Manifolds with Boundary

- The model for manifolds with boundary are the closed n-dimensional upper half-space $\mathbb{R}_{+}^{n} \subset \mathbb{R}^{n}$, defined as

$$
\mathbb{R}_{+}^{n}=\left\{\left(x^{1}, \cdots, x^{n}\right) \in \mathbb{R}^{n}: x^{n} \geq 0\right\}
$$

Use $\operatorname{Int} \mathbb{R}_{+}^{n}$ and $\partial \mathbb{R}_{+}^{n}$ to denote the interior and boundary of \mathbb{R}_{+}^{n} :

$$
\begin{aligned}
\operatorname{Int} \mathbb{R}_{+}^{n} & =\left\{\left(x^{1}, \cdots, x^{n}\right) \in \mathbb{R}^{n}: x^{n}>0\right\} \\
\partial \mathbb{R}_{+}^{n} & =\left\{\left(x^{1}, \cdots, x^{n}\right) \in \mathbb{R}^{n}: x^{n}=0\right\}
\end{aligned}
$$

Definition. An n-dimensional topological manifold with boundary is a second countable Hausdorff space M, equipped with coordinate charts $\left(U_{i}, \varphi_{i}\right)$ such that
(i) the U_{i} 's form an open covering of M;
(ii) φ_{i} is a homeomorphism from U_{i} to a relatively open subset of \mathbb{R}_{+}^{n}.

- We call (U, φ) an interior chart if $\varphi(U) \subset \operatorname{Int} \mathbb{R}_{+}^{n}$, and a boundary chart if $\varphi(U) \cap \partial \mathbb{R}_{+}^{n} \neq \emptyset$.
Definition. If U is an open subset of \mathbb{R}_{+}^{n}, a map $F: U \rightarrow \mathbb{R}^{k}$ is smooth if for each $x \in U$, there exists
(1) an open subset of ∂R_{+}^{n} and
(2) a smooth map $\widetilde{F}: V \rightarrow \mathbb{R}^{k}$ with $\left.\widetilde{F}\right|_{V \cap \mathbb{R}_{+}^{n}}=F$.

Example. Let $\mathbb{B}^{2} \subset \mathbb{R}^{2}$ be the open unit disk, let

$$
U=\mathbb{B}^{2} \cap \mathbb{R}_{+}^{n}
$$

(1) Define $f: U \rightarrow \mathbb{R}$ by

$$
f(x, y)=\sqrt{1-x^{2}-y^{2}}
$$

Because f extends smoothly to \mathbb{B}^{2} (by the same formula), f is a smooth function on U.
(2) Define $g: U \rightarrow \mathbb{R}$ by

$$
g(x, y)=\sqrt{y}
$$

Although g is continuous on U and smooth in $U \cap \operatorname{Int} \mathbb{R}_{+}^{n}$, it has no extension to any neighborhood of the origin in \mathbb{R}^{2}, (because $\frac{\partial g}{\partial y} \rightarrow \infty$ as $y \rightarrow 0$.) Thus g is not smooth on U.
Definition. An n-dimensional smooth manifold with boundary is topological manifold with boundary M, equipped with coordinate charts $\left(U_{i}, \varphi_{i}\right)$ such that whenerver $U_{i} \cap U_{j} \neq \emptyset$ for any pair of indices $i \neq j$, the transition function

$$
\varphi_{i} \circ \varphi_{j}^{-1}: \varphi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{i}\left(U_{i} \cap U_{j}\right)
$$

is a smooth diffeomorphism.

Orientation of Hypersurfaces

- If M is an oriented maifold and N is a submanifold of M, N may not inherit an orientation from M, even if N is embedded.
- Clearly, it is not sufficient to restrict an orientation form from M to N, since the restriction of an n-form to a manifold of lower dimension must necessarily be zero.
Example. The Moöbius band is not orientable, even though it can be embedded in \mathbb{R}^{3}.
- With one extra piece of information (a certain kind of vector field along the hypersurface), we can use an orientation on M to induce an orientation on any hypersurface $S \subset M$.
Definition. Let V be a finite-dimensional vector space, and let $X \in V$. We define a linear map

$$
i_{X}: \Lambda^{k}(V) \rightarrow \Lambda^{k-1}(V)
$$

called interior multiplication or contraction with X, by

$$
i_{X} \omega\left(Y_{1}, \cdots, Y_{k-1}\right)=\omega\left(X, Y_{1}, \cdots, Y_{k-1}\right)
$$

In other words, $i_{X} \omega$ is obtained from ω by inserting X into the first slot.

- By convention, we set $i_{X} \omega$ to be zero when ω is a 0 -covector (i.e. a number).
- Another common notation is

$$
X\rfloor \omega=i_{X} \omega
$$

Definition. On a smooth manifold M, interior multiplication extends naturally to vector fields and differential forms, simply by letting it act pointwise: If $X \in \mathcal{T}(M)$ and $\omega \in \mathcal{A}^{k}(M)$, define a $(k-1)$-form $\left.X\right\lrcorner \omega=i_{X} \omega$ by

$$
\left.(X\rfloor \omega)_{p}=X_{p}\right\lrcorner \omega_{p}
$$

Definition. Suppose M is a smooth manifold and $S \subset M$ is a submanifold (immersed or embedded).

- A vector field along S is a continuous map $X: S \rightarrow T M$ with the property that $X_{p} \in T_{p} M$ for each $p \in S$.
$\odot A$ vector $X_{p} \in T_{p} M$ at some point $p \in S$ is said to be transverse to S if $T_{p} M$ is spanned by X_{p} and $T_{p} S$.
$\odot A$ vector field X along S is transverse to S if X_{p} is transverse to S at each $p \in S$.

Proposition 1. Suppose M is an oriented smooth n-manifold, S is an immersed hypersurface in M, and X is a transvese vector field along S.
Then S has a unique orientation such that for each $p \in S,\left(E_{1}, \cdots, E_{n-1}\right)$ is an oriented basis for $T_{p} S$ iff $\left(X_{p}, E_{1}, \cdots, E_{n-1}\right)$ is an oriented basis for $T_{p} M$.

- If Ω is an orientation form for M, then $(X\lrcorner \Omega)\left.\right|_{S}$ is an orientation form for S w.r.t. this orientation.

Proof. Let Ω be an orientation for M. Then $\omega=(X\lrcorner \Omega)\left.\right|_{S}$ is an $(n-1)$-form on S.

- To show that $X\lrcorner \Omega$ is an orientation form for S, it suffices to claim: ω never vanishes.
- Indeed, given any basis $\left(E_{1}, \cdots, E_{n-1}\right)$ for $T_{p} S$, the fact that X is transverse to S implies that $\left(X, E_{1}, \cdots, E_{n-1}\right)$ is a basis for $T_{p} M$.
- The fact that Ω is nonvanishing implies that

$$
\left.\omega_{p}\left(E_{1}, \cdots, E_{n-1}\right)=X\right\lrcorner \Omega\left(E_{1}, \cdots, E_{n-1}\right)=\Omega\left(X, E_{1}, \cdots, E_{n-1}\right) \neq 0 .
$$

Since $\omega_{p}\left(E_{1}, \cdots, E_{n}\right)>0$ iff $\Omega_{p}\left(X_{p}, E_{1}, \cdots, E_{n}\right)>0$, the orientation determined by ω is the one defined in the statement of the proposition.

Example. Considering \mathbb{S}^{n} as a hypersurface in \mathbb{R}^{n+1}, the vector field

$$
X=x^{i} \frac{\partial}{\partial x^{i}}
$$

along \mathbb{S}^{n} is easily seen to be transverse, so it induces an orientation on \mathbb{S}^{n}.
Lemma 2. Let M be an oriented smooth manifold. Suppose $S \subset M$ is a regular level set of a smooth function $f: M \rightarrow \mathbb{R}$. Then S is orientable.

Proof. Let g be any Riemannian metric on M, and let

$$
X=\left.\operatorname{grad} f\right|_{S}
$$

The hypotheses imply that X is a transverse vector field along S, so the result follows from Proposition 1.

- Interior multiplication shares two important properties with exterior differentiation: They are both antiderivations whose square is zero.

