
Stokes’s Theorem

• Stoke’s theorem is a far-reaching generalization of the fundamental theorem of
calculus and of the classical theorems of vector calculus.

Stokes’s Theorem. Let M be a smooth, oriented n-dimensional manifold with
boundary. Let ω be a compactly supported smooth (n− 1)-form on M . Then

(1)
∫

M

dω =
∫

∂M

ω.

Remarks. (1) ∂M is understood to have induced (Stokes) orientation, and the ω
on the right-hand side is to be interpreted as ω

∣∣
∂M

.
(2) If ∂M = ∅, then the right-hand side is to be interpreted as zero.
(3) If dimM = 1, the right-hand side is a finite sum.

Proof. (I) Begin by considering a special case: Suppose M = Rn
+.

Then the fact that ω has compact support means that ∃a number R > 0 such that
suppω is contained in the rectangle

A = [−R,R]× · · · × [−R,R] × [0, R].

We can write ω in standard coordinates as

ω =
n∑

i=1

ωidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

∴ dω =
n∑

i=1

dωi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
n∑

i=1

∂ωi

∂xj
dxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
n∑

i=1

(−1)i−1 ∂ωi

∂xi
dx1 ∧ · · · ∧ dxn.

∴
∫

Rn
+

dω =
n∑

i=1

(−1)i−1

∫

A

∂ωi

∂xi
dx1 ∧ · · · ∧ dxn

=
n∑

i=1

(−1)i−1

∫ R

0

∫ R

−R

· · ·
∫ R

−R

∂ωi

∂xi
(x) dx1 · · · dxn

By the fundametal theorem of calculus, the terms with i 6= n reduce to
n−1∑

i=1

(−1)i−1

∫ R

0

∫ R

−R

· · ·
∫ R

−R

∂ωi

∂xi
(x) dx1 · · · dxn

=
n∑

i=1

(−1)i−1

∫ R

0

∫ R

−R

· · ·
∫ R

−R

∂ωi

∂xi
(x) dxidx1 · · · d̂xi · · · dxn

=
n∑

i=1

(−1)i−1

∫ R

0

∫ R

−R

· · ·
∫ R

−R

[
ωi(x)]x

i=R
xi=−R dx

idx1 · · · d̂xi · · · dxn

=0, since we have chosen R large enough that ω = 0 when xi = ±R.
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The only term that might not be zero is the one for which i = n, which is

∫

Rn
+

dω =
n−1∑

i=1

(−1)n−1

∫ R

−R

∫ R

−R

· · ·
∫ R

0

∂ωn

∂xn
(x) dxndx1 · · · dxn−1

=
n∑

i=1

(−1)n−1

∫ R

−R

· · ·
∫ R

−R

[
ωn(x)]x

n=R
xn=0 dx

idx1 · · · d̂xi · · · dxn

=
n∑

i=1

(−1)n

∫ R

−R

· · ·
∫ R

−R

ωn(x1, · · · , xn−1, 0) dx1 · · · d̂xi · · · dxn(2)

since we have chosen R large enough that ω = 0 when xn = R.
— To compare this term to the other side of (1), we compute as follows:

∫

∂Rn
+

ω =
∑

i

∫

A∩∂Rn
+

ωi(x1, · · · , xn−1, 0)dx1 · · · d̂xi · · · dxn.

Since xn vanishes on ∂Rn
+, we have dxn

∣∣∣
∂Rn

+

= 0.

Thus the only term above that is nonzero is the one for which i = n, namely,
∫

∂Rn
+

ω =
∫

A∩∂Rn
+

ωn(x1, · · · , xn−1, 0)dx1 · · · dxn−1.

– Taking into account that the coordinates (x1, · · · , xn−1) are positive oriented for
∂Rn

+ when n is even and negatively oriented when n is odd, this becomes

∫

∂Rn
+

ω = (−1)n

∫ R

−R

· · ·
∫ R

−R

ωn(x1, · · · , xn−1, 0) dx1 · · · dxn−1,

which is equal to (2).

(II) Next let M be an arbitrary smooth manifold with boundary, but consider an
n-form ω that is compactly supported in the domain of a single smooth
chart (U,ϕ).
Assume w.l.o.g. that ϕ is an oriented chart, the definition yields

∫

M

dω =
∫

Rn
+

(ϕ−1)∗dω =
∫

Rn
+

d((ϕ−1)∗ω),

since (ϕ−1)∗dω is compactly supported on Rn
+.

– By the result in (I), we have

(3)
∫

Rn
+

d((ϕ−1)∗ω) =
∫

∂Rn
+

(ϕ−1)∗ω,

where ∂Rn
+ is given in the induced orientation.
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– Since ϕ∗ takes outward-pointing vectors on ∂M to outward-pointing vectors on
Rn

+, it follows that ϕ
∣∣∣
U∩∂M

is an orientation-preserving diffeomorphism onto

ϕ(U) ∩ ∂Rn
+, and thus the right-hand side of (3)

∫

∂Rn
+

(ϕ−1)∗ω =
∫

∂M

ω.

This proves the theorem in this case.

(III) Finally, let ω be an arbitrarily compactly supported smooth (n− 1)-form.
Choose a cover of suppω by finitely many oriented smooth charts {(Ui, ϕi)},
and choose a subordinate smooth partition of unity {ψi},
we can apply the preceeding argument to ψiω for each i and obtain

∫

∂M

ω =
∑

i

∫

∂M

ψiω =
∑

i

∫

M

d(ψiω) =
∑

i

∫

M

dψi ∧ ω + ψidω

=
∫

M

d(
∑

i

ψi) ∧ ω +
∫

M

(
∑

i

ψi)dω = 0 +
∫

M

dω,

because
∑

i ψi ≡ 1. �

Example. Let N be a smooth manifold and suppose that

γ : [a, b] → N

is a smooth embedding, so that M = γ([a, b]) is an embedded 1-submanifold with
boundary in N .
If we give M an orientation such that γ is orientation-preserving, then for any
smooth function f ∈ C∞(N), Stokes’s theorem says that

∫

γ

df =
∫

[a,b]

γ∗df =
∫

M

df =
∫

∂M

f = f(γ(b)) − f(γ(a)),

which reduces to the fundamental theorem for line integrals in this case.
In particular, when γ : [a, b] → R is the inclusion map, Stokes’s theorem is the
ordinary fundamental theorem of calculus.
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Corollary 2. Suppose M is a compact smooth manifold without boundary. If ω
is an exact form over M , then the integral of ω over ∂M is zero:

∫

M

dω = 0 if ∂M = ∅.

Corollary 3. Suppose M is a compact smooth manifold with boundary. If ω is a
closed form on M , then the integral of ω over ∂M is zero:

∫

∂M

ω = 0 if dω = 0 on M.

Corollary 4. SupposeM is a smooth manifold, S ⊂M is a compact k-dimensional
submanifold without boundary.
Suppose ω is a closed k-form on M such that

∫

S

ω 6= 0.

Then ω is not exact and S is not the boundary of a smooth, compact submanifold
with boundary in M .

Example. The closed 1-form

ω =
x dy − y dx

x2 + y2

has nonzero integral over S1. Hence ω is not exact on R2 \ {0}, and S1 is not
the boundary of a smooth, compact, 2-dimensional submanifold with boundary in
R2 \ {0}.

Green’s Theorem. Suppose D is a smooth, compact domain in R2, and P , Q
are smooth real-valued functions on D. THen

∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

∂D

Pdx+Qdy.

Proof. This is Stokes’s theorem applied to the 1-form P dx+Qdy. �


