Manifolds with Boundary

 The model for manifolds with boundary are the closed n-dimensional upper half-space ℝⁿ₊ ⊂ ℝⁿ, defined as

$$\mathbb{R}^n_+ = \{ (x^1, \cdots, x^n) \in \mathbb{R}^n : x^n \ge 0 \}.$$

Use $\operatorname{Int}\mathbb{R}^n_+$ and $\partial \mathbb{R}^n_+$ to denote the interior and boundary of \mathbb{R}^n_+ :

Int
$$\mathbb{R}^{n}_{+} = \{ (x^{1}, \cdots, x^{n}) \in \mathbb{R}^{n} : x^{n} > 0 \}$$

 $\partial \mathbb{R}^{n}_{+} = \{ (x^{1}, \cdots, x^{n}) \in \mathbb{R}^{n} : x^{n} = 0 \}.$

Definition. An *n*-dimensional topological manifold with boundary is a second countable Hausdorff space M, equipped with coordinate charts (U_i, φ_i) such that

(i) the U_i 's form an open covering of M;

- (ii) φ_i is a homeomorphism from U_i to a relatively open subset of \mathbb{R}^n_+ .
- We call (U, φ) an interior chart if $\varphi(U) \subset \operatorname{Int} \mathbb{R}^n_+$, and a boundary chart if $\varphi(U) \cap \partial \mathbb{R}^n_+ \neq \emptyset$.

Definition. If U is an open subset of \mathbb{R}^n_+ , a map $F: U \to \mathbb{R}^k$ is smooth if for each $x \in U$, there exists

- (1) an open subset of ∂R^n_+ and
- (2) a smooth map $\widetilde{F}: V \to \mathbb{R}^k$ with $\widetilde{F}|_{V \cap \mathbb{R}^n} = F$.

Example. Let $\mathbb{B}^2 \subset \mathbb{R}^2$ be the open unit disk, let

$$U = \mathbb{B}^2 \cap \mathbb{R}^n_+.$$

(1) Define $f: U \to \mathbb{R}$ by

$$f(x,y) = \sqrt{1 - x^2 - y^2}.$$

Because f extends smoothly to \mathbb{B}^2 (by the same formula), f is a smooth function on U.

(2) Define $g: U \to \mathbb{R}$ by

$$g(x,y) = \sqrt{y}.$$

Although g is continuous on U and smooth in $U \cap \operatorname{Int} \mathbb{R}^n_+$, it has no extension to any neighborhood of the origin in \mathbb{R}^2 , (because $\frac{\partial g}{\partial y} \to \infty$ as $y \to 0$.) Thus g is not smooth on U.

Definition. An *n*-dimensional smooth manifold with boundary is topological manifold with boundary M, equipped with coordinate charts (U_i, φ_i) such that whenever $U_i \cap U_j \neq \emptyset$ for any pair of indices $i \neq j$, the transition function

$$\varphi_i \circ \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$$

is a smooth diffeomorphism.

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$

Orientation of Hypersurfaces

- If M is an oriented maifold and N is a submanifold of M, N may not inherit an orientation from M, even if N is embedded.
- Clearly, it is not sufficient to restrict an orientation form from M to N, since the restriction of an n-form to a manifold of lower dimension must necessarily be zero.

Example. The Moöbius band is not orientable, even though it can be embedded in \mathbb{R}^3 .

• With one extra piece of information (a certain kind of vector field along the hypersurface), we can use an orientation on M to induce an orientation on any hypersurface $S \subset M$.

Definition. Let V be a finite-dimensional vector space, and let $X \in V$. We define a linear map

$$i_X : \Lambda^k(V) \to \Lambda^{k-1}(V),$$

called interior multiplication or contraction with X, by

$$i_X \omega(Y_1, \cdots, Y_{k-1}) = \omega(X, Y_1, \cdots, Y_{k-1})$$

In other words, $i_X \omega$ is obtained from ω by inserting X into the first slot.

— By convention, we set $i_X \omega$ to be zero when ω is a 0-covector (i.e. a number).

— Another common notation is

$$X \rfloor \omega = i_X \omega.$$

Definition. On a smooth manifold M, interior multiplication extends naturally to vector fields and differential forms, simply by letting it act pointwise: If $X \in \mathcal{T}(M)$ and $\omega \in \mathcal{A}^k(M)$, define a (k-1)-form $X \lrcorner \omega = i_X \omega$ by

$$(X \rfloor \omega)_p = X_p \lrcorner \omega_p.$$

Definition. Suppose M is a smooth manifold and $S \subset M$ is a submanifold (immersed or embedded).

