Superspaces

Definition. The superspace E is \mathbb{Z}_2-graded vector space

$$E = E^+ \oplus E^-.$$

A superalgebra is an algebra A whose underlying vector space is a superspace, and whose products respects the \mathbb{Z}_2-grading; in other words,

$$A^i \cdot A^j \subset A^{i+j}.$$

Example 1. An exterior algebra is a supertrace with the \mathbb{Z}_2-grading

$$\Lambda^\pm E = \sum_{(−1)^{i\pm1}} \Lambda^i E.$$

Example 2. An ungraded vector space E is implicitly \mathbb{Z}_2-graded with $E^+ = E$ and $E^- = 0$.

- The algebra of endomorphisms $\text{End}(E)$ of a superspace is a superalgebra, when graded in the usual way:

$$\text{End}^+(E) = \text{Hom}(E^+, E^+) \oplus \text{Hom}(E^-, E^-)$$

$$\text{End}^+(E) = \text{Hom}(E^+, E^+) \oplus \text{Hom}(E^-, E^-).$$

Definition. A superbundle on a manifold M is a bundle $E = E^+ \oplus E^-$, where E^+ and E^- are two vector bundles on M such that the fibers of E are superspaces.

- If E is a vector bundle, we will identify it with the superbundle $E^+ = E$ and $E^- = 0$.
- There is a general principle in dealing with elements of a superspace, that whenever a formula involves commuting an element a past another b, one must insert a sign $(-1)^{|a|\cdot|b|}$, where $|a|$ is the parity of a, which equals 0 or 1 according to whether the degree of a is even or odd.
- Thus, the supercommutator of a pair of odd parity elements of a superalgebra is actually their anticommutator, due to the extra minus sign.
- We will use the same bracket notation for this supercommutator as is usually used for the commutator:

$$[a, b] = ab - (-1)^{|a||b|}ba.$$

This bracket satisfies the axioms of a Lie superalgebra:

(i) $[a, b] + (-1)^{|a||b|}[b, a] = 0$

(ii)$[a, [b, c]] = [[a, b], c] + (-1)^{|a||b|}[b, [a, c]].$
Definition. A superalgebra is said to be super-commutative if its superbracket vanishes identically.

Example. The exterior algebra ΛE is super-commutative.

Definition. On a superalgebra A is a linear form φ on A satisfying $\varphi([a, b]) = 0$.

- On a superalgebra $\text{End}(E)$, there is a canonical linear form given by the formula
 \[
 \text{Str}(a) = \begin{cases}
 \text{Tr}_{E^+}(a) - \text{Tr}_{E^-}(a), & \text{if } a \text{ is even}, \\
 0, & \text{if } a \text{ is odd}.
 \end{cases}
 \]

Proposition 1. The linear form Str defined above is a supertrace on $\text{End}(E)$.

Proof. We must verify that $\text{Str}[a, b] = 0$.

(i) If a and b have opposite parity, then $[a, b]$ is odd in parity and hence $\text{Str}[a, b] = 0$.

(ii) If $a = \begin{pmatrix} a^+ & 0 \\ 0 & a^- \end{pmatrix}$ and $b = \begin{pmatrix} b^+ & 0 \\ 0 & b^- \end{pmatrix}$ are both even, then

$$[a, b] = \begin{pmatrix} [a^+, b^+] & 0 \\ 0 & [a^-, b^-] \end{pmatrix}$$

has vanishing supertrace, since $\text{Tr}[a^+, b^+] = \text{Tr}[a^-, b^-] = 0$.

