

Proof 1. Let $\mathcal{R}(X) \subset M=$ the set of regular points of $X=\left\{p: p \in M, V_{p} \neq 0\right.$.

- Note that $\mathcal{R}(X)$ is open in M by continuity, and its closure is the support of X.

Step 1: Claim: $\mathcal{L}_{X} Y=[X, Y]$ on $\mathcal{R}(X)$.

- If $p \in \mathcal{R}(X)$, we can choose smooth coordinates $\left(u^{i}\right)$ on a nbhd of X in which X has the coordinate representation $X=\partial / \partial u^{1}$.
- In these coordinates, the flow of X is

$$
\theta_{t}(u)=\left(u^{1}+t, u^{2}, \cdots, u^{n}\right)
$$

Consequently, for any $u \in U$,

$$
\left(\theta_{-t}\right)_{*} Y_{\theta_{t}(u)}=\left.\left(\theta_{-t}\right)_{*}\left(Y^{j}\left(u^{1}+t, u^{2}, \cdots, u^{n}\right)\right) \frac{\partial}{\partial u^{j}}\right|_{u}=\left.\frac{\partial Y^{j}}{\partial u^{1}}\left(u^{1}, \cdots, u^{n}\right) \frac{\partial}{\partial u^{j}}\right|_{u} .
$$

Using the definition of the Lie derivative, we obtain

$$
\begin{aligned}
\left(\mathcal{L}_{X} Y\right)_{u} & =\left.\left.\frac{d}{d t}\right|_{t=0} Y^{j}\left(u^{1}+t, u^{2}, \cdots, u^{n}\right) \frac{\partial}{\partial u^{j}}\right|_{u} \\
& =\left.\frac{\partial Y^{j}}{\partial u^{1}}\left(u^{1}, \cdots, u^{n}\right) \frac{\partial}{\partial u^{j}}\right|_{u}=[X, Y]_{u} .
\end{aligned}
$$

Step 2: Claim: $\mathcal{L}_{X} Y=[X, Y]$ on $\operatorname{supp} X$.
Because supp X is the closure of $\mathcal{R}(X)$, this follows from Step 1 by continuity.
Step 3: Claim: $\mathcal{L}_{X} Y=[X, Y]$ on $M \backslash \operatorname{supp} X$.

- If $p \in M \backslash \operatorname{supp} X$, then $X \equiv 0$ on a nbhd of p.
- On the one hand, this implies θ_{t} is the identity map in a nbhd of p for all t, so $\left(\theta_{-t}\right)_{*} Y_{\theta_{t}(p)}=Y_{p}$, which implies $\left(\mathcal{L}_{V} W\right)_{p}=0$.
- On the other hand, $[X, Y]_{p}=0$.

Proof 2. Let $Y=Y^{i} \frac{\partial}{\partial x^{2}}$. We have

$$
\begin{aligned}
\mathcal{L}_{X} Y & =\left.\frac{d}{d t}\left(\theta_{-t}\right)_{*}\left(Y^{i} \frac{\partial}{\partial x^{i}}\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(Y^{i}\left(\theta_{t}\right)\right) \frac{\partial \theta_{-t}^{j}}{\partial x^{j}} \frac{\partial}{\partial x^{j}}\right|_{t=0} \\
& =\frac{\partial Y^{i}}{\partial x^{k}} X^{k} \delta_{i}^{j} \frac{\partial}{\partial x^{j}}+Y^{i}\left(-\frac{\partial X^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}, \quad\left(\because \theta_{0}=\mathrm{id},\left.\quad \frac{d}{d t} \theta_{-t}\right|_{t=0}=-X\right), \\
& =\left(X^{k} \frac{\partial Y^{j}}{\partial x^{k}}-Y^{k} \frac{\partial X^{j}}{\partial x^{k}}\right) \frac{\partial}{\partial x^{j}}=[X, Y] . \quad \square
\end{aligned}
$$

