The Tangent-Cotangent Isomorphism

- A very important feature of any Riemannian metric is that it provides a natural isomorphism between the tangent and cotangent bundles.
- Let (M, q) be a Riemannian manifold. For each point $p \in M$, there is a positivedefinite inner product

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

By setting

$$\widetilde{g}_p(X)(Y) = g_p(X, Y).$$

we obtain a linear map

$$\widetilde{g}_p: T_pM \to T_p^*M.$$

- Claim: \tilde{g}_p is an isomorphism; i.e. by means of the metric g_p we can identify the tangent space T_pM and the cotangent space T_p^*M . Indeed,
 - (1) \widetilde{g}_p is injective, since $\widetilde{g}_p(X) = 0 \Rightarrow \widetilde{g}_p(X)(X) = 0 \stackrel{\text{i.e.}}{\Rightarrow} g(X, X) = 0 \Rightarrow X = 0$. (2) On the other hand, we have dim $T_pM = \dim T_p^*M$, and hence \widetilde{g}_p is bijective.
- We use the same symbol for both the pointwise bundle map $\tilde{g}: TM \to T^*M$ and the linear map on sections $\tilde{g}: \Gamma(TM) \to \Gamma(T^*M)$; namely, we have the following.

Definition. Given a Riemannian metric q on a manifold M, define a bundle map

$$\widetilde{g}:TM \to T^*M$$

as follows: $\forall p \in M \text{ and } \forall X_P \in T_pM$, we let $\widetilde{g}(X_p) \in T_p^*M$ be the covector defined by

$$\widetilde{g}(X_p)(Y_p) = g_p(X_p, Y_p), \quad \forall Y_p \in T_p M.$$

• To see that this is a **smooth** bundle map, it is easiest to consider its action on smooth vector fields:

$$\widetilde{g}(X)(Y) = g(X,Y), \quad \forall X, Y \in \mathcal{T}(M).$$

- Because $\widetilde{g}(X)(Y)$ is linear over $C^{\infty}(M)$ as a function of Y, it follows that $\widetilde{g}(X)$ is a smooth covector field; and because $\widetilde{g}(X)(Y)$ is linear over $C^{\infty}(M)$ as a function of X, this defines \widetilde{g} as a smooth bundle map.
- If X and Y are smooth vector fields, in smooth coordinates we can write

$$\widetilde{g}(X)(Y) = g_{ij}X^iY^j$$

which implies that the covector field $\tilde{g}(X)$ has the coordinate expression

$$\widetilde{g}(X) = g_{ij} X^i dy^j.$$

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

 $\mathbf{2}$

In other words, \tilde{g} is the bundle map whose matrix w.r.t. coordinate frames for TM and T^*M is the same as the matrix of g itself.

• It is customary to denote the component of the covector field $\widetilde{g}(X)$ by

$$X_j = g_{ij} X^i,$$

so that

$$\widetilde{g}(X) = X_j dy^j$$

— Because of this, one says that $\tilde{g}(X)$ is obtained from X by lowering an index.

- The notation X^{\flat} is frequently used for $\widetilde{q}(X)$.
- The matrix of the inverse map $\tilde{g}^{-1}: T_p^*M \to T_pM$ is thus the inverse of (g_{ij}) . (Because (g_{ij}) is the matrix of the isomorphism \tilde{g} , it is invertible at each point.) Let (g^{ij}) denote the matrix-valued function whose value at $p \in M$ is the inverse of the matrix $(g_{ij}(p))$, so that $g^{ij}g_{jk} = g_{kj}g^{ij} = \delta_k^i$. \odot For a covector field $\omega \in \mathcal{T}^*M$, $\tilde{g}^{-1}(\omega)$ has the coordinate representation

$$\widetilde{g}^{-1}(\omega) = \omega^i \frac{\partial}{\partial x^i}, \text{ where } \omega^i = g^{ij} \omega_j.$$

- We use the symbol ω^{\sharp} for $\tilde{g}^{-1}(\omega)$, and say that ω^{\sharp} is obtained from ω by raising the index.
- ω^{\sharp} is a vector, which we visualize as a (sharp) arrow; X^{\flat} is a covector, which we visualize by means of its (flat) level sets.
- The most important use of the sharp operation is to reinstate the **gradient** as a vector field on a Riemannian manifold.

Definition. For any smooth real-valued function f on a Riemannian manifold (M,g), we define a vector field called the **gradient** of f by

grad
$$f = (df)^{\sharp} = \tilde{g}^{-1}(df).$$

• Unravelling the definition, we see that $\forall X \in \mathcal{T}(M)$, it satisfies

$$\langle \operatorname{grad} f, X \rangle_g = \widetilde{g}(\operatorname{grad} f)(X) = df(X) = Xf$$

Thus grad f is the unique vector field that satisfies

$$\operatorname{grad} f, X\rangle_q = Xf$$
, for every vector field X,

or equivalently,

$$\langle \operatorname{grad} f, \cdot \rangle_g = df$$

• In smooth coordinates, $\operatorname{grad} f$ has the expression

grad
$$f = g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j}$$
.

— In particular, this shows that $\operatorname{grad} f$ is smooth.

Example. On \mathbb{R}^n with the Euclidean metric, this reduces to

grad
$$f = \delta^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} = \sum_{i=1}^n \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^i}.$$

Example. The matrix of \overline{g} in polar coordinates is

$$\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$

so its inverse matrix is

$$\begin{pmatrix} 1 & 0 \\ 0 & 1/r^2 \end{pmatrix}$$

Inserting this into the formula for the gradient, we obtain

grad
$$f = \frac{\partial f}{\partial r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial f}{\partial \theta} \frac{\partial}{\partial \theta}.$$

grad $f = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \frac{\partial}{\partial x_i}.$

• In the general case, suppose grad f has no zero point in M. Then we have the notion of "level hypersurface", namely, a hypersurface on which f is constant and grad f is perpendicular to each level hypersurface.

- For any two 1-forms ω and η , we have their inner product $\langle \omega_p, \eta_p \rangle$ at each point p, and so we have a function $\langle \omega, \eta \rangle$ on M.
- We shall generalize this fact to the case of *k*-forms.
- $\odot\,$ Indeed, let V be a vector space.
- (i) Using a positive-definite inner product given on V,
- we induce an isomorphism $V \cong V^*$ and hence an inner product in V^* as well. (ii) Let $k \ge 1$. For two elements of the form $\alpha_1 \wedge \cdots \wedge \alpha_k$ and $\beta_1 \wedge \cdots \wedge \beta_k$ (α_i ,
- $\beta_j \in V^*$), we define the value of their inner product to be

$$(\alpha_1 \wedge \dots \wedge \alpha_k, \beta_1 \wedge \dots \wedge \beta_k) = \det(\langle \alpha_i, \beta_j \rangle).$$

That this value is **independent of the way the two elements are repre-sented** follows from the properties of exterior product and determinant.

- We now extend the inner product so defined to the whole space $\Lambda^k V^*$ by linearity.
- If e_1, \dots, e_n is an orthonormal basis of V and $\theta_1, \dots, \theta_n$ the dual basis, then all the elements of the form

$$\theta_{i_1} \wedge \dots \wedge \theta_{i_k}, \ 1 \le i_1 < \dots < i_k \le n,$$

form an orthonormal basis of $\Lambda^k V^*$.

- In this way, for any two k-forms ω and η on M, we have the inner product $\langle \omega_p, \eta_p \rangle$ at each point p, and so we have a function $\langle \omega, \eta \rangle$ on M.
- (iii) Note that in the special case k = 0, we define the inner product between functions f and g at p.
 - \odot We also define the inner product between two differential forms of different degree to be 0.

Example 6. For two 2-forms on \mathbb{R}^3

$$\begin{split} &\omega = a dx_1 \wedge dx_2 + b dx_2 \wedge dx_3 + c dx_3 \wedge dx_1 \\ &\eta = e dx_1 \wedge dx_2 + f dx_2 \wedge dx_3 + g dx_3 \wedge dx_1, \end{split}$$

we have $\langle \omega, \eta \rangle = ae + bf + cg$.