Chern Classes

(a) Connection and Curvature in a Complex Vector Bundle.

• Suppose $\pi : E \to M$ is an *n*-dimensional complex vector bundle. The set of all sections $\Gamma(E)$ is not only a module over the ring of all real-valued functions $C^{\infty}(M)$

but also a module over the ring of all complex-valued functions $C^{\infty}(M)$, which we denote by $C^{\infty}(M; \mathbb{C}) = C^{\infty}(M) \otimes \mathbb{C}$.

• Also, for differential forms we set

$$\mathcal{A}^k(M;\mathbb{C}) = \mathcal{A}^k(M) \otimes \mathbb{C}$$

and call its elements **complex** k-forms.

- By definition, an arbitrary complex k-forms can be uniquely written in the form

 $\omega + i\eta$, where $\omega, \eta \in \mathcal{A}^k(M)$, and *i* is the imaginary unit.

• Exterior differentiation

$$\mathcal{A}^k(M;\mathbb{C}) \to \mathcal{A}^{k+1}(M;\mathbb{C})$$

is defined by simply extending ordinary d lineally over \mathbb{C} .

• The cochain comples $\{\mathcal{A}^k(M; \mathbb{C}); d\}$ is called the comlex de Rham complex and the complex de Rham complex and its cohomology is denoted by $H^*_{dR}(M; \mathbb{C})$.

$$H^*_{dR}(M;\mathbb{C}) = H^*_{dR}(M) \otimes \mathbb{C} \cong H^*(M;\mathbb{C}).$$

Definition. Given a complex vector bundle $E \to M$, a connection is a connection

$$D: \Gamma(TM) \times \Gamma(E) \to \Gamma(E)$$

for the underlying real vector bundle E that furthermore satisfies the condition

$$D_X(is) = iD_X s,$$

which is equivalent to the condition

$$D_X(fs) = (Xf)s + fD_Xs, \quad \forall f \in C^{\infty}(M; \mathbb{C}), \quad \forall s \in \Gamma(E).$$

• If we use the description in terms of differential forms with values in a vector bundle, we can say that a connection $D: \Gamma(E) \to \mathcal{A}^1(M; E)$ is a complex linear map such that

$$D(fs) = df \otimes s + fDs, \quad \forall f \in C^{\infty}(M; \mathbb{C}), \quad \forall s \in \Gamma(E).$$

- The curvature of a connection in a complex vector bundle is defined accordingly, using the same formula aas in the case of a real vector bundle.
- Let us now consider the connection form and curvature form.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

- If, in an open subset U, we are given a frame field $s_1, \dots, s_n \in \Gamma(E|_U)$, then writing

$$D_X s_j = \sum_{i=1}^n \omega_j^i(X) s_i, \quad \forall X \in \Gamma(TU),$$

we obtain complex 1-forms $\omega_j^i \in \mathcal{A}^1(U; \mathbb{C})$ over U.

Put them together, $\omega = (\omega_j^i)$, and we obtain a 1-fom on U with values in $M(n : \mathbb{C})$; we call it the connection form for D.

- Similarly, we can obtain the curvature fom $\Omega = (\Omega_j^i)$, as a 2-form with values in $M(n : \mathbb{C})$.
- The structure equation and the Bianchi identity hold in the same form. The tansformation formula for the connection and curvature forms remain the same except that the transition functions $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(n, \mathbb{C})$ now have values in $\operatorname{GL}(n, \mathbb{C})$.

(b) Definition of Chern Classes.

• A connection D is a complex bundle $\pi : E \to M$ leads to curvature R; locally, we have the connection form $\omega = (\omega_j^i)$ and the curvature form $\Omega = (\Omega_j^i)$, which are related by the transition functions $g_{\alpha\beta}$, namely

$$\Omega_{\beta} = g_{\alpha\beta}^{-1} \Omega_{\alpha} g_{\alpha\beta},$$

in any non-empty intersection $U_{\alpha} \cap U_{\beta}$.

• In order to construct a differential forms globally on M, we make the same definition as in the case of a real vector bundle. Namely, a polynomial function

$$f: \mathbf{M}(n; \mathbb{C}) \to \mathbb{C}$$

such that

$$f(X) = f(A^{-1}XA), \quad \forall A \in \mathrm{GL}(n; \mathbb{C})$$

is called an **invariant polynomial function** on $\operatorname{GL}(n; \mathbb{C})$.

- The set of all invariant polynomials is denoted by $I_n(\mathbb{C})$.
- There is an isomophism

$$I_n(\mathbb{C}) \cong S_n(\mathbb{C}),$$

where $S_n(\mathbb{C})$ is the commutative algebra of all symmetric polynomials with complex coefficients in n variables.

- By a parallel process we can prove the following results.
- (i) For any invariant polynomial $f \in I_n(\mathbb{C})$ of degree k, we have
 - (1) $f(\Omega) \in \mathcal{A}^{2k}(M; \mathbb{C});$
 - (2) $f(\Omega)$ is a closed form;
 - (3) the corresponding de Rham cohomology class $[f(\Omega)] \in H^{2k}(M; \mathbb{C})$ is determined independently of the choice of the connection.

