
Symmetric Spaces

• A characteristic property of a symmetric space is that every point has a global
symmetry that “reverses” the geodesics through that point.

Definition. A Riemannian manifold M is called locally symmetric if for every
point p ∈ M there exists a normal neighborhood U of p such that the map

jp = expp ◦(−Id) ◦ exp−1
p : U → M

is an isometry. Here Idp is the identity map on TpM .

• The map jp has the property “reversing” the geodesics that pass through the
point p. This means that if γv : (−ε, ε) → U ⊂ M is the (unique) geometric with

γv(0) = p and γ′
v(o) = v ∈ TpM,

then
jp(γv(t)) = γv(−t).

Indeed, since γv(t) = expp(tv), we obtain that

jp(γv(t)) = exp ◦(−Id)(tv) = expp(−tv) = γv(−t).

• For this reason the map jp is called a locally geodesic symmetry or simply a
local symmetry.

• Forthermore, it is obvious that j2
P =Id, and if v ∈ TpM , then

(djp)p(v) = (djp)p(γ′
v(0)) = (jp ◦ γv)′(0) = γ′

−v(0) = −v

hence
(djp)p = −Idp.

Such an isometry is called an involution.

Cartan’s Theorem. A Riemannian manifold with curvature tensor R is a locally
symmetric space iff DR = 0.

Proof. (⇒) Since jp is an isometry, djp commutes with DR. Hence

−(DXR)(Y, Z)ω = djp(DXR)(Y, Z)(ω) = D−XR(−Y,−Z)(−ω) = DXR(Y, Z)ω.

(⇐) Note that we already have a conditate for a map; namely, if ε is so small that
expp : Bε(0p) → Bε(p) is a diffeomorphism, then we can just define

jp(x) = −x

in these coordinates. It remains to see why this is an isometry when we
have parallel curvature tensor.

– To see this, we must show that in these coordinates the metric is the same
at x and −x.
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– Switching to geodesic polar coordinates, we have the usual equations relating
curvature and the metric.
So by Lemma below, the claim follows if we can prove that the curvature
tensor is the same when we go in opposite directions.

– To check this, first observe

R(·, v)v = R(·,−v)(−v), ∀v ∈ TpM.,

and so the curvature start out being the same.
If ∂r is the radial field, we also have

(D∂rR) = 0,

and hence the curvature tensors not only start out being equal, but also satisfy
the same first-order equation.
Thus, they must remain the same as we go in opposite directions. �

Lemma. Let M , M be smooth manifolds with curvature tensors R, R, respec-
tively. Fix p ∈ M , p ∈ M and let I : TpM → TpM be a linear isometry. Let Br(p)
be a normal coordinate neighborhood of p. Define ϕ : Br(p) → Br(p) by

ϕ = expp ◦I ◦ exp−1
p .

Suppose that for all geodesics γ emanating from p we have

Iγ(R(X, Y )Z) = R(Iγ(X), Iγ(Y ))Iγ(Z).

Then ϕ is an isometry and dϕ = Iγ .

Proof of Lemma. Given X ∈ TqM , let γ be the geodesic from p to q = γ(t∗) lying
in Br(p), and let J be the Jacobi field along γ such that J(0p) = 0p and J(t∗) = X .
Let γ = ϕ(γ). Define J along γ by J(t) = Iγ(J(t)).
– It follows immediately from the hypothesis that J(t) is a Jacobi field along

γ. Moreover,
‖J(t)‖ = ‖J(t)‖.

� To complete the proof it suffices to claim: J(t) = dϕ(J(t))
- Let Pγ denote the parallel translation along γ. Then, from the relation

J(t) = Pγ ◦ I ◦ P−γ(J(t))

it follws that
I(J ′(0)) = J

′
(0).

Since J , J are Jacobi fields vanishing at t = 0, we have

J(t) = d expγ(0)(tJ
′(0)) and J(t) = d expγ(0)(tJ

′
(0)).

Then

J(t) =d expγ(0) I(tJ ′(0))

=d expγ(0) ◦dI ◦ d exp−1
γ(0)(J(t)) = dϕ(J(t)). �



3

Corollary. Manifolds of constant curvature are locally symmetric.

Definition. A connected Riemannian manifold M is called a symmetric space
if for each p ∈ M there exists a (unique) isometry ip : M → M such that

ip(p) = p and (djp)p = −Idp.

