Stokes's Theorem

• Stoke's theorem is a far-reaching generalization of the fundamental theorem of calculus and of the classical theorems of vector calculus.

Stokes's Theorem. Let M be a smooth, oriented n-dimensional manifold with boundary. Let ω be a compactly supported smooth (n-1)-form on M. Then

(1)
$$\int_{M} d\omega = \int_{\partial M} \omega.$$

Remarks. (1) ∂M is understood to have induced (Stokes) orientation, and the ω on the right-hand side is to be interpreted as $\omega|_{\partial M}$.

(2) If $\partial M = \emptyset$, then the right-hand side is to be interpreted as zero.

(3) If dim M = 1, the right-hand side is a finite sum.

Proof. (I) Begin by considering a special case: Suppose $M = \mathbb{R}^n_+$. Then the fact that ω has compact support means that $\exists a \text{ number } R > 0$ such that supp ω is contained in the rectangle

$$A = [-R, R] \times \dots \times [-R, R] \times [0, R].$$

We can write ω in standard coordinates as

$$\omega = \sum_{i=1}^{n} \omega_i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n.$$

$$\therefore d\omega = \sum_{i=1}^{n} d\omega_i \wedge dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$

$$= \sum_{i=1}^{n} \frac{\partial \omega_i}{\partial x^j} dx^j \wedge dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \frac{\partial \omega_i}{\partial x^i} dx^1 \wedge \dots \wedge dx^n.$$

$$\therefore \int_{\mathbb{R}^n_+} d\omega = \sum_{i=1}^{n} (-1)^{i-1} \int_A \frac{\partial \omega_i}{\partial x^i} dx^1 \wedge \dots \wedge dx^n$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \int_0^R \int_{-R}^R \dots \int_{-R}^R \frac{\partial \omega_i}{\partial x^i} (x) dx^1 \dots dx^n$$

By the fundametal theorem of calculus, the terms with $i \neq n$ reduce to

$$\sum_{i=1}^{n-1} (-1)^{i-1} \int_0^R \int_{-R}^R \cdots \int_{-R}^R \frac{\partial \omega_i}{\partial x^i}(x) \, dx^1 \cdots dx^n$$
$$= \sum_{i=1}^n (-1)^{i-1} \int_0^R \int_{-R}^R \cdots \int_{-R}^R \frac{\partial \omega_i}{\partial x^i}(x) \, dx^i dx^1 \cdots \widehat{dx^i} \cdots dx^n$$
$$= \sum_{i=1}^n (-1)^{i-1} \int_0^R \int_{-R}^R \cdots \int_{-R}^R [\omega_i(x)]_{x^i=-R}^{x^i=-R} \, dx^i dx^1 \cdots \widehat{dx^i} \cdots dx^n$$

=0, since we have chosen R large enough that $\omega = 0$ when $x^i = \pm R$.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

The only term that might not be zero is the one for which i = n, which is

$$\int_{\mathbb{R}^{n}_{+}} d\omega = \sum_{i=1}^{n-1} (-1)^{n-1} \int_{-R}^{R} \int_{-R}^{R} \cdots \int_{0}^{R} \frac{\partial \omega_{n}}{\partial x^{n}}(x) \, dx^{n} dx^{1} \cdots dx^{n-1}$$
$$= \sum_{i=1}^{n} (-1)^{n-1} \int_{-R}^{R} \cdots \int_{-R}^{R} [\omega_{n}(x)]_{x^{n}=0}^{x^{n}=R} \, dx^{i} dx^{1} \cdots \widehat{dx^{i}} \cdots dx^{n}$$
$$= \sum_{i=1}^{n} (-1)^{n} \int_{-R}^{R} \cdots \int_{-R}^{R} \omega_{n}(x^{1}, \cdots, x^{n-1}, 0) \, dx^{1} \cdots \widehat{dx^{i}} \cdots dx^{n}$$

since we have chosen R large enough that $\omega = 0$ when $x^n = R$. — To compare this term to the other side of (1), we compute as follows:

$$\int_{\partial \mathbb{R}^n_+} \omega = \sum_i \int_{A \cap \partial \mathbb{R}^n_+} \omega_i(x^1, \cdots, x^{n-1}, 0) dx^1 \cdots \widehat{dx^i} \cdots dx^n.$$

Since x^n vanishes on $\partial \mathbb{R}^n_+$, we have $dx^n \Big|_{\partial \mathbb{R}^n_+} = 0$.

Thus the only term above that is nonzero is the one for which i = n, namely,

$$\int_{\partial \mathbb{R}^n_+} \omega = \int_{A \cap \partial \mathbb{R}^n_+} \omega_n(x^1, \cdots, x^{n-1}, 0) dx^1 \cdots dx^{n-1}.$$

- Taking into account that the coordinates (x^1, \dots, x^{n-1}) are positive oriented for $\partial \mathbb{R}^n_+$ when n is even and negatively oriented when n is odd, this becomes

$$\int_{\partial \mathbb{R}^{n}_{+}} \omega = (-1)^{n} \int_{-R}^{R} \cdots \int_{-R}^{R} \omega_{n}(x^{1}, \cdots, x^{n-1}, 0) \, dx^{1} \cdots dx^{n-1},$$

which is equal to (2).

(II) Next let M be an **arbitrary** smooth manifold with boundary, but consider an n-form ω that is **compactly supported in the domain of a single smooth** chart (U, φ) .

Assume w.l.o.g. that φ is an oriented chart, the definition yields

$$\int_M d\omega = \int_{\mathbb{R}^n_+} (\varphi^{-1})^* d\omega = \int_{\mathbb{R}^n_+} d((\varphi^{-1})^* \omega).$$

since $(\varphi^{-1})^* d\omega$ is compactly supported on \mathbb{R}^n_+ .

- By the result in (I), we have

(3)
$$\int_{\mathbb{R}^n_+} d((\varphi^{-1})^*\omega) = \int_{\partial \mathbb{R}^n_+} (\varphi^{-1})^*\omega,$$

where $\partial \mathbb{R}^n_+$ is given in the induced orientation.

- Since φ_* takes outward-pointing vectors on ∂M to outward-pointing vectors on \mathbb{R}^n_+ , it follows that $\varphi\Big|_{U\cap\partial M}$ is an orientation-preserving diffeomorphism onto $\varphi(U)\cap\partial\mathbb{R}^n_+$, and thus the right-hand side of (3)

$$\int_{\partial \mathbb{R}^n_+} (\varphi^{-1})^* \omega = \int_{\partial M} \omega.$$

This proves the theorem in this case.

(III) Finally, let ω be an arbitrarily compactly supported smooth (n-1)-form. Choose a cover of supp ω by finitely many oriented smooth charts $\{(U_i, \varphi_i)\}$, and choose a subordinate smooth partition of unity $\{\psi_i\}$, we can apply the preceding argument to $\psi_i \omega$ for each *i* and obtain

$$\int_{\partial M} \omega = \sum_{i} \int_{\partial M} \psi_{i} \omega = \sum_{i} \int_{M} d(\psi_{i} \omega) = \sum_{i} \int_{M} d\psi_{i} \wedge \omega + \psi_{i} d\omega$$
$$= \int_{M} d(\sum_{i} \psi_{i}) \wedge \omega + \int_{M} (\sum_{i} \psi_{i}) d\omega = 0 + \int_{M} d\omega,$$

because $\sum_i \psi_i \equiv 1$. \Box

Example. Let N be a smooth manifold and suppose that

$$\gamma: [a,b] \to N$$

is a smooth embedding, so that $M = \gamma([a, b])$ is an embedded 1-submanifold with boundary in N.

If we give M an orientation such that γ is orientation-preserving, then for any smooth function $f \in C^{\infty}(N)$, Stokes's theorem says that

$$\int_{\gamma} df = \int_{[a,b]} \gamma^* df = \int_{M} df = \int_{\partial M} f = f(\gamma(b)) - f(\gamma(a)),$$

which reduces to the fundamental theorem for line integrals in this case. In particular, when $\gamma : [a, b] \to \mathbb{R}$ is the inclusion map, Stokes's theorem is the ordinary fundamental theorem of calculus. **Corollary 2.** Suppose M is a compact smooth manifold without boundary. If ω is an exact form over M, then the integral of ω over ∂M is zero:

$$\int_M d\omega = 0 \quad \text{if } \partial M = \emptyset.$$

Corollary 3. Suppose M is a compact smooth manifold with boundary. If ω is a closed form on M, then the integral of ω over ∂M is zero:

$$\int_{\partial M} \omega = 0 \quad \text{if } d\omega = 0 \text{ on } M.$$

Corollary 4. Suppose *M* is a smooth manifold, $S \subset M$ is a compact *k*-dimensional submanifold without boundary.

Suppose ω is a closed k-form on M such that

$$\int_{S} \omega \neq 0.$$

Then ω is **not** exact and S is **not** the boundary of a smooth, compact submanifold with boundary in M.

Example. The closed 1-form

$$\omega = \frac{x\,dy - y\,dx}{x^2 + y^2}$$

has nonzero integral over \mathbb{S}^1 . Hence ω is not exact on $\mathbb{R}^2 \setminus \{0\}$, and \mathbb{S}^1 is not the boundary of a smooth, compact, 2-dimensional submanifold with boundary in $\mathbb{R}^2 \setminus \{0\}$.

Green's Theorem. Suppose D is a smooth, compact domain in \mathbb{R}^2 , and P, Q are smooth real-valued functions on D. THen

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial D} P dx + Q dy.$$

Proof. This is Stokes's theorem applied to the 1-form P dx + Q dy. \Box