
The Tangent-Cotangent Isomorphism

• A very important feature of any Riemannian metric is that it provides a nat-
ural isomorphism between the tangent and cotangent bundles.

• Let (M, g) be a Riemannian manifold. For each point p ∈ M , there is a positive-
definite inner product

gp : TpM × TpM → R.

By setting
g̃p(X)(Y ) = gp(X, Y ).

we obtain a linear map
g̃p : TpM → T ∗

p M.

• Claim: g̃p is an isomorphism; i.e. by means of the metric gp we can identify
the tangent space TpM and the cotangent space T ∗

p M . Indeed,

(1) g̃p is injective, since g̃p(X) = 0 ⇒ g̃p(X)(X) = 0 i.e.⇒ g(X, X) = 0 ⇒ X = 0.
(2) On the other hand, we have dim TpM=dimT ∗

p M , and hence g̃p is bijective.
— We use the same symbol for both the pointwise bundle map g̃ : TM → T ∗M

and the linear map on sections g̃ : Γ(TM) → Γ(T ∗M); namely, we have the
following.

Definition. Given a Riemannian metric g on a manifold M , define a bundle map

g̃ : TM → T ∗M

as follows: ∀p ∈ M and ∀XP ∈ TpM , we let g̃(Xp) ∈ T ∗
p M be the covector defined

by

g̃(Xp)(Yp) = gp(Xp, Yp), ∀Yp ∈ TpM.

• To see that this is a smooth bundle map, it is easiest to consider its action on
smooth vector fields:

g̃(X)(Y ) = g(X, Y ), ∀X, Y ∈ T (M).

— Because g̃(X)(Y ) is linear over C∞(M) as a function of Y , it follows that g̃(X)
is a smooth covector field;
and because g̃(X)(Y ) is linear over C∞(M) as a function of X , this defines g̃ as
a smooth bundle map.

• If X and Y are smooth vector fields, in smooth coordinates we can write

g̃(X)(Y ) = gijX
iY j ,

which implies that the covector field g̃(X) has the coordinate expression

g̃(X) = gijX
idyj .
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In other words, g̃ is the bundle map whose matrix w.r.t. coordinate frames for
TM and T ∗M is the same as the matrix of g itself.

• It is customary to denote the component of the covector field g̃(X) by

Xj = gijX
i,

so that
g̃(X) = Xjdyj .

— Because of this, one says that g̃(X) is obtained from X by lowering an index.
— The notation X[ is frequently used for g̃(X).

• The matrix of the inverse map g̃−1 : T ∗
p M → TpM is thus the inverse of (gij).

(Because (gij) is the matrix of the isomorphism g̃ , it is invertible at each point.)
Let (gij) denote the matrix-valued function whose value at p ∈ M is the inverse
of the matrix (gij(p)), so that gijgjk = gkjg

ij = δi
k.

� For a covector field ω ∈ T ∗M , g̃−1(ω) has the coordinate representation

g̃−1(ω) = ωi ∂

∂xi
, where ωi = gijωj .

— We use tha symbol ω] for g̃−1(ω),
and say that ω] is obtained from ω by raising the index.

• ω] is a vector, which we visualize as a (sharp) arrow;
X[ is a covector, which we visaulize by means of its (flat) level sets.

• The most important use of the sharp operation is to reinstate the gradient as
a vector field on a Riemannian manifold.

Definition. For any smooth real-valued function f on a Riemannian manifold
(M, g), we define a vector field called the gradient of f by

gradf = (df)] = g̃−1(df).

• Unravelling the definition, we see that ∀X ∈ T (M), it satisfies

〈grad f, X〉g = g̃(grad f)(X) = df(X) = Xf.

Thus gradf is the unique vector field that satisfies

〈gradf, X〉g = Xf, for every vector field X,

or equivalently,
〈grad f, ·〉g = df.

• In smooth coordinates, gradf has the expression

gradf = gij ∂f

∂xi

∂

∂xj
.



3

— In particular, this shows that gradf is smooth.

Example. On Rn with the Euclidean metric, this reduces to

grad f = δij ∂f

∂xi

∂

∂xj
=

n∑

i=1

∂f

∂xi

∂

∂xi
.

Example. The matrix of g in polar coordinates is

(
1 0
0 r2

)

so its inverse matrix is (
1 0
0 1/r2

)

Inserting this into the formula for the gradient, we obtain

grad f =
∂f

∂r

∂

∂r
+

1
r2

∂f

∂θ

∂

∂θ
.

grad f =
n∑

i=1

∂f

∂xi

∂

∂xi
.

• In the general case, suppose grad f has no zero point in M . Then we have the
notion of “level hypersurface”, namely, a hypersurface on which f is constant
and grad f is perpendicular to each level hypersurface.
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• For any two 1-forms ω and η, we have their inner product 〈ωp, ηp〉 at each point
p, and so we have a function 〈ω, η〉 on M .

• We shall generalize this fact to the case of k-forms.

� Indeed, let V be a vector space.
(i) Using a positive-definite inner product given on V ,

we induce an isomorphism V ∼= V ∗ and hence an inner producct in V ∗ as well.
(ii) Let k ≥ 1. For two elements of the form α1 ∧ · · · ∧ αk and β1 ∧ · · · ∧ βk (αi,

βj ∈ V ∗), we define the value of their inner product to be

(α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk) = det(〈αi, βj〉).

That this value is independent of the way the two elements are repre-
sented follows from the properties of exterior product and determinant.

— We now extend the inner product so defined to the whole space ΛkV ∗ by linearity.
– If e1, · · · , en is an orthonormal basis of V and θ1, · · · , θn the dual basis, then all

the elements of the form

θi1 ∧ · · · ∧ θik
, 1 ≤ i1 < · · · < ik ≤ n,

form an orthonormal basis of ΛkV ∗.
– In this way, for any two k-forms ω and η on M , we have the inner product
〈ωp, ηp〉 at each point p, and so we have a function 〈ω, η〉 on M .

(iii) Note that in the special case k = 0, we define the inner product between functions
f and g at p.

� We also define the inner product between two differential forms of different degree
to be 0.

Example 6. For two 2-forms on R3

ω =adx1 ∧ dx2 + bdx2 ∧ dx3 + cdx3 ∧ dx1

η =edx1 ∧ dx2 + fdx2 ∧ dx3 + gdx3 ∧ dx1,

we have 〈ω, η〉 = ae + bf + cg.