Proof 3. Let $f \in C^{\infty}(M)$. Then

$$
\begin{aligned}
X_{p} Y f & =\theta^{(p) \prime}(0) Y f=\left.\frac{d}{d t}\right|_{t=0} Y f\left(\theta^{(p)}(t)\right) \\
& =\lim _{t \rightarrow 0} \frac{Y f\left(\theta^{(p)}(t)\right)-Y f(p)}{t}=\lim _{t \rightarrow 0} \frac{Y f\left(\theta_{t}(p)\right)-Y f(p)}{t} \\
Y_{\theta_{t^{*}(p)}} X f & =Y_{\theta_{t^{*}(p)}}\left(\theta^{(p) \prime}(\tilde{t}) f\right)=Y_{\theta_{t}(p)}\left(\lim _{t \rightarrow 0} \frac{\left(f\left(\theta^{(p)}(\tilde{t})\right)-f\left(\theta^{(p)}(\tilde{t}-t)\right)\right.}{t}\right) \\
& =Y_{\theta_{t^{*}(p)}}\left[\left(\lim _{t \rightarrow 0} \frac{f\left(\theta_{\tilde{t}}(p)\right)-f\left(\theta_{\tilde{t}-t}(p)\right)}{t}\right)\right] \\
& =\left[Y_{\theta_{t^{*}(p)}}\left(\lim _{t \rightarrow 0} \frac{f-f \circ \theta_{-t}}{t}\right) \circ \theta_{\tilde{t}-t^{*}}(p)\right] \circ \theta_{t^{*}}(p) \\
& =\left[Y_{\theta_{t^{*}}(p)}\left(\lim _{t \rightarrow 0} \frac{f-f \circ \theta_{-t}}{t}\right)\right] \circ \theta_{t^{*}}(p)
\end{aligned}
$$

since $\left|t^{*}-\tilde{t}\right|$ can be arbitrarily small and Y is smooth. On the other hand, we have

$$
\begin{aligned}
& \frac{\left(\theta_{-t}\right)_{*} Y_{\theta_{t}(p)} f-Y_{p} f}{t}=\frac{Y_{\theta_{t^{*}}(p)}\left(f \circ \theta_{-t}(p)\right)-Y f(p)}{t} \\
& \quad=\frac{\left(Y_{\theta_{t}(p)}\left(f \circ \theta_{-t}(p)\right)\right) \circ \theta_{t}(p)-Y f\left(\theta_{t}(p)\right)}{t}+\frac{Y f\left(\theta_{t}(p)\right)-Y f(p)}{t} \\
& \quad=\left[Y_{\theta_{t}(p)}\left(\frac{f \circ \theta_{-t}-f}{t}\right)\right] \circ \theta_{t}(p)+\frac{Y f\left(\theta_{t}(p)\right)-Y f(p)}{t} .
\end{aligned}
$$

Hence

$$
\lim _{t \rightarrow 0} \frac{\left(\theta_{-t}\right)_{*} Y_{\theta_{t}(p)} f-Y_{p} f}{t}=-\lim _{t \rightarrow 0} Y_{\theta_{t}(p)} X f+X_{p} Y f=X_{p} Y f-Y_{p} X f
$$

- Theorem 2 gives a geometric interpretation of the Lie bracket of two vector fields: It is the directional derivative of the second vector field along the flow of the first.
- A number of nonobvious properties of the Lie derivative now follow immediately from things we already know about Lie brackets.

Corollary 3. Suppose $V, W, X \in \mathcal{T}(M)$ and $f \in C^{\infty}(M)$.
(a) $\mathcal{L}_{V} W=-\mathcal{L}_{W} V$.
(b) $\mathcal{L}_{V}[W, X]=\left[\mathcal{L}_{V} W, X\right]+\left[W, \mathcal{L}_{V} X\right]$.
(c) $\mathcal{L}_{[V, W]} X=\mathcal{L}_{V} \mathcal{L}_{W} X-\mathcal{L}_{W} \mathcal{L}_{V} X$.
(d) $\mathcal{L}_{V}(f W)=(V f) W+f \mathcal{L}_{V} W$.
(e) If $F: M \rightarrow N$ is a diffeomophism, then $F_{*}\left(\mathcal{L}_{V} W\right)=\mathcal{L}_{F_{*} V} F_{*} W$.

