Manifolds with Boundary

e The model for manifolds with boundary are the closed n-dimensional upper
half-space R} C R", defined as

R% = {(z',---,2") e R" : 2" > 0}
Use IntR? and JR”} to denote the interior and boundary of R} :

Int R} ={(z',---,2") e R" : 2" > 0}
OR" ={(z',-- ,2™) € R" : 2" = 0}.
Definition. An n-dimensional topological manifold with boundary is a sec-
ond countable Hausdorff space M, equipped with coordinate charts (U;, ;) such
that
(i) the U;’s form an open covering of M ;
(i) @; is a homeomorphism from U; to a relatively open subset of R'!.

e We call (U, ) an interior chart if o(U) C IntR"}, and a boundary chart if
e(U)NORY # 0.

Definition. If U is an open subset of R}, a map F' : U — R¥ is smooth if for
each x € U, there exists
(1) an open subset of OR'} and
(2) a smooth map F : V — R¥ with F vern = F
+
Example. Let B? C R? be the open unit disk, let

U=B>NR".

(1) Define f: U — R by

flz,y) = V1 -2 —y2

Because f extends smoothly to B? (by the same formula), f is a smooth
function on U.
(2) Define g : U — R by
9(x.y) =y
Although g is continuous on U and smooth in UNInt R, it has no extension
to any neighborhood of the origin in R?, (because g—z —ooasy —0.)
Thus g is not smooth on U.

Definition. An n-dimensional smooth manifold with boundary is topological
manifold with boundary M, equipped with coordinate charts (U;, ;) such that
whenerver U; N U; # () for any pair of indices i # j, the transition function

piow; o;(UiNUj) — oi(UiNU;)

is a smooth diffeomorphism.
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Orientation of Hypersurfaces

e If M is an oriented maifold and N is a submanifold of M, N may not inherit an
orientation from M, even if N is embedded.

e (learly, it is not sufficient to restrict an orientation form from M to N, since
the restriction of an n-form to a manifold of lower dimension must necessarily
be zero.

Example. The Moobius band is not orientable, even though it can be embedded

in R3.

e With one extra piece of information (a certain kind of vector field along the
hypersurface), we can use an orientation on M to induce an orientation on any
hypersurface S C M.

Definition. Let V' be a finite-dimensional vector space, and let X € V. We define
a linear map
ix : AF(V) = AFL(V),

called interior multiplication or contraction with X, by
sz(S/I7 e 7Y]€—1) = W(X, Y17 e 7Y]€—1)'

In other words, i xw is obtained from w by inserting X into the first slot.
— By convention, we set ixw to be zero when w is a 0-covector (i.e. a number).
— Another common notation is

X|w=ixw.

Definition. On a smooth manifold M, interior multiplication extends naturally to
vector fields and differential forms, simply by letting it act pointwise: If X € T (M)
and w € A*(M), define a (k — 1)-form X .w = ixw by

(X |w)p = Xpwp.

Definition. Suppose M is a smooth manifold and S C M is a submanifold (im-

mersed or embedded).

e A vector field along S is a continuous map X : S — T M with the property that
X, €T,M for eachp e S.

® A vector X, € T, M at some point p € S is said to be transverse to S if T, M
is spanned by X, and T},S.

® A vector field X along S is transverse to S if X, is transverse to S at each
peSs.

Proposition 1. Suppose M is an oriented smooth n-manifold, S is an immersed
hypersurface in M, and X is a transvese vector field along S.

Then S has a unique orientation such that for each p € S, (Ey,- - ,FE,_1) is an
oriented basis for T),S iff (X,, En,--- ,En_1) is an oriented basis for T, M.

e If Q) is an orientation form for M, then (X JQ)‘ is an orientation form for S
s

w.r.t. this orientation.

Proof. Let Q be an orientation for M. Then w = (X_IQ)’S is an (n—1)-form on S.



— To show that X () is an orientation form for S, it suffices to
claim: w never vanishes.
— Indeed, given any basis (E1, - -, E,—1) for T,,S, the fact that X is transverse to
S implies that (X, Eq,--- , E,_1) is a basis for T,M.
— The fact that € is nonvanishing implies that

wp(Elu' o 7E’n—l) = XJQ(E17" . 7E’n—l) = Q(XuElu' o 7En—1) # 0.