- A vector field along S is a continuous map $X : S \to TM$ with the property that $X_p \in T_pM$ for each $p \in S$.
- A vector $X_p \in T_pM$ at some point $p \in S$ is said to be **transverse** to S if T_pM is spanned by X_p and T_pS .
- A vector field X along S is **transverse** to S if X_p is transverse to S at each $p \in S$.

Proposition 1. Suppose M is an oriented smooth n-manifold, S is an immersed hypersurface in M, and X is a **transvese** vector field along S.

Then S has a unique orientation such that for each $p \in S$, (E_1, \dots, E_{n-1}) is an oriented basis for T_pS iff $(X_p, E_1, \dots, E_{n-1})$ is an oriented basis for T_pM .

• If Ω is an orientation form for M, then $(X \lrcorner \Omega) \Big|_S$ is an orientation form for S w.r.t. this orientation.

Proof. Let Ω be an orientation for M. Then $\omega = (X \lrcorner \Omega)|_S$ is an (n-1)-form on S.

- To show that $X \lrcorner \Omega$ is an orientation form for S, it suffices to claim: ω never vanishes.
- Indeed, given any basis (E_1, \dots, E_{n-1}) for T_pS , the fact that X is transverse to S implies that (X, E_1, \dots, E_{n-1}) is a basis for T_pM .
- The fact that Ω is nonvanishing implies that

$$\omega_p(E_1,\cdots,E_{n-1}) = X \lrcorner \Omega(E_1,\cdots,E_{n-1}) = \Omega(X,E_1,\cdots,E_{n-1}) \neq 0.$$

Since $\omega_p(E_1, \dots, E_n) > 0$ iff $\Omega_p(X_p, E_1, \dots, E_n) > 0$, the orientation determined by ω is the one defined in the statement of the proposition. \Box

Example. Considering \mathbb{S}^n as a hypersurface in \mathbb{R}^{n+1} , the vector field

$$X = x^i \frac{\partial}{\partial x^i}$$

along \mathbb{S}^n is easily seen to be transverse, so it induces an orientation on \mathbb{S}^n .

Lemma 2. Let M be an oriented smooth manifold. Suppose $S \subset M$ is a regular level set of a smooth function $f: M \to \mathbb{R}$. Then S is orientable.

Proof. Let g be any Riemannian metric on M, and let

$$X = \operatorname{grad} f \Big|_S.$$

The hypotheses imply that X is a transverse vector field along S, so the result follows from Proposition 1. \Box

• Interior multiplication shares two important properties with exterior differentiation: They are both **antiderivations whose square is zero**.

Lemma 3. Let V be a finite-dimensional vector space and $X \in V$.

(a) $i_X \circ i_X = 0$.

(b) i_X is an **antiderivation**: If ω is a k-covector and η is an ℓ -covector,

$$i_X(\omega \wedge \eta) = (i_X \omega) \wedge \eta + (-1)^k \omega \wedge (i_X \eta).$$

Proof. (a) On k-covectors for $k \ge 2$, part (a) is immediate from the definition,

- because any alternating tensor gives zero when two of its arguments are identical. (b) It suffices to consider the case in which both ω and η are wedge products of
 - 1-covectors.

For this, it suffices to prove the following general formula for covectors $\omega^1, \cdots, \omega^k$

$$X \lrcorner (\omega^1 \land \dots \land \omega^k) = \sum_{i=1}^k (-1)^{i-1} \omega^i (X) \omega^1 \land \dots \land \widehat{\omega^i} \land \dots \land \omega^k.$$

- To prove this, let us write $X_1 = X$ and apply both sides to vectors (X_2, \dots, X_k) ; then what we have to prove is

(*)
$$(\omega^{1} \wedge \dots \wedge \omega^{k})(X_{1}, \dots, X_{k}) = \sum_{i=1}^{k} (-1)^{i-1} \omega^{i}(X_{1})(\omega^{1} \wedge \dots \wedge \widehat{\omega^{i}} \wedge \dots \omega^{k})(X_{2}, \dots, X_{k}).$$

The left-hand side of (*) is the determinant of the matrix $\mathbb{X} = (\omega^i(X_j))$. To simplify the right-hand side, let \mathbb{X}_j^i denote the $(k-1) \times (k-1)$ minor of \mathbb{X} obtained by deleting the *i*th row and *j*th column. Then the right-hand side of (*) is

$$\sum_{i=1}^{k} (-1)^{i-1} \omega^{i}(X_{1}) \det \mathbb{X}_{1}^{i}.$$

This is just the expansion of det $\mathbb X$ by minors along the first column, and therefore is equal to det $\mathbb X.\ \ \Box$

Boundary Orientations

We will define a canonical orientation on the boundary of any oriented smooth manifold with boundary.

