Dirac Operators

Definition. The principal symbol of a differential operator $P : \Gamma(E) \to \Gamma(E)$ is a map which associates each point $x \in X$ and each cotangent vector $\xi \in T^*_x(X)$ a linear map $\sigma_\xi(P) : E_x \to E_x$ defined as follows. If in local coordinates we have

$$P = \sum_{|\alpha| \leq m} A_\alpha(x) \frac{\partial^{|\alpha|}}{\partial x^\alpha}$$

and $\xi = \sum_k \xi_k dx_k$, where m is the order of P,

then

$$\sigma_\xi(P)(x;\xi) = (-i)^m \sum_{|\alpha| = m} A_\alpha(x) \xi_\alpha,$$

is called the principal symbol of P.

Definition. Let P be a differential operator of order m on a manifold M; P could operate on sections of a vector bundle. In local coordinatea, P has the form

$$Pu(x) = \sum_{|\alpha| \leq m} p_\alpha(x) D^\alpha u(x),$$

where $D^\alpha = D_1^{\alpha_1} \cdots D_n^{\alpha_n}$, $D_j = (1/i) \partial/\partial x_j$. The coefficients $p_\alpha(x)$ could be matrix valued. The homogeneous polynomial in $\xi \in \mathbb{R}^n$ ($n = \dim M$),

$$p(x;\xi) = \sum_{|\alpha| = m} p_\alpha(x) \xi_\alpha$$

is called the principal symbol of P.

Definition. The operator P is elliptic if $\sigma_\xi(P;\xi)$ is an isomorphism for all $\xi \neq 0$, i.e. if $\sigma_\xi(P)$ is invertible for all $\xi \neq 0$.

Definition. The operator P is elliptic if, for some $r < \infty$ and $C \in \mathbb{R}$,

$$|p(x,\xi)|^{-1} \leq C|\xi|^{-m}, \quad \text{for } |\xi| \geq r.$$

Definition. Let M be a Riemannian manifold, $E_j \to M$ a vector bundle with Hermitian metrics. A first-order, elliptic differential operator

$$P : C^\infty(M, E_0) \to C^\infty(M, E_1)$$

is said to be of Dirac type if P^*P has scalar principal symbol. This implies

$$\sigma_{P^*P}(x,\xi) = q(x,\xi) I : E_{0x} \to E_{0x},$$

where $q(x,\xi)$ is a quadratic form on M.

- If $E_0 = E_1$ and $P = P^*$, we say P is a symmetric Dirac-type operator.
- Given a general operator D of Dirac type, if we set $E = E_0 \oplus E_1$ and define \tilde{P} on $C^\infty(M, E)$ as

$$(3) \quad \tilde{P} = \begin{pmatrix} 0 & P^* \\ P & 0 \end{pmatrix},$$

then \tilde{P} is a symmetric Dirac-type operator.
• We want to give an intrinsic characterization, which will show that $p_m(x, \xi)$ is well-defined on T^*M.

- For a smooth function ψ, using product rule and chain rule of differentiation, we have

\[
P(u(x)e^{i\lambda \psi}) = [p_m(x, d\psi)u(x)\lambda^m + r(x, \lambda)]e^{i\lambda \psi}
\]

where $r(x, \lambda)$ is a polynomial of degree $\leq m - 1$.

- In (4), $p_m(x, d\psi)$ is evaluated by substituting $\xi = (\partial \psi/\partial x_1, \ldots, \partial \psi/\partial x_n)$ into (2). Thus the formula

\[
p_m(x, d\psi)u(x) = \lim_{\lambda \to \infty} \lambda^{m-1}e^{-i\lambda \psi} P[u(x)e^{i\lambda \psi}]
\]

provides an intrinsic characterization of the symbol of P as a function on T^*M.

• If M has a Riemannian metric, and the vector bundle E_j have metrics, then the formal adjoint P^* of a differential operator of order m is a differential operator of order m:

\[
P^*: C^\infty(M, E_1) \to C^\infty(M, E_0),
\]

defined by the condition that

\[
(Pu, v) = (u, P^*v)
\]

if u and v are smooth, compactly supported sections of the bundles E_0 and E_1.

• If U and V are supported on a coordinate patch O on M, over which E_j are trivialized, so u and v have components u^σ, v^σ, and the Riemannian metrics on E_0 and E_1 are denoted $h_{\sigma\delta}$, $\tilde{h}_{\sigma\delta}$, respectively, while the Riemannian metric on M is g_{jk}, then we have

\[
(Pu, v) = \int_O \tilde{h}_{\sigma\delta}(Pu)^\sigma \sqrt{g(x)} dx.
\]

Integrating by parts produces an expression for P^* of the form

\[
P^*v(x) = \sum_{|\alpha|\leq m} p^T_\alpha(x)D^\alpha v(x).
\]

In particular, one sees that the principal symbol of P^* is given by

\[
\sigma_{P^*}(x, \xi) = \sigma_P(x, \xi)^*.
\]
Let $\vartheta(x, \xi)$ denote the principal symbol of a symmetric Dirac-type operator. With $x \in M$ fixed, set $\vartheta(\xi) = \vartheta(x, \xi)$. Thus ϑ is a linear map from $T_x^*M = \{\xi\}$ into $\text{End}(E_x)$, satisfying

\begin{equation}
\vartheta(\xi) = \vartheta(\xi)^*
\end{equation}

and

\begin{equation}
\vartheta(\xi)^2 = \langle \xi, \xi \rangle I.
\end{equation}

Here \langle , \rangle is the inner product on T_x^*M; let us denote this vector space by V.

Since $\vartheta(v + w)^2 = [\vartheta(v) + \vartheta(w)]^2$, it follows from (7) that

$$\vartheta(v)\vartheta(w) + \vartheta(w)\vartheta(v) = \langle v, w \rangle I, \quad \forall v, w \in V.$$

Hence, ϑ extends uniquely to an algebraic homomorphism

$$\vartheta : Cl(V, g) \to \text{End}(E).$$

This gives E the structure of a module over $Cl(V, g)$ or a Clifford module.

If E has a Hermitian metric and (6) also holds, i.e.

$$\vartheta(v) = \vartheta(v)^*, \quad \forall v \in V;$$

we call E a Hermitian Clifford module.

- For this notion to be useful, we need the inner product to be positive-definite.
• We compute the symbols of d and δ. Since, for a k-form u,

$$d(ue^{i\lambda\psi}) = i\lambda e^{i\lambda\psi}(d\psi) \wedge u + e^{i\lambda\psi}du,$$

we see that

$$\frac{1}{i}\sigma_d(x, \xi) u = \xi \wedge u.$$

By (5), we have

$$\sigma_d(x, \psi) = \sigma_d(x, \xi)^* = -i\xi u.$$

Hence

$$-\sigma_d(x, \xi) u = (i\xi \xi) \wedge u + \xi \wedge (i\xi u).$$

If we perform the calculation by picking an orthonormal basis for $T^*_x M$ of the form $[e_1 \cdots e_n]$ with $\xi = |\xi|e_1$, we see that

$$\sigma_d(x, \xi) u = -|\xi|^2 u.$$

• On a vector space V with a positive-definite inner product, if we define $E_v : \Lambda^j V \to \Lambda^{j+1} V$ by

$$E_v(v_1 \wedge \cdots \wedge v_j) = v \wedge v_1 \wedge \cdots \wedge v_j,$$

then $i_{\theta^*} : \Lambda^{j+1} V \to \Lambda^j V$ is its adjoint.

The principal symbol of $d + \delta$ on $V = T^*M$ is $\frac{1}{i}(E_v - i_{\theta^*})$.

That is to say,

$$(8) \quad iM(v) = E_v - i_{\theta^*}$$

defines a linear map from V into $\text{End}(\Lambda^* V)$ which extends to an algebra homomorphism

$$M : Cl(V, g) \to \text{End}(\Lambda^* V).$$

The anticommutation relation

$$M(v)M(w) + M(w)M(v) = 2\langle v, w \rangle I$$

is equivalent to

$$(9) \quad E_v i_{\theta^*} + i_{\theta^*} E_v = \langle v, w \rangle I.$$
• The example just discussed gives rise to Hermitian Clifford module.
• We now show conversely that generally such module produce operators of Dirac type.
 – More precisely, if \(M \) is a Riemannian manifold, \(T^*_x M \) has an induced linear product, giving rise to a bundle
 \[Cl(M) \to M \]
 or Clifford algebras. We suppose \(E \to M \) is a Hermitian vector bundle such that each fiber is a Hermitian \(Cl_x(M) \)-module (in a smooth fashion).
 – Let \(E \to M \) have a connection \(D \), so
 \[D : C^\infty(M, E) \to C^\infty(M, T^*M \otimes E). \]
Now if \(E_x \) is a \(Cl_x(M) \)-module; the inclusion \(T^*_x M \hookrightarrow Cl_x(M) \) gives rise to a linear map
 \[m : C^\infty(M, T^*M \otimes E) \to C^\infty(M, E) \]
called “Clifford multiplication”. We compose these two operators; set
\[
\mathcal{D} = \text{im} \circ D : C^\infty(M, E) \to C^\infty(M, E).
\]

• If \(U \) is an open subset of \(M \), on which we have an orthonormal frame \(\{e_i\} \) of smooth vector fields, with dual orthonormal frame \(\{v_j\} \) of 1-forms, then, for a section \(\varphi \) of \(E \),
\[
\mathcal{D}\varphi = i \sum v_j \cdot D_e^j \varphi \quad \text{on } U.
\]
Note that \(\sigma_{\mathcal{D}}(x,\xi)^* = \sigma_{\mathcal{D}}(x,\xi) \), so \(\mathcal{D} \) can be made symmetric by altering it at most by a zero-order term.