Since wy(E1,- -+, Ey) > 0iff Q,(X,, Ev, - -+, E,) > 0, the orientation determined
by w is the one defined in the statement of the proposition. O

Example. Considering S™ as a hypersurface in R™*!, the vector field

)
X =a"'—
x@xl

along S™ is easily seen to be transverse, so it induces an orientation on S™.

Lemma 2. Let M be an oriented smooth manifold. Suppose S C M is a regular
level set of a smooth function f : M — R. Then S is orientable.

Proof. Let g be any Riemannian metric on M, and let
X =grad f| .
grad f B

The hypotheses imply that X is a transverse vector field along S, so the result
follows from Proposition 1. [

e Interior multiplication shares two important properties with exterior differenti-
ation: They are both antiderivations whose square is zero.

Lemma 3. Let V be a finite-dimensional vector space and X € V.

(a) iX 9 iX =0.
(b) ix is an antiderivation: If w is a k-covector and 7 is an {-covector,

ix (@ An) = (ixw) An+ (~1kw A (ixn).

Proof. (a) On k-covectors for k > 2, part (a) is immediate from the definition,
because any alternating tensor gives zero when two of its arguments are identical.
(b) It suffices to consider the case in which both w and 7 are wedge products of

1-covectors.
For this, it suffices to prove the following general formula for covectors w?, - - - | w"
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— To prove this, let us write X1 = X and apply both sides to vectors (Xa, - , Xj);

then what we have to prove is
(*) (WA AW (X, Xg)

k
=S ()T X)W A AW A k) (X, X).
=1

The left-hand side of (*) is the determinant of the matrix X = (w'(Xj;)).
To simplify the right-hand side, let X; denote the (k — 1) x (k — 1) minor of X
obtained by deleting the ith row and jth column. Then the right-hand side of
(*) is
k

D (—1) 7w (X7) det X5

i=1
This is just the expansion of det X by minors along the first column, and therefore
is equal to detX. [0



Boundary Orientations

We will define a canonical orientation on the boundary of any oriented smooth
manifold with boundary.

Definition. If M is a smooth manifold with boundary, OM is an embedded hy-
persurface in M, and every point p € OM is in the domain of a smooth boundary
chart (U, ) such that (U NOM) is the slice o(U) N OR .

o Let p € OM. A vector v € T,M is said to be inward-pointing if v ¢ T,0M
and for some € > 0, there exists a smooth curve segment ~ : [0,e] — M such
that «(0) = p and v'(0) = v.

e A vector v € T,M is said to be outward-pointing if —v is inward pointing.

e The following lemma gives another characterization of inward-pointing vectors,
which is usually much more easier to check.

Lemma 4. Suppose M is a smooth manifold with boundary, p € OM, and (x*)
are any smooh smooth boundary coordinates in a neigborhood of p.

The inward-pointing vectors in T}, M are precisely those with positive x" component,
the outward-pointing ones are those with negative x™-component.

Lemma 5. If M is any smooth manifold with boundary, there is a smooth outward
pointing vector field along OM .

Proof. Cover a neighborhood of 9M by smooth boundary charts {(Us, ¢a)}-
— In each such chart

0

Yo = " gm

OMNU,

is a smooth vector field along OM N Uy, which is outward-pointing by Lemma 4.
— Let {¢)o} be a smooth partition of unity subordinate to the cover {OM NU,} of
OM , and define a global vector field v along OM by

V= Zd)oya.

Clearly v is a smooth vector field along OM.
e To show that it is outward-pointing, let (y!,--- ,y™) be any smooth boundary
coordinates in a neighborhood of p € OM.
— Because each v, is outward-pointing, it satisfies dy"(v,) < 0.
The y™-component of v at p satisfies

dy" (vp) = Z%(p)dy"(va p)'

This sum is strictly negative, because each term is nonpositive and at least one
term is negative. [
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Proposition 6 (The induced Orientation on a Boundary). Let M be an
oriented smooth manifold with boundary.

Then OM is orientable,

and the orientation determined by any outward-pointing vector field along OM is
independent of the choice of vector field.

Remark. The orientation on M determined by any outward-pointing vactor field
is called the induced orientation or the Stokes orientation on M.

Proof. Let n =dim M, and let €2 be an orientation form for M.

By Lemma 5, there exists a smooth outward-pointing vector field v along OM.

By Proposition 2, the (n — 1)-form I/_lQ’a is an orientation form for OM.

M

Hence OM is orientable.

It remains to claim: this orientation is independent of the choice of v.

— Indeed, let (z',---,2™) be smooth boundary coordinates for M in a neighbor-
hood of p € OM.

— Replacing o' by —a! if necessary, we may assume that they are oriented coordi-
nates, which implies that

Q= fdx' A---Adz"™, for some strictly positive function f.

Thus, using the antiderivative property of i x, we have

n

Q’ = —1)"dz! dl‘ Ao Adzi A - A da"
(va )BM f;( ) x'(v)dx ot T T

oM

Since ™ = 0 along I, the restriction dz™ = (0. Therefore
M

_ (_1\n—1 n 1 n—1
(VJQ)L)M = (=1)" ' f da" (v)da ]W Ao Ada ‘aM.
Since dz"(X) = X™ < 0, (I/_IQ)|6M[ is s positive multiple of
(—1)"dx1‘ ARERWA dx”fll .
oM oM

— If v is any other outward-pointing vector field,

the same computation shows that (7.0 is a positive multiple of (v.Q

)’8M )‘aM

— This proves that X and X determine the same orientation of 9M. O
Example. The proposition proves that S™ is oriented, because it is the boundary
of the closed unit ball.

Example. Let us determine the induced orientation on R’} when R?} itself has the
standard orientation inherited from R".
— We can identify OR"} with R™! under the correspondence

(xlv" ' ,xn7170) e (xlv" ! 7xn71)'



Since the vector field —9/dz™ is outward-pointing along IR},
the standard coordinate frame for R"~! is positively oriented for R iff

o 0 0

[_(%c"’ orl’ 7 8:6"—1]
is the standard orientation for R™. This orientation satisfies

S R R R R
dzn’ 9xl” T Pxn—1 T 9pn’ 9zl 7 §pn—l
nt O 0 0
(_1) [@77%5%]

Thus the induced orientation for R"} is equal to the standard orientation for
R"~! when n is even, but it is opposite to the standard orientation when n is
odd.

e For many purposes, the most useful way of describing submanifolds is by means
of local parametrizations.

— The next lemma gives a useful criterion for checking whether a local parametriza-
tion of a boundary is orientation-preserving.

Lemma 7. Let M be an oriented n-manifold with boundary,

and let X : U — M be a smooth local parametrization of OM, where U is a
connected open subset of R" 1.

Suppose that for some b < ¢ € R, X admits an extnsion to a smooth immersion

X:(b|xU—M

such that X (c,z) = X ().
Then X is orientation-preserving for OM (with the induced orientation) iff X is
orientation-preserving for M.

Proof. Let a be an arbitrary point of U, and let

p=X(a) = X(c,a) € OM.
The hypothesis that X is an immersion means that
X, (T.R® T,R"Y) — T,M
is injective. Since the restriction of X, to T,R" 1 is equal to
X, : T,R" - T,0M,

which is already injective, it follows that

>, 0
X*(g) ¢ T,0M where s denotes the coordinate on (b, c].



e Claim: )N( % ’( is outward-pointing at p.
Indded, define a smooth curve 7y : [0,e] — M by

v(t) = X(c—t,a).
This curve satisfies
J— / —_— Y —_—
Y0 =p  7'(0) = =Xu(7)| (00

Q
s |( c,a)
’ o 8 outward-pointing on all of X (U).

It follows that —X is inwrad-pointing.

6
e By continuity, )? ( )

e By definition of the induced orientation on 9M,

X is orientation-preserving for M
(X 0 X, 2 ... X*azf : is oriented for T'M.

*657 *6117

& (X, 821 s, X 612 1) is oriented for TOM.
< X is orientation-preserving for oM. O

Example. Spherical coordinates yield a smooth local parametrization of S? as

follows.
Let U be the open rectangle (0,7) x (0,27) C R?,
and let X : U — R3 be the following map

X (p,0) = (sinpcos,sinpsin b, cos p),

which is the restriction of the 3-dimensional spherical coordinate parametrization
X :(0,1] x U — B3 defined by

)N((p, ©,0) = (psinpcos b, psin psinb, p cos p),
By direct computation, the Jacobian determinant of X is p? sin ¢, which is positive

n (0,1) x U.
By Lemma 7, X is orientation-preserving.