Definition. The de Rham cohomology class $[f(\Omega)]$ is called the **characteristic** class of *E* corresponding to *f* and denote it by f(E).

• The characteristic class is **natural** with respect to bundle maps; namely, for any C^{∞} map, $g: N \to M$, g^*E is the induced bundle and

$$f(g^*E) = g^*(f(E)) \in H^{2k}(N, \mathbb{C}).$$

• The situation of a complex vector bundle is entirely different from the real case in that the characteristic class corresponding to an invariant polynomial of **odd degree** is **not** trivial.

Definition. For an *n*-dimensional complex vector bundle $\pi : E \to M$, the characteristic class that corresponds to the invariant polynomial

$$\frac{1}{(2\pi i)^k}\sigma_k \in I_n(\mathbb{C})$$

is written $c_k(E) \in H^{4k}_{dR}(M)$, and is called the **Chern class** of degree k.

• In terms of the curvature fom Ω , we may write

$$c(E) \stackrel{\text{def}}{=} \left[\det \left(1 - \frac{1}{2\pi i} \Omega \right) \right] = 1 + c_1(E) + c_2(E) + \dots + c_n(E),$$

and call it the total Chern class.

• The closed form representing the Chern class that corresponds to any particular connection is called the **Chern form**.

Proposition 1. Each Chern class c_k is a real cohomology class; i.e. $c_k(E) \in H^{4k}_{dR}(M) = H^{2k}(M; \mathbb{R})$ and $c(E) \in H^*_{dR}(M)$.

Proof. We introduce a Hermitian metric on E; recall that a Hermitian metric is positive-definite in each fiber E_p , which is conjugate linear in the first component, namely

$$\langle av, bv' \rangle = \overline{a}b \langle v, v' \rangle, \quad \forall a, b \in \mathbb{C}, \quad v, v' \in E_p.$$

Then we construct a connection that is compatible with the metric, that is,

$$X\langle s, s' \rangle = \langle D_X s, s' \rangle + \langle s, D_X s' \rangle, \quad \forall X \in \Gamma(E), \quad s, s' \in \Gamma(E);$$

this can be done by an argument similar to the proof in the real case.

- It is also easy to show that the corresponding connection form $\omega = (\omega_j^i)$ and the curvature form $\Omega = (\Omega_j^i)$ are both skew-Hermitian, namely,

$$\omega_j^i + \overline{\omega}_i^j = 0, \quad \Omega_j^i + \overline{\Omega}_i^j = 0.$$

– Now if X is a skew-Hermitian matrix, then $I - \frac{1}{2\pi i}X$ is a Hermitian matrix, so that its determinant is a real number. \Box

(c) Whitney Formula.

Definition. Suppose two vector bundles $\pi_i : E_i \to M_i$, i = 1, 2, over the same base space are given. Then the set

$$E_1 \oplus E_2 = \{(u_1, u_2) \in E_1 \times E_2; \ \pi_1(u_1) = \pi_2(u_2)\}$$

with the projection

$$\pi: E_1 \oplus E_2 \ni (u_1, u_2) \mapsto \pi_1(u_1) \in M$$

is the Whitney sum of E_1 and E_2 .

• We have dim $(E_1 \oplus E_2) = \dim E_1 + \dim E_2$.

Example. Let *E* be a vector bundle and *F* an arbitrary subbundle. Then there is an isomorphism $E \cong F \oplus E/F$.

• The charcteristic classes of the Whitney sum of two vector bundles is given by the following Whitnel formula.

Theorem 2. (i) If E and F are complex vector bundles, then

$$c_k(E \oplus F) = \sum_{i=0}^k c_i(E)c_{k-i}(F),$$

i.e., $c(E \oplus F) = c(E)c(F)$.

(ii) If E and F are real vector bundles, then

$$p_k(E \oplus F) = \sum_{i=0}^k p_i(E)p_{k-i}(F),$$

i.e., $p(E \oplus F) = p(E)p(F)$.

Proof. (i) Clearly, $\Gamma(E \oplus F) = \Gamma(E) \times \Gamma(F)$.

It follows that if D and D' are the connections of E and F, then there is a natural direct sum connection $D \oplus D'$ on $E \oplus F$.

if Ω and Ω' are the curvature forms of D and D', then the curvature form $\widetilde{\Omega}$ of $D \oplus D'$ is the direct sum matrix of Ω and Ω' :

$$\widetilde{\Omega} = \begin{pmatrix} \Omega & 0 \\ 0 & \Omega' \end{pmatrix}.$$

Hence

$$c(E \oplus F) = \det\left[1 - \frac{1}{2\pi i}\widetilde{\Omega}\right]$$
$$= \det\left[1 - \frac{1}{2\pi i}\Omega\right]\det\left[1 - \frac{1}{2\pi i}\Omega'\right].$$

(ii) The proof of (ii) is similar. \Box

(d) Relations between Pontryagin and Chern Classes.

- If E is an n-dimensional real vector budle, its Pontrjagin class $p(E) \subset H^*(M, \mathbb{R})$ is defined.
- On the other hand, since the complexification $E \oplus \mathbb{C}$ of E is an *n*-dimensional complex vector bundle, its chern class $c(E \oplus \mathbb{C}) \in H^*(M; \mathbb{R})$ is defined.
- There is a close relationship between these characteristic classes.

Proposition 3. Let *E* be a real vector bundle and $E \otimes C$ its complexification. Then

$$p_k(E) = (-1)^k c_{2k}(E \otimes C) \in H^{2k}(M; \mathbb{Z}).$$

Proof. Our proof depends on using differential forms and is limited to the eal case.

- A connection D in E naturally induces the connection $D \otimes \mathbb{C}$.
- The connection and curvature forms ω in Ω extend to the corresponding forms for $D \otimes \mathbb{C}$. Therefoe we have

$$p_k(E) = \left[\left(\frac{1}{2\pi}\right)^{2k} \sigma_{2k}(\Omega) \right] = (-1)^k \left[\left(\frac{1}{2\pi i}\right)^{2k} \sigma_{2k}(\Omega) \right]$$
$$= (-1)^k c_{2k}(E \otimes \mathbb{C}). \quad \Box$$

• Next let E be an n-dimensional complex vector bundle.

We may think of it as a 2n-dimensional real vector bundle.

How are the Chern classes of E and the Pontrjagin classes of E related to each other?

Definition. Let *E* be an *n*-dimensional complex vector bundle. On each fiber E_p , $p \in M$, we define multiplication by a complex number $a + bi \in \mathbb{C}$, $a, b \in \mathbb{R}$, by setting

$$(a+bi)v = av - biv, \quad \forall v \in E_p.$$

We take \overline{E}_p as a new complex vector space and define

$$\overline{E} = \bigcup \overline{E}_p$$

as the conjugate bundle.

Lemma 4. The conjugate bundle \overline{E} of a complex vector bundle E is isomorphic to the dual bundle E^* of E.

Proof. Introduce a Hermitian metric in E and consider on each fiber the map

$$v \in \overline{E}_p \mapsto \ell(v) \in E_p^*;$$

$$\ell(v) : u \in E_p \mapsto \ell(v)u = \langle v, u \rangle \in \mathbb{C}.$$

It is easy to verify that we obtain an isomorphism $\overline{E} \cong E^*$. \Box

Proposition 5. The Chern classes of the conjugate bundle E of a complex vector bundle are given by

(1)
$$c_k(\overline{E}) = (-1)^k c_k(E).$$

We have also for the dual bundle

(2)
$$c_k(E^*) = (-1)^k c_k(E).$$

Proof. (1) A connection D for E remains a connection for \overline{E} .

- If D has the curvature form Ω , then D for \overline{E} has $\overline{\Omega}$ as curvature form.
- On the other hand, we may assume that Ω is skew-Hermitian from the Proposition 1. Hence $\overline{\Omega} = -{}^t \Omega$.
- By putting this into the definition of the Chern class, we obtain the formula we want.
- (2) Combining (1) with Lemma 4, we obtain the second formula. \Box

Proposition 6. Let *E* be an *n*-dimensional complex vector bundle. Then, writing p_i for $p_i(E)$ and c_i for $c_i(E)$, we have

$$1 - p_1 + p_2 - \dots + (-1)^n p_n$$

= $(1 + c_1 + c_2 + \dots + c_n)(1 - c_1 + c_2 - \dots + (-1)^n c_n)$

For example, we have

$$p_1 = c_1^2 - 2c_2; \quad p_2 = c_2^2 - 2c_1c_3 + 2c_4.$$

Proof. Step 1. We write $E_{\mathbb{R}}$ when E is regarded as a real vector bundle. Then $E_{\mathbb{R}} \otimes \mathbb{C}$ is a 2*n*-dimensional complex vector bundle, and there is a netural isomorphism

$$E_{\mathbb{R}} \otimes \mathbb{C} \cong E \otimes \overline{E}.$$

To see this, we consider the correspondence for each fiber

$$(E_{\mathbb{R}} \otimes \mathbb{C})_p \ni u + v \otimes i \mapsto \left(\frac{u + iv}{2}, \frac{u - iv}{2}\right) \in E_p \oplus \overline{E}_p, \quad (u, v, iv \in E_p = \overline{E}_p),$$

which nduces an isomorphism over $\mathbb C$ since

$$i(u+v\otimes i) = -v + u\otimes i \mapsto \left(\frac{-v+iu}{2}, \frac{-v-iu}{2}\right) = i\left(\frac{u+iv}{2}, \frac{u-iv}{2}\right)$$

Step 2. By Proposition 3, we have $p_k = (-1)^k c_{2k}(E_{\mathbb{R}} \otimes C)$. On the other hand, by applying the Whitney formula to the isomorphism above, we obtain

$$c(E_{\mathbb{R}} \otimes \mathbb{C}) = c(E \oplus \overline{E}) = c(E)c(\overline{E})$$

Now we can complete the proof by using Proposition 5. \Box