
Chern Classes

(a) Connection and Curvature in a Complex Vector Bundle.

• Suppose π : E → M is an n-dimensional complex vector bundle.
The set of all sections Γ(E) is not only a module over the ring of all real-valued
functions C∞(M)
but also a module over the ring of all complex-valued functions C∞(M), which
we denote by C∞(M ; C) = C∞(M) ⊗ C.

• Also, for differential forms we set

Ak(M ; C) = Ak(M) ⊗ C

and call its elements complex k-forms.
– By definition, an arbitrary complex k-forms can be uniquely written in the form

ω + iη, where ω, η ∈ Ak(M), and i is the imaginary unit.

• Exterior differentiation

Ak(M ; C) → Ak+1(M ; C)

is defined by simply extending ordinary d linealy over C.
• The cochain comples {Ak(M ; C); d} is called the comlex de Rham complex and

the complex de Rham complex and its cohomology is denoted by H∗
dR(M ; C).

H∗
dR(M ; C) = H∗

dR(M) ⊗ C ∼= H∗(M ; C).

Definition. Given a complex vector bundle E → M , a connection is a connection

D : Γ(TM)× Γ(E) → Γ(E)

for the underlying real vector bundle E that furthermore satisfies the condition

DX(is) = iDXs,

which is equivalent to the condition

DX(fs) = (Xf)s + fDXs, ∀f ∈ C∞(M ; C), ∀s ∈ Γ(E).

• If we use the description in terms of differential forms with values in a vector
bundle, we can say that a connection D : Γ(E) → A1(M ; E) is a complex linear
map such that

D(fs) = df ⊗ s + fDs, ∀f ∈ C∞(M ; C), ∀s ∈ Γ(E).

• The curvature of a connection in a complex vector bundle is defined accordingly,
using the same formula aas in the case of a real vector bundle.

• Let us now consider the connection form and curvature form.
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– If, in an open subset U , we are given a frame field s1, · · · , sn ∈ Γ(E
∣∣∣
U

), then
writing

DXsj =
n∑

i=1

ωi
j(X)si, ∀X ∈ Γ(TU),

we obtain complex 1-forms ωi
j ∈ A1(U ; C) over U .

Put them together, ω = (ωi
j), and we obtain a 1-fom on U with values in M(n :

C); we call it the connection form for D.
– Similarly, we can obtain the curvature fom Ω = (Ωi

j), as a 2-form with values in
M(n : C).

– The structure equation and the Bianchi identity hold in the same form.
The tansformation formula for the connection and curvature forms remain the
same except that the transition functions gαβ : Uα ∩ Uβ → GL(n, C) now have
values in GL(n, C).

(b) Definition of Chern Classes.

• A connection D is a complex bundle π : E → M leads to curvature R; locally,
we have the connection form ω = (ωi

j) and the curvature form Ω = (Ωi
j), which

are related by the transition functions gαβ , namely

Ωβ = g−1
αβΩαgαβ ,

in any non-empty intersection Uα ∩ Uβ .

• In order to construct a differential forms globally on M , we make the same
definition as in the case of a real vector bundle. Namely, a polynomial function

f : M(n; C) → C

such that
f(X) = f(A−1XA), ∀A ∈ GL(n; C)

is called an invariant polynomial function on GL(n; C) .
– The set of all invariant polynomials is denoted by In(C).
– There is an isomophism

In(C) ∼= Sn(C),

where Sn(C) is the commutative algebra of all symmetric polynomials with com-
plex coefficients in n variables.

• By a parallel process we can prove the following results.
(i) For any invariant polynomial f ∈ In(C) of degree k, we have

(1) f(Ω) ∈ A2k(M ; C);
(2) f(Ω) is a closed form;
(3) the corresponding de Rham cohomology class [f(Ω)] ∈ H2k(M ; C) is deter-

mined independently of the choice of the connection.
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Definition. The de Rham cohomology class [f(Ω)] is called the characteristic
class of E corresponding to f and denote it by f(E).

• The characteristic class is natural with respect to bundle maps; namely, for any
C∞ map, g : N → M , g∗E is the induced bundle and

f(g∗E) = g∗(f(E)) ∈ H2k(N, C).

• The situation of a complex vector bundle is entirely different from the real case
in that the characteristic class corresponding to an invariant polynomial of odd
degree is not trivial.

Definition. For an n-dimensional complex vector bundle π : E → M , the charac-
teristic class that corresponds to the invariant polynomial

1
(2πi)k

σk ∈ In(C)

is written ck(E) ∈ H4k
dR(M), and is called the Chern class of degree k.

• In terms of the curvature fom Ω, we may write

c(E) def=
[
det

(
1 − 1

2πi
Ω

)]
= 1 + c1(E) + c2(E) + · · · + cn(E),

and call it the total Chern class.
• The closed form representing the Chern class that corresponds to any particular

connection is called the Chern form.

Proposition 1. Each Chern class ck is a real cohomology class;
i.e. ck(E) ∈ H4k

dR(M) = H2k(M ; R) and c(E) ∈ H∗
dR(M).

Proof. We introduce a Hermitian metric on E; recall that a Hermitian metric is
positive-definite in each fiber Ep, which is conjugate linear in the first component,
namely

〈av, bv′〉 = ab〈v, v′〉, ∀a, b ∈ C, v, v′ ∈ Ep.

Then we construct a connection that is compatible with the metric, that is,

X〈s, s′〉 = 〈DXs, s′〉 + 〈s, DXs′〉, ∀X ∈ Γ(E), s, s′ ∈ Γ(E);

this can be done by an argument similar to the proof in the real case.
– It is also easy to show that the corresponding connection form ω = (ωi

j) and the
curvature form Ω = (Ωi

j) are both skew-Hermitian, namely,

ωi
j + ωj

i = 0, Ωi
j + Ω

j

i = 0.

– Now if X is a skew-Hermitian matrix, then I − 1
2πiX is a Hermitian matrix,

so that its determinant is a real number. �
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(c) Whitney Formula.

Definition. Suppose two vector bundles πi : Ei → Mi, i = 1, 2, over the same
base space are given. Then the set

E1 ⊕ E2 = {(u1, u2) ∈ E1 × E2; π1(u1) = π2(u2)}

with the projection

π : E1 ⊕ E2 3 (u1, u2) 7→ π1(u1) ∈ M

is the Whitney sum of E1 and E2.

• We have dim (E1 ⊕ E2) =dim E1+dimE2.

Example. Let E be a vector bundle and F an arbitrary subbundle. Then there is
an isomorphism E ∼= F ⊕ E/F .

• The charcteristic classes of the Whitney sum of two vector bundles is given by
the following Whitnel formula.

Theorem 2. (i) If E and F are complex vector bundles, then

ck(E ⊕ F ) =
k∑

i=0

ci(E)ck−i(F ),

i.e., c(E ⊕ F ) = c(E)c(F ).
(ii) If E and F are real vector bundles, then

pk(E ⊕ F ) =
k∑

i=0

pi(E)pk−i(F ),

i.e., p(E ⊕ F ) = p(E)p(F ).

Proof. (i) Clearly, Γ(E ⊕ F ) = Γ(E) × Γ(F ).
It follows that if D and D′ are the connections of E and F , then there is a natural
direct sum connection D ⊕ D′ on E ⊕ F .
if Ω and Ω′ are the curvature forms of D and D′, then the curvature form Ω̃ of
D ⊕ D′ is the direct sum matrix of Ω and Ω′:

Ω̃ =
(

Ω 0
0 Ω′

)
.

Hence

c(E ⊕ F ) =det
[
1 − 1

2πi
Ω̃

]

=det
[
1 − 1

2πi
Ω

]
det

[
1 − 1

2πi
Ω′

]
.

(ii) The proof of (ii) is similar. �



5

(d) Relations between Pontryagin and Chern Classes.