(iii) If $a = \begin{pmatrix} 0 & a^- \\ a^+ & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & b^- \\ b^+ & 0 \end{pmatrix}$ are both odd, then

$$[a, b] = \begin{pmatrix} a^- b^+ + b^- a^- & 0 \\ 0 & a^+ b^- + b^+ a^+ \end{pmatrix}$$

has supertrace

$$\text{Str}[a, b] = \text{Tr}_{E^+}(a^- b^+ + b^- a^-) - \text{Tr}_{E^+}(a^+ b^- + b^+ a^-) = 0.$$ \[\square \]

- If $E = E^+ \oplus E^-$ and $F = F^+ \oplus F^-$ are two supertraces, then their tensor product $E \times F$ is the superalgebra with underlying vector space $E \otimes F$ and grading

$$\begin{align*}
(E \otimes F)^+ &= (E^+ \otimes F^+) \oplus (E^- \otimes F^-), \\
(E \otimes F)^- &= (E^+ \otimes F^-) \oplus (E^- \otimes F^+).
\end{align*}$$

- If A and B are superalgebras, then their tensor product $A \otimes B$ is the superalgebra whose underlying space is \mathbb{Z}_2-graded tensor product of A and B, and whose product is defined by the rule

$$(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) = (-1)^{|b_1|\cdot|a_2|} a_1 a_2 \otimes b_1 b_2.$$
Definition. If A is a supercommutative algebra and E is a supertrace, we extend the supertrace on $\text{End}(E)$ to a map

$$\text{Str} : A \otimes \text{End}(E) \to A,$$

by the formula $\text{Str}(a \otimes M) = a \text{Str}(M)$ for $a \in A$ and $M \in \text{End}(M)$.

- The extension of the supertrace vanishes on supercommutators in $A \otimes \text{End}(M)$, since

$$[a \otimes M, b \otimes N] = (-1)^{|M||b|}ab \otimes [M, N]$$

where A is supercommutative.

- If E_1 and E_2 are two supertraces, we may identify $\text{End}(E_1 \otimes E_2)$ with $\text{End}(E_1) \otimes \text{End}(E_2)$, the action being as follows:

$$(a_1 \otimes a_2)(e_1 \otimes e_2) = (-1)^{|a_2||e_1|}(a_1 e_1) \otimes (a_2 e_2),$$

where $a_i \in \text{End}(E_i)$ and $e_i \in E_i$.

Definition. If E is a supertrace such that $\dim (E^\pm) = m_\pm$, we define its determinant line to be the one-dimensional vector space

$$\det(E) = (\Lambda^{m+}E^+)\otimes \Lambda^{m-}E^-.$$

- If $E^+ = E^-$, then $\det(E)$ is canonically isomorphic to \mathbb{R}.

Definition. If $\mathcal{E} = \mathcal{E}^+ \oplus \mathcal{E}^-$ is a superbundle, then its determinant line bundle $\det(\mathcal{E})$ is the bundle

$$\det(\mathcal{E}) = (\Lambda^{m+}\mathcal{E}^+)\otimes \Lambda^{m-}\mathcal{E}^-,$$

where $m_\pm = \text{rk}(\mathcal{E}^\pm)$.

- If M is an n-dimensional manifold, $\det(TM)$ is the volume-form bundle Λ^nT^*M.

Definition. If E is a Hermitian supertrace, we say that $u \in \text{End}^-(E)$ is odd self-adjoint if it has the form

$$u = \begin{pmatrix} 0 & u^- \\ u^+ & 0 \end{pmatrix},$$

where $u^+ : E^+ \to E^-$, and u^- is the adjoint of u^+.

- Let V be a real vector space with basis e_i and dual basis e^i. Denote

$$\iota_k = \iota(e_k), \quad \varepsilon^k = \varepsilon(e^k),$$

where ε^k is the exterior product and ι_k is the interior product.

- We will identify Λ^kV^* with $(\Lambda^kV)^*$ by setting $\langle e^i, e_j \rangle = \delta^i_j$, where

$$I = \{1 \leq i^1 < \cdots < i^k \leq \dim V\}, \text{ and } J = \{1 \leq j_1 < \cdots < j_k \leq \dim V\}$$

are multiindices and $e^I = e^{i_1} \wedge \cdots \wedge e^{i_k}$, $e_J = e_{j_1} \wedge \cdots \wedge e_{j_k}$.