Lemma 3. Let V be a finite-dimensional vector space and $X \in V$.
(a) $i_{X} \circ i_{X}=0$.
(b) i_{X} is an antiderivation: If ω is a k-covector and η is an ℓ-covector,

$$
i_{X}(\omega \wedge \eta)=\left(i_{X} \omega\right) \wedge \eta+(-1)^{k} \omega \wedge\left(i_{X} \eta\right)
$$

Proof. (a) On k-covectors for $k \geq 2$, part (a) is immediate from the definition, because any alternating tensor gives zero when two of its arguments are identical.
(b) It suffices to consider the case in which both ω and η are wedge products of 1-covectors.
For this, it suffices to prove the following general formula for covectors $\omega^{1}, \cdots, \omega^{k}$

$$
X\lrcorner\left(\omega^{1} \wedge \cdots \wedge \omega^{k}\right)=\sum_{i=1}^{k}(-1)^{i-1} \omega^{i}(X) \omega^{1} \wedge \cdots \wedge \widehat{\omega^{i}} \wedge \cdots \wedge \omega^{k} .
$$

To prove this, let us write $X_{1}=X$ and apply both sides to vectors $\left(X_{2}, \cdots, X_{k}\right)$; then what we have to prove is

$$
\begin{align*}
& \left(\omega^{1} \wedge \cdots \wedge \omega^{k}\right)\left(X_{1}, \cdots, X_{k}\right) \tag{}\\
& \quad=\sum_{i=1}^{k}(-1)^{i-1} \omega^{i}\left(X_{1}\right)\left(\omega^{1} \wedge \cdots \wedge \widehat{\omega^{i}} \wedge \cdots \omega^{k}\right)\left(X_{2}, \cdots, X_{k}\right)
\end{align*}
$$

The left-hand side of $\left({ }^{*}\right)$ is the determinant of the matrix $\mathbb{X}=\left(\omega^{i}\left(X_{j}\right)\right)$.
To simplify the right-hand side, let \mathbb{X}_{j}^{i} denote the $(k-1) \times(k-1)$ minor of \mathbb{X} obtained by deleting the i th row and j th column. Then the right-hand side of $\left.{ }^{*}\right)$ is

$$
\sum_{i=1}^{k}(-1)^{i-1} \omega^{i}\left(X_{1}\right) \operatorname{det} \mathbb{X}_{1}^{i}
$$

This is just the expansion of $\operatorname{det} \mathbb{X}$ by minors along the first column, and therefore is equal to $\operatorname{det} \mathbb{X}$.

Boundary Orientations

We will define a canonical orientation on the boundary of any oriented smooth manifold with boundary.

Definition. If M is a smooth manifold with boundary, ∂M is an embedded hypersurface in M, and every point $p \in \partial M$ is in the domain of a smooth boundary chart (U, φ) such that $\varphi(U \cap \partial M)$ is the slice $\varphi(U) \cap \partial \mathbb{R}_{+}^{n}$.

- Let $p \in \partial M$. A vector $\nu \in T_{p} M$ is said to be inward-pointing if $\nu \notin T_{p} \partial M$ and for some $\varepsilon>0$, there exists a smooth curve segment $\gamma:[0, \varepsilon] \rightarrow M$ such that $\gamma(0)=p$ and $\gamma^{\prime}(0)=\nu$.
- A vector $\nu \in T_{p} M$ is said to be outward-pointing if $-\nu$ is inward pointing.
- The following lemma gives another characterization of inward-pointing vectors, which is usually much more easier to check.

Lemma 4. Suppose M is a smooth manifold with boundary, $p \in \partial M$, and $\left(x^{i}\right)$ are any smooh smooth boundary coordinates in a neigborhood of p.
The inward-pointing vectors in $T_{p} M$ are precisely those with positive x^{n} component, the outward-pointing ones are those with negative x^{n}-component.

Lemma 5. If M is any smooth manifold with boundary, there is a smooth outward pointing vector field along ∂M.

Proof. Cover a neighborhood of ∂M by smooth boundary charts $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}$.

- In each such chart

$$
\nu_{\alpha}=-\left.\frac{\partial}{\partial x^{n}}\right|_{\partial M \cap U_{\alpha}}
$$

is a smooth vector field along $\partial M \cap U_{\alpha}$, which is outward-pointing by Lemma 4.

- Let $\left\{\psi_{\alpha}\right\}$ be a smooth partition of unity subordinate to the cover $\left\{\partial M \cap U_{\alpha}\right\}$ of ∂M, and define a global vector field ν along ∂M by

$$
\nu=\sum_{\alpha} \psi_{\alpha} \nu_{\alpha}
$$

Clearly ν is a smooth vector field along ∂M.

- To show that it is outward-pointing, let $\left(y^{1}, \cdots, y^{n}\right)$ be any smooth boundary coordinates in a neighborhood of $p \in \partial M$.
- Because each ν_{α} is outward-pointing, it satisfies $d y^{n}\left(\nu_{\alpha}\right)<0$. The y^{n}-component of ν at p satisfies

$$
d y^{n}\left(\nu_{p}\right)=\sum_{\alpha} \psi_{\alpha}(p) d y^{n}\left(\left.\nu_{\alpha}\right|_{p}\right)
$$

This sum is strictly negative, because each term is nonpositive and at least one term is negative.

Proposition 6 (The induced Orientation on a Boundary). Let M be an oriented smooth manifold with boundary.
Then ∂M is orientable,
and the orientation determined by any outward-pointing vector field along ∂M is independent of the choice of vector field.
Remark. The orientation on ∂M determined by any outward-pointing vactor field is called the induced orientation or the Stokes orientation on ∂M.

Proof. Let $n=\operatorname{dim} M$, and let Ω be an orientation form for M.
By Lemma 5, there exists a smooth outward-pointing vector field ν along ∂M.
By Proposition 2, the $(n-1)$-form $\nu\lrcorner\left.\Omega\right|_{\partial M}$ is an orientation form for ∂M.
Hence ∂M is orientable.
It remains to claim: this orientation is independent of the choice of ν.

- Indeed, let $\left(x^{1}, \cdots, x^{n}\right)$ be smooth boundary coordinates for M in a neighborhood of $p \in \partial M$.
- Replacing x^{1} by $-x^{1}$ if necessary, we may assume that they are oriented coordinates, which implies that

$$
\Omega=f d x^{1} \wedge \cdots \wedge d x^{n}, \quad \text { for some strictly positive function } f
$$

Thus, using the antiderivative property of i_{X}, we have

$$
(\nu\lrcorner \Omega)\left.\right|_{\partial M}=\left.\left.f \sum_{i=1}^{n}(-1)^{i-1} d x^{i}(\nu) d x^{1}\right|_{\partial M} \wedge \cdots \wedge \widehat{d x^{i}} \wedge \cdots \wedge d x^{n}\right|_{\partial M}
$$

Since $x^{n}=0$ along Γ, the restriction $\left.d x^{n}\right|_{\partial M} \equiv 0$. Therefore

$$
(\nu\lrcorner \Omega)\left.\right|_{\partial M}=\left.\left.(-1)^{n-1} f d x^{n}(\nu) d x^{1}\right|_{\partial M} \wedge \cdots \wedge d x^{n-1}\right|_{\partial M}
$$

Since $\left.d x^{n}(X)=X^{n}<0,(\nu\lrcorner \Omega\right)\left.\right|_{\partial M}$ is s positive multiple of

$$
\left.\left.(-1)^{n} d x^{1}\right|_{\partial M} \wedge \cdots \wedge d x^{n-1}\right|_{\partial M}
$$

- If $\widetilde{\nu}$ is any other outward-pointing vector field,
the same computation shows that $(\widetilde{\nu}\lrcorner \Omega)\left.\right|_{\partial M}$ is a positive multiple of $\left.(\nu\lrcorner \Omega\right)\left.\right|_{\partial M}$.
- This proves that X and \tilde{X} determine the same orientation of ∂M.

Example. The proposition proves that \mathbb{S}^{n} is oriented, because it is the boundary of the closed unit ball.

Example. Let us determine the induced orientation on \mathbb{R}_{+}^{n} when \mathbb{R}_{+}^{n} itself has the standard orientation inherited from \mathbb{R}^{n}.

- We can identify $\partial \mathbb{R}_{+}^{n}$ with \mathbb{R}^{n-1} under the correspondence

$$
\left(x^{1}, \cdots, x^{n-1}, 0\right) \leftrightarrow\left(x^{1}, \cdots, x^{n-1}\right)
$$

Since the vector field $-\partial / \partial x^{n}$ is outward-pointing along $\partial \mathbb{R}_{+}^{n}$, the standard coordinate frame for \mathbb{R}^{n-1} is positively oriented for \mathbb{R}_{+}^{n} iff

$$
\left[-\frac{\partial}{\partial x^{n}}, \frac{\partial}{\partial x^{1}}, \cdots, \frac{\partial}{\partial x^{n-1}}\right]
$$

is the standard orientation for \mathbb{R}^{n}. This orientation satisfies

$$
\begin{aligned}
{\left[-\frac{\partial}{\partial x^{n}}, \frac{\partial}{\partial x^{1}}, \cdots, \frac{\partial}{\partial x^{n-1}}\right] } & =-\left[\frac{\partial}{\partial x^{n}}, \frac{\partial}{\partial x^{1}}, \cdots, \frac{\partial}{\partial x^{n-1}}\right] \\
& =(-1)^{n}\left[\frac{\partial}{\partial x^{1}}, \cdots, \frac{\partial}{\partial x^{n-1}}, \frac{\partial}{\partial x^{n}}\right] .
\end{aligned}
$$

Thus the induced orientation for $\partial \mathbb{R}_{+}^{n}$ is equal to the standard orientation for \mathbb{R}^{n-1} when n is even, but it is opposite to the standard orientation when n is odd.

