The Tangent-Cotangent Isomorphism
e A very important feature of any Riemannian metric is that it provides a nat-

ural isomorphism between the tangent and cotangent bundles.

e Let (M, g) be a Riemannian manifold. For each point p € M, there is a positive-
definite inner product
gp : TpyM x T,M — R.

By setting
gp(X)(Y) = gp(X,Y).

we obtain a linear map
gp : TyM — T M.

e Claim: g, is an isomorphism; i.e. by means of the metric g, we can identify
the tangent space T, M and the cotangent space T7 M. Indeed,

(1) gp is injective, since gp(X) =0= g,(X)(X) =0 S 9g(X, X)=0=X=0.
(2) On the other hand, we have dim T;, M =dim T,y M, and hence g, is bijective.

— We use the same symbol for both the pointwise bundle map g : TM — T*M
and the linear map on sections g : I'(T'M) — TI'(T*M); namely, we have the
following.

Definition. Given a Riemannian metric g on a manifold M, define a bundle map
g:TM —T*M
as follows: Vp € M and VXp € T,M, we let g(X,) € T,y M be the covector defined
b
! 9(Xp)(Yp) = gp(Xp, Yp), VY, € T)M.

e To see that this is a smooth bundle map, it is easiest to consider its action on
smooth vector fields:

9X)Y)=9g(X)Y), VXY € T(M).

— Because §(X)(Y) is linear over C°°(M) as a function of Y, it follows that g(X)
is a smooth covector field;
and because g(X)(Y) is linear over C*°(M) as a function of X, this defines g as
a smooth bundle map.

e If X and Y are smooth vector fields, in smooth coordinates we can write
gX)(Y) = gi; XY,

which implies that the covector field g(X) has the coordinate expression
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In other words, g is the bundle map whose matrix w.r.t. coordinate frames for
TM and T*M is the same as the matrix of g itself.

e It is customary to denote the component of the covector field g(X) by
Xj = gini,
so that _
9(X) = X;dy’.
— Because of this, one says that g(X) is obtained from X by lowering an index.

— The notation X is frequently used for g(X).

e The matrix of the inverse map g~' : Ty M — T, M is thus the inverse of (gi;).
(Because (g;;) is the matrix of the isomorphism g , it is invertible at each point.)
Let (¢9*) denote the matrix-valued function whose value at p € M is the inverse
of the matrix (g;;(p)), so that ¢" gjr = gx;9" = 6},.

® For a covector field w € 7*M, g~1(w) has the coordinate representation
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7 (w) = where w' = gYw;.

dxt’
— We use tha symbol w* for g~ (w),
and say that w! is obtained from w by raising the index.

e W is a vector, which we visualize as a (sharp) arrow;
X" is a covector, which we visaulize by means of its (flat) level sets.

e The most important use of the sharp operation is to reinstate the gradient as
a vector field on a Riemannian manifold.

Definition. For any smooth real-valued function f on a Riemannian manifold
(M, g), we define a vector field called the gradient of f by

grad f = (df)* = g~ '(df).
e Unravelling the definition, we see that VX € T (M), it satisfies
(grad f, X)g = g(grad f)(X) = df (X) = X .

Thus grad f is the unique vector field that satisfies
(grad f, X)), = X f, for every vector field X,

or equivalently,
(grad f, ), = df.

e In smooth coordinates, grad f has the expression
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— In particular, this shows that grad f is smooth.

Example. On R™ with the Euclidean metric, this reduces to

grad f = 6%
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Example. The matrix of § in polar coordinates is

so its inverse matrix is
1 0
0 1/r?
Inserting this into the formula for the gradient, we obtain
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e In the general case, suppose grad f has no zero point in M. Then we have the
notion of “level hypersurface”, namely, a hypersurface on which f is constant
and grad f is perpendicular to each level hypersurface.



(iii)
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For any two 1-forms w and 7, we have their inner product (wp,7,) at each point
p, and so we have a function (w,n) on M.

We shall generalize this fact to the case of k-forms.

Indeed, let V' be a vector space.

Using a positive-definite inner product given on V,

we induce an isomorphism V =2 V* and hence an inner producct in V* as well.
Let k > 1. For two elements of the form a3 A--- A ag and B A -+ A Bk (au,
B; € V*), we define the value of their inner product to be

(041 A Nag,Br A A 51@) = det(<ai76j>)'

That this value is independent of the way the two elements are repre-
sented follows from the properties of exterior product and determinant.

We now extend the inner product so defined to the whole space A*V* by linearity.
If eq,--- , e, is an orthonormal basis of V and 61, - - , 8,, the dual basis, then all
the elements of the form

9i1/\-~-/\0ik, 1<ip<--- < <n,

form an orthonormal basis of AV *.

In this way, for any two k-forms w and n on M, we have the inner product
(wp,Mp) at each point p, and so we have a function (w,n) on M.

Note that in the special case k = 0, we define the inner product between functions
f and g at p.

We also define the inner product between two differential forms of different degree
to be 0.

Example 6. For two 2-forms on R3

w =adx1 N\ dxo + bdxo A dxg + cdrs A dry
n =edxy1 N\ dxo + fdxs N dxs + gdrs A dxy,

we have (w,n) = ae +bf + cg.