• If E is an n-dimensional real vector budle, its Pontrjagin class p(E) ⊂ H∗(M, R)
is defined.

– On the other hand, since the complexification E ⊕ C of E is an n-dimensional
complex vector bundle, its chern class c(E ⊕ C) ∈ H∗(M ; R) is defined.

– There is a close relationship between these characteristic classes.

Proposition 3. Let E be a real vector bundle and E ⊗ C its complexification.
Then

pk(E) = (−1)kc2k(E ⊗ C) ∈ H2k(M ; Z).

Proof. Our proof depends on using differential forms and is limited to the eal case.
– A connection D in E naturally induces the connection D ⊗ C.
– The connection and curvature forms ω in Ω extend to the correspnding forms

for D ⊗ C. Therefoe we have

pk(E) =
[(

1
2π

)2k

σ2k(Ω)
]

= (−1)k

[(
1

2πi

)2k

σ2k(Ω)
]

=(−1)kc2k(E ⊗ C). �

• Next let E be an n-dimensional complex vector bundle.
We may think of it as a 2n-dimensional real vector bundle.
How are the Chern classes of E and the Pontrjagin classes of E related
to each other?

Definition. Let E be an n-dimensional complex vector bundle. On each fiber Ep,
p ∈ M , we define multiplication by a complex number a + bi ∈ C, a, b ∈ R, by
setting

(a + bi)v = av − biv, ∀v ∈ Ep.

We take Ep as a new complex vector space and define

E =
⋃

Ep

as the conjugate bundle.

Lemma 4. The conjugate bundle E of a complex vector bundle E is isomorphic
to the dual bundle E∗ of E.

Proof. Introduce a Hermitian metric in E and consider on each fiber the map

v ∈ Ep 7→`(v) ∈ E∗
p ;

`(v) : u ∈ Ep 7→`(v)u = 〈v, u〉 ∈ C.

It is easy to verify that we obtain an isomorphism E ∼= E∗. �
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Proposition 5. The Chern classes of the conjugate bundle E of a complex vector
bundle are given by

(1) ck(E) = (−1)kck(E).

We have also for the dual bundle

(2) ck(E∗) = (−1)kck(E).

Proof. (1) A connection D for E remains a connection for E.
– If D has the curvature form Ω, then D for E has Ω as curvature form.
– On the other hand, we may assume that Ω is skew-Hermitian from the Proposi-

tion 1. Hence Ω = −tΩ.
– By putting this into the definition of the Chern class, we obtain the formula we

want.
(2) Combining (1) with Lemma 4, we obtain the second formula. �

Proposition 6. Let E be an n-dimensional complex vector bundle. Then, writing
pi for pi(E) and ci for ci(E), we have

1 − p1 + p2 − · · · + (−1)npn

= (1 + c1 + c2 + · · · + cn)(1 − c1 + c2 − · · · + (−1)ncn)

For example, we have

p1 = c2
1 − 2c2; p2 = c2

2 − 2c1c3 + 2c4.

Proof. Step 1. We write ER when E is regarded as a real vector bundle.
Then ER ⊗ C is a 2n-dimensional complex vector bundle, and there is a netural
isomorphism

ER ⊗ C ∼= E ⊗ E.

To see this, we consider the correspondence for each fiber

(ER ⊗ C)p 3 u + v ⊗ i 7→
(

u + iv

2
,
u − iv

2

)
∈ Ep ⊕ Ep, (u, v, iv ∈ Ep = Ep),

which nduces an isomorphism over C since

i(u + v ⊗ i) = −v + u ⊗ i 7→
(
−v + iu

2
,
−v − iu

2

)
= i

(
u + iv

2
,
u − iv

2

)
.

Step 2. By Proposition 3, we have pk = (−1)kc2k(ER ⊗ C).
On the other hand, by applying the Whitney formula to the isomorphism above,
we obtain

c(ER ⊗ C) = c(E ⊕ E) = c(E)c(E).

Now we can complete the proof by using Proposition 5. �


