
Manifolds with Boundary

• The model for manifolds with boundary are the closed n-dimensional upper
half-space Rn

+ ⊂ Rn, defined as

Rn
+ = {(x1, · · · , xn) ∈ Rn : xn ≥ 0}.

Use IntRn
+ and ∂Rn

+ to denote the interior and boundary of Rn
+:

Int Rn
+ ={(x1, · · · , xn) ∈ Rn : xn > 0}

∂Rn
+ ={(x1, · · · , xn) ∈ Rn : xn = 0}.

Definition. An n-dimensional topological manifold with boundary is a sec-
ond countable Hausdorff space M , equipped with coordinate charts (Ui, ϕi) such
that
(i) the Ui’s form an open covering of M ;
(ii) ϕi is a homeomorphism from Ui to a relatively open subset of Rn

+.
• We call (U,ϕ) an interior chart if ϕ(U) ⊂ Int Rn

+, and a boundary chart if
ϕ(U) ∩ ∂Rn

+ 6= ∅.

Definition. If U is an open subset of Rn
+, a map F : U → Rk is smooth if for

each x ∈ U , there exists

(1) an open subset of ∂Rn
+ and

(2) a smooth map F̃ : V → Rk with F̃
∣∣
V ∩Rn

+
= F .

Example. Let B2 ⊂ R2 be the open unit disk, let

U = B2 ∩ Rn
+.

(1) Define f : U → R by

f(x, y) =
√

1 − x2 − y2.

Because f extends smoothly to B2 (by the same formula), f is a smooth
function on U .

(2) Define g : U → R by
g(x, y) =

√
y.

Although g is continuous on U and smooth in U∩Int Rn
+, it has no extension

to any neighborhood of the origin in R2, (because ∂g
∂y → ∞ as y → 0.)

Thus g is not smooth on U .

Definition. An n-dimensional smooth manifold with boundary is topological
manifold with boundary M , equipped with coordinate charts (Ui, ϕi) such that
whenerver Ui ∩ Uj 6= ∅ for any pair of indices i 6= j, the transition function

ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj)

is a smooth diffeomorphism.
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Orientation of Hypersurfaces

• If M is an oriented maifold and N is a submanifold of M , N may not inherit an
orientation from M , even if N is embedded.

• Clearly, it is not sufficient to restrict an orientation form from M to N , since
the restriction of an n-form to a manifold of lower dimension must necessarily
be zero.

Example. The Moöbius band is not orientable, even though it can be embedded
in R3.

• With one extra piece of information (a certain kind of vector field along the
hypersurface), we can use an orientation on M to induce an orientation on any
hypersurface S ⊂M .

Definition. Let V be a finite-dimensional vector space, and let X ∈ V . We define
a linear map

iX : Λk(V ) → Λk−1(V ),

called interior multiplication or contraction with X , by

iXω(Y1, · · · , Yk−1) = ω(X,Y1, · · · , Yk−1).

In other words, iXω is obtained from ω by inserting X into the first slot.
— By convention, we set iXω to be zero when ω is a 0-covector (i.e. a number).
— Another common notation is

Xcω = iXω.

Definition. On a smooth manifold M , interior multiplication extends naturally to
vector fields and differential forms, simply by letting it act pointwise: If X ∈ T (M)
and ω ∈ Ak(M), define a (k − 1)-form Xyω = iXω by

(Xcω)p = Xpyωp.

Definition. Suppose M is a smooth manifold and S ⊂ M is a submanifold (im-
mersed or embedded).
• A vector field along S is a continuous map X : S → TM with the property that
Xp ∈ TpM for each p ∈ S.

� A vector Xp ∈ TpM at some point p ∈ S is said to be transverse to S if TpM
is spanned by Xp and TpS.

� A vector field X along S is transverse to S if Xp is transverse to S at each
p ∈ S.

Proposition 1. Suppose M is an oriented smooth n-manifold, S is an immersed
hypersurface in M , and X is a transvese vector field along S.
Then S has a unique orientation such that for each p ∈ S, (E1, · · · , En−1) is an
oriented basis for TpS iff (Xp, E1, · · · , En−1) is an oriented basis for TpM .

• If Ω is an orientation form for M , then (XyΩ)
∣∣∣
S

is an orientation form for S

w.r.t. this orientation.

Proof. Let Ω be an orientation for M . Then ω = (XyΩ)
∣∣
S

is an (n−1)-form on S.



3

— To show that XyΩ is an orientation form for S, it suffices to
claim: ω never vanishes.

– Indeed, given any basis (E1, · · · , En−1) for TpS, the fact that X is transverse to
S implies that (X,E1, · · · , En−1) is a basis for TpM .

– The fact that Ω is nonvanishing implies that

ωp(E1, · · · , En−1) = XyΩ(E1, · · · , En−1) = Ω(X,E1, · · · , En−1) 6= 0.

Since ωp(E1, · · · , En) > 0 iff Ωp(Xp, E1, · · · , En) > 0, the orientation determined
by ω is the one defined in the statement of the proposition. �

Example. Considering Sn as a hypersurface in Rn+1, the vector field

X = xi ∂

∂xi

along Sn is easily seen to be transverse, so it induces an orientation on Sn.

Lemma 2. Let M be an oriented smooth manifold. Suppose S ⊂ M is a regular
level set of a smooth function f : M → R. Then S is orientable.

Proof. Let g be any Riemannian metric on M , and let

X = grad f
∣∣∣
S
.

The hypotheses imply that X is a transverse vector field along S, so the result
follows from Proposition 1. �

• Interior multiplication shares two important properties with exterior differenti-
ation: They are both antiderivations whose square is zero.

Lemma 3. Let V be a finite-dimensional vector space and X ∈ V .

(a) iX ◦ iX = 0.

(b) iX is an antiderivation: If ω is a k-covector and η is an `-covector,

iX(ω ∧ η) = (iXω) ∧ η + (−1)kω ∧ (iXη).

Proof. (a) On k-covectors for k ≥ 2, part (a) is immediate from the definition,
because any alternating tensor gives zero when two of its arguments are identical.

(b) It suffices to consider the case in which both ω and η are wedge products of
1-covectors.
For this, it suffices to prove the following general formula for covectors ω1, · · · , ωk

Xy(ω1 ∧ · · · ∧ ωk) =
k∑

i=1

(−1)i−1ωi(X)ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωk.
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– To prove this, let us write X1 = X and apply both sides to vectors (X2, · · · , Xk);
then what we have to prove is

(ω1 ∧ · · · ∧ ωk)(X1, · · · , Xk)(*)

=
k∑

i=1

(−1)i−1ωi(X1)(ω1 ∧ · · · ∧ ω̂i ∧ · · ·ωk)(X2, · · · , Xk).

The left-hand side of (*) is the determinant of the matrix X = (ωi(Xj)).
To simplify the right-hand side, let Xi

j denote the (k − 1) × (k − 1) minor of X
obtained by deleting the ith row and jth column. Then the right-hand side of
(*) is

k∑

i=1

(−1)i−1ωi(X1) det Xi
1.

This is just the expansion of det X by minors along the first column, and therefore
is equal to det X. �
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Boundary Orientations

We will define a canonical orientation on the boundary of any oriented smooth
manifold with boundary.

Definition. If M is a smooth manifold with boundary, ∂M is an embedded hy-
persurface in M , and every point p ∈ ∂M is in the domain of a smooth boundary
chart (U,ϕ) such that ϕ(U ∩ ∂M) is the slice ϕ(U) ∩ ∂Rn

+.

• Let p ∈ ∂M . A vector ν ∈ TpM is said to be inward-pointing if ν /∈ Tp∂M
and for some ε > 0, there exists a smooth curve segment γ : [0, ε] → M such
that γ(0) = p and γ′(0) = ν.

• A vector ν ∈ TpM is said to be outward-pointing if −ν is inward pointing.

• The following lemma gives another characterization of inward-pointing vectors,
which is usually much more easier to check.

Lemma 4. Suppose M is a smooth manifold with boundary, p ∈ ∂M , and (xi)
are any smooh smooth boundary coordinates in a neigborhood of p.

The inward-pointing vectors in TpM are precisely those with positive xn component,
the outward-pointing ones are those with negative xn-component.

Lemma 5. IfM is any smooth manifold with boundary, there is a smooth outward
pointing vector field along ∂M .

Proof. Cover a neighborhood of ∂M by smooth boundary charts {(Uα, ϕα)}.
— In each such chart

να = − ∂

∂xn

∣∣∣∣
∂M∩Uα

is a smooth vector field along ∂M ∩Uα, which is outward-pointing by Lemma 4.
— Let {ψα} be a smooth partition of unity subordinate to the cover {∂M ∩Uα} of

∂M , and define a global vector field ν along ∂M by

ν =
∑

α

ψανα.

Clearly ν is a smooth vector field along ∂M .
• To show that it is outward-pointing, let (y1, · · · , yn) be any smooth boundary

coordinates in a neighborhood of p ∈ ∂M .
— Because each να is outward-pointing, it satisfies dyn(να) < 0.

The yn-component of ν at p satisfies

dyn(νp) =
∑

α

ψα(p)dyn(να

∣∣∣
p
).

This sum is strictly negative, because each term is nonpositive and at least one
term is negative. �
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Proposition 6 (The induced Orientation on a Boundary). Let M be an
oriented smooth manifold with boundary.
Then ∂M is orientable,
and the orientation determined by any outward-pointing vector field along ∂M is
independent of the choice of vector field.

Remark. The orientation on ∂M determined by any outward-pointing vactor field
is called the induced orientation or the Stokes orientation on ∂M .

Proof. Let n =dimM , and let Ω be an orientation form for M .
By Lemma 5, there exists a smooth outward-pointing vector field ν along ∂M .
By Proposition 2, the (n− 1)-form νyΩ

∣∣∣
∂M

is an orientation form for ∂M .
Hence ∂M is orientable.
It remains to claim: this orientation is independent of the choice of ν.
— Indeed, let (x1, · · · , xn) be smooth boundary coordinates for M in a neighbor-

hood of p ∈ ∂M .
– Replacing x1 by −x1 if necessary, we may assume that they are oriented coordi-

nates, which implies that

Ω = f dx1 ∧ · · · ∧ dxn, for some strictly positive function f.