- Using this identification, it is easy to see that $\varepsilon(\alpha)^* = \iota(\alpha) \in \text{End}(\Lambda V^*)$ and that $\iota(\nu)^* = \varepsilon(\nu) \in \text{End}(\Lambda V)$.

- If $A \in \text{End}(V)$, we denote by $\lambda(A)$ the unique derivation of the superalgebra ΛV which coincides with A on $V \subset \Lambda V$; it is given by the explicit formula

$$\lambda(A) = \sum_{j,k} (e^j, Ae_k)\varepsilon_j \iota^k.$$
Definition. A non-zero linear map \(T : \Lambda V \to \mathbb{R} \) which vanishes on \(\Lambda^k V \) for \(k < \dim(V) \) is called a Berezin integral.

- Let us explain why such a linear map is called an integral.
- If \(V \) is a real vector space, the superalgebra \(\Lambda V^* \) is the algebra of polynomial functions on the purely odd supertrace with
 \[E^+ = 0, \quad E^- = V. \]

If \(e_i \) is a basis for \(V \) with dual basis \(e^i \), the element \(e^i \in \Lambda V^* \) play the role of coordinate function on \(V \).

- From this point of view, the interior multoplication \(\iota(\nu) : \Lambda V^* \to \Lambda V^* \), \((\nu \in V) \),
 is the operation of differentiation in the direction \(\nu \).
- We see that a Berezin integral is an analogue of the Lebesgue integral:
 a Berezin integral \(T : \Lambda V^* \to \mathbb{R} \) is a linear form on the function space \(\Lambda V^* \) which vanishes on “partial derivatives”:
 \[T \cdot \iota(\nu) \alpha = 0, \quad \forall \nu \in V \quad \text{and} \quad \alpha \in \Lambda V^*. \]

- If \(V \) is an oriented Euclidean vector space, there is a canonical Berezin integral, defined by projecting \(\alpha \in \Lambda V \) onto the component of the monomial \(e_1 \wedge \cdots \wedge e_n \); here \(n \) is the dimension of \(V \) and \(e_i \) form an oriented orthonormal basis of \(V \).
 - We will denote the Berezin integral by \(T \):
 \[T(e_i) = \begin{cases} 1, & |f| = n, \\ 0, & \text{otherwise}. \end{cases} \]

If \(\alpha \in \Lambda V \), we will often denote \(T(\alpha) \) by \(\alpha_{[n]} \), although strictly speaking \(\alpha_{[n]} \) is an element of \(\Lambda^n V \) and not of \(\mathbb{R} \).

- If \(A \in \Lambda^2 V \), its exponential in the algebra \(\Lambda V \) will be denoted by \(\exp_A A = \sum (A^k / k!) \).

Definition. The Pfaffian of an element \(A \in \Lambda^2 V \) is the number
\[
Pf_A(A) = T(\exp_A A).
\]

The Pfaffian of an element \(A \in \text{Lie}(so(V)) \) is the number
\[
Pf(A) = T(\exp_A \sum_{i<j} \langle Ae_i, e_j \rangle e_i \wedge e_j).
\]

Example. If \(V = \mathbb{R}^2 \) with orthonormal basis \(\{e_1, e_2\} \), and if
\[
A = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}
\]
then the Phaffian of \(A \) is \(\theta \).

- The Pfaffian vanishes if the dimension of \(V \) is odd.
- If the dimension of \(V \) is odd, \(Pf(A) \) is a polynomial of homogeneous order \(n/2 \) in the components of \(A \).
 - If the orientation of \(V \) is reversed, it changes sign.
Proposition 2. The Pfaffian of an antisymmetric linear map is a square root of the determinant

$$(\text{Pf}(A)^2) = \det A.$$

Proof. By the spectral theorem, we can choose an oriented basis e_j of V such that there are real numbers c_j, $1 \leq j \leq \frac{n}{2}$, for which

$$Ae_{2j-1} = c_j e_{2j},$$

$$Ae_{2j} = -c_j e_{2j-1}.$$

In this way we reduce the proof to the case in which V is the vector space \mathbb{R}^2, and $Ae_1 = \theta e_2$, $Ae_2 = -\theta e_1$.

In this case $\text{Pf}(A) = \theta$, while the determinant of $A = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}$ is θ^2. □
Superconnections

- If M is a manifold and $\mathcal{E} = \mathcal{E}^+ \oplus \mathcal{E}^-$ is a superbundle on M,
 - let $\mathcal{A}(M, \mathcal{E})$ be the space of \mathcal{E}-valued differential forms on M.
 - This space has a \mathbb{Z}-grading given by the degree of a differential form,
 - and we will denote the component of exterior degree i of $\alpha \in \mathcal{A}(M, \mathcal{E})$ by $\alpha_{[i]}$.
 - In addition, we have the total \mathbb{Z}_2-grading, which we will denote by
 \[\mathcal{A}(M, \mathcal{E}) = \mathcal{A}^+(M, \mathcal{E}) \oplus \mathcal{A}^-(M, \mathcal{E}) ; \]
 and which is defined by
 \[\mathcal{A}(M, \mathcal{E}) = \mathcal{A}^{2i}(M, \mathcal{E}^i) \oplus \mathcal{A}^{2i+1}(M, \mathcal{E}^{i+1}) ; \]
 for example, the space of sections of \mathcal{E}^\pm is contained in $\mathcal{A}^\pm(M, \mathcal{E})$.

- If \mathfrak{g} is a bundle of Lie subalgebras on M, then $\mathcal{A}(M, \mathfrak{g})$ is a Lie superalgebra
 with respect to the Lie superbracket defined by
 \[[\alpha_1 \otimes X_1, \alpha_2 \otimes X_2] = (-1)^{|X_1||\alpha_2|}(\alpha_1 \wedge \alpha_2) \otimes [X_1, X_2] . \]
 Likewise, if \mathcal{E} is a superbundle of modulus for \mathfrak{g} with respect to the action ρ,
 then $\mathcal{A}(M, \mathcal{E})$ is a supermodule for $\mathcal{A}(M, \mathfrak{g})$, with respect to the action
 \[\rho(\alpha \otimes X)(\beta \otimes \nu) = (-1)^{|X||\beta|}(\alpha \wedge \beta) \otimes (\rho(X)\nu) . \]
 In particular, this construction may be applied to the bundle of Lie superalgebra $\text{End}(\mathcal{E})$, where \mathcal{E} is a superbundle of M,
 since $\Lambda T^*M \otimes \mathcal{E}$ is a bundle of modules for the superalgebra $\Lambda T^*M \otimes \text{End}(\mathcal{E})$;
 we see that $\mathcal{A}(M, \text{End}\mathcal{E})$ is a Lie superalgebra, which has $\mathcal{A}(M, \mathcal{E})$ as a supermodule.

- Any differential operator on $\mathcal{A}(M, \mathcal{E})$ which supercommutes with the action of
 $\mathcal{A}(M)$ is given by the action of element of $\mathcal{A}(M, \text{End}\mathcal{E})$; such an operator will
 be called local.
 (This is consistent with the “super” point of view, that $\mathcal{A}(M)$ is the algebra of
 functions on a supermanifold fibered over M, and elements of $\mathcal{A}(M, \text{End}\mathcal{E})$ are
 the zeroth order differential operators on this supermanifold.)