Definition. If M is a smooth manifold with boundary, ∂M is an embedded hypersurface in M, and every point $p \in \partial M$ is in the domain of a smooth boundary chart (U, φ) such that $\varphi(U \cap \partial M)$ is the slice $\varphi(U) \cap \partial \mathbb{R}^n_+$.

- Let $p \in \partial M$. A vector $\nu \in T_p M$ is said to be **inward-pointing** if $\nu \notin T_p \partial M$ and for some $\varepsilon > 0$, there exists a smooth curve segment $\gamma : [0, \varepsilon] \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = \nu$.
- A vector $\nu \in T_p M$ is said to be **outward-pointing** if $-\nu$ is inward pointing.
- The following lemma gives another characterization of inward-pointing vectors, which is usually much more easier to check.

Lemma 4. Suppose M is a smooth manifold with boundary, $p \in \partial M$, and (x^i) are any smooh smooth boundary coordinates in a neigborhood of p. The inward-pointing vectors in T_pM are precisely those with positive x^n component, the outward-pointing ones are those with negative x^n -component.

Lemma 5. If M is any smooth manifold with boundary, there is a smooth outward pointing vector field along ∂M .

Proof. Cover a neighborhood of ∂M by smooth boundary charts $\{(U_{\alpha}, \varphi_{\alpha})\}$. — In each such chart

$$\nu_{\alpha} = -\frac{\partial}{\partial x^n} \bigg|_{\partial M \cap U_c}$$

is a smooth vector field along $\partial M \cap U_{\alpha}$, which is outward-pointing by Lemma 4. — Let $\{\psi_{\alpha}\}$ be a smooth partition of unity subordinate to the cover $\{\partial M \cap U_{\alpha}\}$ of ∂M , and define a global vector field ν along ∂M by

$$\nu = \sum_{\alpha} \psi_{\alpha} \nu_{\alpha}.$$

Clearly ν is a smooth vector field along ∂M .

- To show that it is **outward-pointing**, let (y^1, \dots, y^n) be any smooth boundary coordinates in a neighborhood of $p \in \partial M$.
- Because each ν_{α} is outward-pointing, it satisfies $dy^n(\nu_{\alpha}) < 0$. The y^n -component of ν at p satisfies

$$dy^n(\nu_p) = \sum_{\alpha} \psi_{\alpha}(p) dy^n(\nu_{\alpha} \Big|_p).$$

This sum is strictly negative, because each term is nonpositive and at least one term is negative. $\hfill\square$

Proposition 6 (The induced Orientation on a Boundary). Let M be an oriented smooth manifold with boundary.

Then ∂M is orientable,

and the orientation determined by any outward-pointing vector field along ∂M is independent of the choice of vector field.

Remark. The orientation on ∂M determined by any outward-pointing vactor field is called the **induced orientation** or the **Stokes orientation** on ∂M .

Proof. Let $n = \dim M$, and let Ω be an orientation form for M. By Lemma 5, there exists a smooth outward-pointing vector field ν along ∂M . By Proposition 2, the (n-1)-form $\nu \lrcorner \Omega \Bigr|_{\partial M}$ is an orientation form for ∂M . Hence ∂M is orientable.

It remains to claim: this orientation is independent of the choice of ν .

- Indeed, let (x^1, \dots, x^n) be smooth boundary coordinates for M in a neighborhood of $p \in \partial M$.
- Replacing x^1 by $-x^1$ if necessary, we may assume that they are oriented coordinates, which implies that

 $\Omega = f \, dx^1 \wedge \cdots \wedge dx^n, \text{ for some strictly positive function } f.$

Thus, using the **antiderivative** property of i_X , we have

$$(\nu \lrcorner \Omega)\Big|_{\partial M} = f \sum_{i=1}^{n} (-1)^{i-1} dx^{i}(\nu) dx^{1}\Big|_{\partial M} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{n}\Big|_{\partial M}.$$

Since $x^n = 0$ along Γ , the restriction $dx^n\Big|_{\partial M} \equiv 0$. Therefore

$$(\nu \lrcorner \Omega)\Big|_{\partial M} = (-1)^{n-1} f \, dx^n(\nu) dx^1\Big|_{\partial M} \wedge \dots \wedge dx^{n-1}\Big|_{\partial M}.$$

Since $dx^n(X) = X^n < 0$, $(\nu \lrcorner \Omega) |_{\partial M}$ is spositive multiple of

$$(-1)^n dx^1\Big|_{\partial M} \wedge \dots \wedge dx^{n-1}\Big|_{\partial M}$$

— If $\tilde{\nu}$ is any other outward-pointing vector field,

the same computation shows that $(\tilde{\nu} \lrcorner \Omega)|_{\partial M}$ is a positive multiple of $(\nu \lrcorner \Omega)|_{\partial M}$. - This proves that X and \tilde{X} determine the same orientation of ∂M . \Box

Example. The proposition proves that \mathbb{S}^n is oriented, because it is the boundary of the closed unit ball.

Example. Let us determine the induced orientation on \mathbb{R}^n_+ when \mathbb{R}^n_+ itself has the standard orientation inherited from \mathbb{R}^n .

— We can identify $\partial \mathbb{R}^n_+$ with \mathbb{R}^{n-1} under the correspondence

$$(x^1, \cdots, x^{n-1}, 0) \leftrightarrow (x^1, \cdots, x^{n-1}).$$

$$[-\frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^{n-1}}]$$

is the standard orientation for \mathbb{R}^n . This orientation satisfies

$$\begin{bmatrix} -\frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^{n-1}} \end{bmatrix} = -\begin{bmatrix} \frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^{n-1}} \end{bmatrix}$$
$$= (-1)^n \begin{bmatrix} \frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^{n-1}}, \frac{\partial}{\partial x^n} \end{bmatrix}.$$

Thus the induced orientation for $\partial \mathbb{R}^n_+$ is equal to the standard orientation for \mathbb{R}^{n-1} when *n* is even, but it is **opposite** to the standard orientation when *n* is odd.

- For many purposes, the most useful way of describing submanifolds is by means of local parametrizations.
- The next lemma gives a useful criterion for checking whether a local parametrization of a boundary is orientation-preserving.

Lemma 7. Let M be an oriented *n*-manifold with boundary, and let $X : U \to M$ be a smooth local parametrization of ∂M , where U is a connected open subset of \mathbb{R}^{n-1} .

Suppose that for some $b < c \in \mathbb{R}$, X admits an extission to a smooth immersion

$$\widetilde{X}: (b,c] \times U \to M$$

such that $\widetilde{X}(c, x) = X(x)$.

Then X is orientation-preserving for ∂M (with the induced orientation) iff \widetilde{X} is orientation-preserving for M.

Proof. Let a be an arbitrary point of U, and let

$$p = X(a) = \widetilde{X}(c, a) \in \partial M.$$

The hypothesis that \widetilde{X} is an immersion means that

$$\widetilde{X}_* : (T_c \mathbb{R} \oplus T_a \mathbb{R}^{n-1}) \to T_p M$$

is injective. Since the restriction of \widetilde{X}_* to $T_a \mathbb{R}^{n-1}$ is equal to

$$X_*: T_a \mathbb{R}^{n-1} \to T_p \partial M,$$

which is already injective, it follows that

$$\widetilde{X}_*(\frac{\partial}{\partial s}) \notin T_p \partial M$$
 where s denotes the coordinate on $(b, c]$.

• Claim: $\widetilde{X}_*(\frac{\partial}{\partial s})|_{(c,a)}$ is outward-pointing at p. Indded, define a smooth curve $\gamma : [0, \varepsilon] \to M$ by

$$\gamma(t) = X(c - t, a).$$

This curve satisfies

$$\gamma(0) = p \quad \gamma'(0) = -\widetilde{X}_*(\frac{\partial}{\partial s})\Big|_{(c,a)}.$$

It follows that $-\widetilde{X}_*(\frac{\partial}{\partial s})|_{(c,a)}$ is inwrad-pointing.

- By continuity, $\widetilde{X}_*(\frac{\partial}{\partial s})\Big|_{(c,a)}$ is outward-pointing on all of X(U).

Example. Spherical coordinates yield a smooth local parametrization of \mathbb{S}^2 as follows.

Let U be the open rectangle $(0, \pi) \times (0, 2\pi) \subset \mathbb{R}^2$, and let $X : U \to \mathbb{R}^3$ be the following map

$$X(\varphi, \theta) = (\sin\varphi\cos\theta, \sin\varphi\sin\theta, \cos\varphi),$$

which is the restriction of the 3-dimensional spherical coordinate parametrization $\widetilde{X}: (0,1] \times U \to \overline{\mathbb{B}^3}$ defined by

$$\widetilde{X}(\rho,\varphi,\theta) = (\rho\sin\varphi\cos\theta, \rho\sin\varphi\sin\theta, \rho\cos\varphi),$$

By direct computation, the Jacobian determinant of \widetilde{X} is $\rho^2 \sin \varphi$, which is positive on $(0,1) \times U$.

By Lemma 7, X is orientation-preserving.