Thus, using the antiderivative property of iX , we have

(νyΩ)
∣∣∣
∂M

= f

n∑

i=1

(−1)i−1dxi(ν)dx1
∣∣∣
∂M

∧ · · · ∧ d̂xi ∧ · · · ∧ dxn
∣∣∣
∂M

.

Since xn = 0 along Γ, the restriction dxn
∣∣∣
∂M

≡ 0. Therefore

(νyΩ)
∣∣∣
∂M

= (−1)n−1f dxn(ν)dx1
∣∣∣
∂M

∧ · · · ∧ dxn−1
∣∣∣
∂M

.

Since dxn(X) = Xn < 0, (νyΩ)
∣∣
∂M

is s positive multiple of

(−1)ndx1
∣∣∣
∂M

∧ · · · ∧ dxn−1
∣∣∣
∂M

.

— If ν̃ is any other outward-pointing vector field,
the same computation shows that (ν̃yΩ)

∣∣
∂M

is a positive multiple of (νyΩ)
∣∣
∂M

.
– This proves that X and X̃ determine the same orientation of ∂M . �

Example. The proposition proves that Sn is oriented, because it is the boundary
of the closed unit ball.

Example. Let us determine the induced orientation on Rn
+ when Rn

+ itself has the
standard orientation inherited from Rn.
— We can identify ∂Rn

+ with Rn−1 under the correspondence

(x1, · · · , xn−1, 0) ↔ (x1, · · · , xn−1).
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Since the vector field −∂/∂xn is outward-pointing along ∂Rn
+,

the standard coordinate frame for Rn−1 is positively oriented for Rn
+ iff

[− ∂

∂xn
,
∂

∂x1
, · · · , ∂

∂xn−1
]

is the standard orientation for Rn. This orientation satisfies

[− ∂

∂xn
,
∂

∂x1
, · · · , ∂

∂xn−1
] = − [

∂

∂xn
,
∂

∂x1
, · · · , ∂

∂xn−1
]

=(−1)n[
∂

∂x1
, · · · , ∂

∂xn−1
,
∂

∂xn
].

Thus the induced orientation for ∂Rn
+ is equal to the standard orientation for

Rn−1 when n is even, but it is opposite to the standard orientation when n is
odd.

• For many purposes, the most useful way of describing submanifolds is by means
of local parametrizations.

– The next lemma gives a useful criterion for checking whether a local parametriza-
tion of a boundary is orientation-preserving.

Lemma 7. Let M be an oriented n-manifold with boundary,
and let X : U → M be a smooth local parametrization of ∂M , where U is a
connected open subset of Rn−1.
Suppose that for some b < c ∈ R, X admits an extnsion to a smooth immersion

X̃ : (b, c] × U →M

such that X̃(c, x) = X(x).
Then X is orientation-preserving for ∂M (with the induced orientation) iff X̃ is
orientation-preserving for M .

Proof. Let a be an arbitrary point of U , and let

p = X(a) = X̃(c, a) ∈ ∂M.

The hypothesis that X̃ is an immersion means that

X̃∗ : (TcR ⊕ TaRn−1) → TpM

is injective. Since the restriction of X̃∗ to TaRn−1 is equal to

X∗ : TaRn−1 → Tp∂M,

which is already injective, it follows that

X̃∗(
∂

∂s
) /∈ Tp∂M where s denotes the coordinate on (b, c].
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• Claim: X̃∗( ∂
∂s )

∣∣
(c,a)

is outward-pointing at p.
Indded, define a smooth curve γ : [0, ε] →M by

γ(t) = X̃(c− t, a).

This curve satisfies

γ(0) = p γ′(0) = −X̃∗(
∂

∂s
)
∣∣
(c,a)

.

It follows that −X̃∗( ∂
∂s )

∣∣
(c,a)

is inwrad-pointing.

• By continuity, X̃∗( ∂
∂s )

∣∣
(c,a)

is outward-pointing on all of X(U).

• By definition of the induced orientation on ∂M ,
X̃ is orientation-preserving for M
⇔ (X̃∗

∂
∂s , X̃∗

∂
∂x1 , · · · , X̃∗

∂
∂xn−1 is oriented for TM .

⇔ (X∗
∂

∂x1 , · · · , X∗
∂

∂xn−1 ) is oriented for T∂M .
⇔ X is orientation-preserving for ∂M . �

Example. Spherical coordinates yield a smooth local parametrization of S2 as
follows.
Let U be the open rectangle (0, π) × (0, 2π) ⊂ R2,
and let X : U → R3 be the following map

X(ϕ, θ) = (sinϕ cos θ, sinϕ sin θ, cosϕ),

which is the restriction of the 3-dimensional spherical coordinate parametrization
X̃ : (0, 1] × U → B3 defined by

X̃(ρ, ϕ, θ) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ),

By direct computation, the Jacobian determinant of X̃ is ρ2 sinϕ, which is positive
on (0, 1) × U .
By Lemma 7, X is orientation-preserving.