Definition. If \mathcal{E} is a bundle of supertraces over a manifold M, then a superconnection on \mathcal{E} is an odd-parity first-order differential operator
 \[\mathbb{A} : \mathcal{A}^\pm(M, \mathcal{E}) \rightarrow \mathcal{A}^\pm(M, \mathcal{E}) \]
 which satisfies Leibniz’s rule in the \mathbb{Z}_2-graded sense: if $\alpha \in \mathcal{A}(M)$ and $\theta \in \mathcal{A}(M, \mathcal{E})$,
 then
 \[\mathbb{A}(\alpha \wedge \theta) = d\alpha \wedge \theta + (-1)^{|\alpha|}\alpha \wedge \mathbb{A}\theta . \]

- Let \mathbb{A} be a superconnection on \mathcal{E}.
 The operator \mathbb{A} can be extended to act on the space $\mathcal{A}(M, \text{End}\mathcal{E})$ in a way
 consistent with Leibniz’s rule:
 \[\mathbb{A}\alpha = [\mathbb{A}, \alpha], \quad \forall \alpha \in \mathcal{A}(M, \text{End}\mathcal{E}) . \]
 To check that $\mathbb{A}\alpha$, as defined by this formula, is an element of $\mathcal{A}(M, \text{End}\mathcal{E})$, we
 need only check that the operator $[\mathbb{A}, \alpha]$ commutes with exterior multiplication
 by any differential form $\beta \in \mathcal{A}(M)$.
Definition. The curvature of a superconnection \mathbb{A} is defined to be the operator \mathbb{A}^2 on $\mathcal{A}(M, \mathcal{E})$.

Proposition 3. The curvature is a local operator, and hence is given by the action of a differential form $F \in \mathcal{A}(M, \text{End}(\mathcal{E}))$, which has total degree even, and satisfies the Bianchi identity $\mathbb{A}F = 0$.

- A superconnection is entirely determined by its restriction to $\Gamma(M, \mathcal{E})$, which may be any operator $\mathbb{A} : \Gamma(M, \mathcal{E}^+) \to \mathcal{A}^-(M, \mathcal{E})$ that satisfies

$$\mathbb{A}(fs) = df \cdot s + f \mathbb{A}s, \quad \forall f \in C^\infty(M), \ s \in \Gamma(M, \mathcal{E}).$$

Indeed, if we define

$$\mathbb{A}(\alpha \otimes s) = d\alpha s + (-1)^{|\alpha|} \alpha \mathbb{A}s, \quad \forall \alpha \in \mathcal{A}(M), \ s \in \Gamma(M, \mathcal{E}).$$

this gives extension of \mathbb{A} to $\mathcal{A}(M, \mathcal{E})$.

- In order to better understand what a superconnection consists of, we can break it into its homogeneous components $\mathbb{A}^{[i]}$, which maps $\Gamma(M, \mathcal{E})$ to $\mathcal{A}^i(M, \mathcal{E})$:

$$\mathbb{A} = \mathbb{A}^{[0]} + \mathbb{A}^{[1]} + \mathbb{A}^{[2]} + \cdots$$

Proposition 4. (1) The operator $\mathbb{A}^{[1]}$ is a covariant derivative on the bundle \mathcal{E} which preserves the sub-bundles \mathcal{E}^+ and \mathcal{E}^-.

(2) The operator $\mathbb{A}^{[i]}$ for $i \neq 1$ are given by the action of differential forms

$$\omega^{[i]} \in \mathcal{A}^i(M, \text{End}(\mathcal{E}))$$

on $\mathcal{A}(M, \mathcal{E})$, where $\omega_i \in \begin{cases} \mathcal{A}^i(M, \text{End}^+(\mathcal{E})) & \text{if } i \text{ is even}, \\
\mathcal{A}^i(M, \text{End}^-(\mathcal{E})) & \text{if } i \text{ is odd.}
\end{cases}$

Corollary 5. The space of superconnections on \mathcal{E} is an affine space modelled on the vector space $\mathcal{A}^-(M, \text{End}(\mathcal{E}))$.

Thus, if \mathbb{A}_s is a smooth one-parameter family of superconnections, then

$$\frac{d\mathbb{A}_s}{ds} \in \mathcal{A}^-(M, \text{End}(\mathcal{E})) \ \forall s.$$

- We call $\mathbb{A}^{[1]}$ the covariant derivative component of the superconnection \mathbb{A}.

Example.