Lemma. \(\sigma_{\mathcal{D}}(x,\xi) = i\xi \).

Proof. Fix \(x \in M \) and an orthonormal basis \(e_1, \ldots, e_n \) of \(T_x M \).
 – Choose local coordinates \((x_1, \ldots, x_n)\) on \(M \) at \(x \) such that \(x \) corresponds to 0 and \(e_j \) corresponds to \((\partial/\partial x_j) \) \(\) for each \(j \).
 – Under the identification \(T^*_x M \cong T^*_x M \), \(e_j \) also corresponds to \((dx_j) \) for each \(j \).
 – For any local trivialization of \(E \) near \(x \), we have that
 \[
 D_e_j = \left(\frac{\partial}{\partial x_j} \right)_0 + \text{zero order terms}.
 \]
Hence, at 0, we have that
\[
\mathcal{D} = i \sum e_j \left(\frac{\partial}{\partial x_j} \right)_0 + \text{zero order terms}.
\]
Consequently, for any cotangle vector \(\xi = \sum \xi_j (dx_j)_0 \) at 0, we have by definition of the symbol that
\[
\sigma_{\mathcal{D}}(x,\xi) = i \sum e_j \xi_j = i\xi. \quad \Box
\]

Corollary. For \(v \in E_x \), \(\sigma_{\mathcal{D}}(x,\xi)v = m(\xi \otimes v) = \xi \cdot v \). Therefore \(\sigma_{\mathcal{D}}(x,\xi) \) is \(|\xi|_x\) times an isometry on \(E_x \), and \(\mathcal{D} \) is of Dirac type.
• Given a little more structure, we have more.

Definition. We say that a Levi-Civita connection D on M is a Clifford connection on E if D is also compatible with Clifford multiplication, in that

\[(12) \quad D_X(u \cdot \varphi) = (D_Xv) \cdot \varphi + v \cdot (D_X \varphi),\]

for a vector field X, a 1-form v, and a section φ of E.

Proposition. If D is a Clifford connection on E, then D is symmetric.

Proof. Let $\varphi, \psi \in C^\infty(M, E)$. We want to show that

\[(13) \quad \int_M [(D\varphi, \psi) - (\varphi, D\psi)]dV = 0.\]

We can suppose φ, ψ have compact support in a set U on which local orthonormal frames e_j, v_j as above are given.

- Define a vector field X on U by
 \[(X, v) = \langle \varphi, v \cdot \psi \rangle, \quad \forall v \in \Lambda^1 U.\]

Claim: $i \text{div } X = \langle D\varphi, \psi \rangle - \langle \varphi, D\psi \rangle$, pointwise in U; then (13) will follow from the divergence theorem. Indeed,

\[
\text{div } X = \sum \langle DX, v_j \rangle,
= \sum [e_j \cdot (X, v_j) - (X, De_j v_j)]
= \sum [e_j \cdot \langle \varphi, v_j \rangle - \langle \varphi, (De_j v_j) \cdot \psi \rangle]
= \sum [e_j \cdot (De_j \varphi, v_j \cdot \psi) - \langle \varphi, v_j \cdot De_j \psi \rangle], \quad \text{by (12).} \quad \square
\]

• If $E = E_0 \oplus E_1$ is a graded Hermitian $Cl(M)$-module, if E_0 and E_1 are each provided with metric connections, and if (12) holds, then the construction above gives an operator of Dirac type, of the form (3).

Remark. It is common to use Clifford algebras associated to negative-definite forms rather than positive-definite ones.

- The two types of algebras are simply related.
- If a linear map $\vartheta: V \to \text{End}(E)$ extends to an algebra homomorphism $Cl(V, g) \to \text{End}(E)$, then $i\vartheta$ extends to an algebra homomorphism $Cl(V, g) \to \text{End}(-E)$.
- If one uses a negative form, then the condition (6) that E be a Hermitian Clifford module should be changed to
 \[
 \vartheta(v) = -\vartheta(v)^*, \quad \forall v \in V.
 \]

- In such a case, we should drop the factor of i in (10) to associate the Dirac-type operator D of $Cl(M)$-module E.
- In fact, getting rid of the factor of i in (10) and (11) perhaps is the principal reason some people use the negative-quadratic form to construct Clifford algebras.