- For many purposes, the most useful way of describing submanifolds is by means of local parametrizations.
- The next lemma gives a useful criterion for checking whether a local parametrization of a boundary is orientation-preserving.

Lemma 7. Let M be an oriented n-manifold with boundary,
and let $X: U \rightarrow M$ be a smooth local parametrization of ∂M, where U is a connected open subset of \mathbb{R}^{n-1}.
Suppose that for some $b<c \in \mathbb{R}, X$ admits an extnsion to a smooth immersion

$$
\widetilde{X}:(b, c] \times U \rightarrow M
$$

such that $\widetilde{X}(c, x)=X(x)$.
Then X is orientation-preserving for ∂M (with the induced orientation) iff \widetilde{X} is orientation-preserving for M.
Proof. Let a be an arbitrary point of U, and let

$$
p=X(a)=\widetilde{X}(c, a) \in \partial M
$$

The hypothesis that \widetilde{X} is an immersion means that

$$
\tilde{X}_{*}:\left(T_{c} \mathbb{R} \oplus T_{a} \mathbb{R}^{n-1}\right) \rightarrow T_{p} M
$$

is injective. Since the restriction of \widetilde{X}_{*} to $T_{a} \mathbb{R}^{n-1}$ is equal to

$$
X_{*}: T_{a} \mathbb{R}^{n-1} \rightarrow T_{p} \partial M
$$

which is already injective, it follows that

$$
\tilde{X}_{*}\left(\frac{\partial}{\partial s}\right) \notin T_{p} \partial M \text { where } s \text { denotes the coordinate on }(b, c] .
$$

- Claim: $\left.\widetilde{X}_{*}\left(\frac{\partial}{\partial s}\right)\right|_{(c, a)}$ is outward-pointing at p. Indded, define a smooth curve $\gamma:[0, \varepsilon] \rightarrow M$ by

$$
\gamma(t)=\widetilde{X}(c-t, a)
$$

This curve satisfies

$$
\gamma(0)=p \quad \gamma^{\prime}(0)=-\left.\widetilde{X}_{*}\left(\frac{\partial}{\partial s}\right)\right|_{(c, a)}
$$

It follows that $-\left.\widetilde{X}_{*}\left(\frac{\partial}{\partial s}\right)\right|_{(c, a)}$ is inwrad-pointing.

- By continuity, $\left.\widetilde{X}_{*}\left(\frac{\partial}{\partial s}\right)\right|_{(c, a)}$ is outward-pointing on all of $X(U)$.
- By definition of the induced orientation on ∂M,
\widetilde{X} is orientation-preserving for M
$\Leftrightarrow\left(\widetilde{X}_{*} \frac{\partial}{\partial s}, \widetilde{X}_{*} \frac{\partial}{\partial x^{1}}, \cdots, \widetilde{X}_{*} \frac{\partial}{\partial x^{n-1}}\right.$ is oriented for $T M$.
$\Leftrightarrow\left(X_{*} \frac{\partial}{\partial x^{1}}, \cdots, X_{*} \frac{\partial}{\partial x^{n-1}}\right)$ is oriented for $T \partial M$.
$\Leftrightarrow X$ is orientation-preserving for ∂M.
Example. Spherical coordinates yield a smooth local parametrization of \mathbb{S}^{2} as follows.
Let U be the open rectangle $(0, \pi) \times(0,2 \pi) \subset \mathbb{R}^{2}$, and let $X: U \rightarrow \mathbb{R}^{3}$ be the following map

$$
X(\varphi, \theta)=(\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)
$$

which is the restriction of the 3-dimensional spherical coordinate parametrization $\widetilde{X}:(0,1] \times U \rightarrow \overline{\mathbb{B}^{3}}$ defined by

$$
\widetilde{X}(\rho, \varphi, \theta)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)
$$

By direct computation, the Jacobian determinant of \widetilde{X} is $\rho^{2} \sin \varphi$, which is positive on $(0,1) \times U$.
By Lemma $7, X$ is orientation-preserving.