The map jp is called a (global) symmetry of M at p.
Equivalently, ∀p ∈ M , there exists an isometry jp : M → M such that j2

p =Id, and
p is an isolated fixed point of jp.

Examples 1. The Euclidean space Rn is symmetric. The symmetry at p ∈ Rn is
the map jp(x) = 2p− x.

Examples 2. The sphere Sn is symmetric. Since its isometry group acts transi-
tively on Sn, it suffices to display a symmetry at the north pole p = (1, 0, · · · , 0),
given by

jp(x1, · · · , xn+1) = (−x1, · · · ,−xn, xn+1).

The Structure of a Symmetric Space

Theorem 2. A symmetric Riemanniam manifold is geodesically complete.

Proof. : Claim: Every geodesic γ(0, a) → M is extendible.
Let b be near a in (0,a) and let jγ(b) be the symmetry at γ(b).
Since jγ(b) reverse geodesics through γ(b), the required extension of γ is jγ(b)◦γ. �

Theorem 2. A symmetric Riemanniam manifold is homogeneous.

Proof. Claim: ∀p, q ∈ M there exists an isometry φ of M that maps p to q.
To prove this, note that since M is geodesiclly complete by Theorem 1, any two
points p, q ∈ M can be joined by a geodesic.
– Let γ : [0, 1] → M be a geodesic with γ(0) = q, γ(1) = p.
– Then the symmetry jγ( 1

2 ) at the point γ( 1
2 ) is an isometry; call it φ̃.

– This isometry reverses geodesics, hence carries γ(1) to γ(0). �

• Since M is homogeneous, the isometry group I(M) acts trsnsitively on M , and
it can be shown that the identity component G = Io(M) of I(M) also acts
transitively.

– By the Meyer-Steenrod Theorem, I(M) is a Lie group.
– Thus M can be identified with the homogeneous space G/K, where K is the

isotropy subgroup of a point p ∈ M .
– For simplicity take p = eK = o, and let j denote the (global) symmetry of

M = G/K at o.

• Next, we will see that the symmetry j provides M with further structure.

Definition. The map σ : G → G is defined by σ(g) = j ◦ g ◦ j = j ◦ g ◦ j−1.

Clearly, σ(G) is a isometry, hence is an element of Io(M) = G.
Thus σ : G → G is an automorphism.
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Definition. Let Gσ = {g ∈ G : σ(g) = g} be the set of fixed point of σ, and Go
σ

its connected component.

Theorem 3. (1) Let M = G/K be a symmetric space with symmetry j at o = eK.
Then

(a) σ2 = IdG, that is, σ is an involution.
(b) The set Gσ is a closed subgroup of G such that Go

σ ⊂ K ⊂ Gσ .
These two properties make the pair (G, K) into what is called a symmetric pair.

(2) Conversely, if G is a connected group, K a closed subgroup of G,
and σ an automorphism of G satisfying (a) and (b) above,
then every G-invariant metric on M = G/K makes M into a Riemannian sym-
metric space such that

j ◦ π = π ◦ σ.

Here j is the symmetry of M at o, and π : G → M is the projection.

• The map σ : G → G induces a map σ̃ : G/K → G/K which is called the
symmetry of G/K.

Proposition 4. Let M = G/K be a symmetric space with involution σ, and Lie
algebra g, k of G and K respectively. Then

(1) k = {X ∈ g : dσ(X) = X}.
(2) If m = {X ∈ g : dσ(X) = −X}, then g is the direct sum g = k ⊗ m.
(3) The subspace m is Ad(K)-invariant, that is, Ad(k)m ⊂ m for all k ∈ K.

Hence, a symmetric space is reductive.
(4) The following are true:

[k, k] ⊂ k, [k, m] ⊂ m, [m, m] ⊂ k.

Proof. (1) (i) First, we claim: if k ∈ K, then σ(k) = k.
Indeed, the differential of the isometry σ(k) at o is

djo ◦ dko ◦ djo = dko,

since djo = −Ido. Then the result is obtained from the general fact that if two
(local) isometries on a connected manifold have the same differential at a point,
then they coincide.

(i.a) Now let X ∈ k. Since as shown above, σ
∣∣∣
K

= IdK , we obtain that dσ(X) = X .

(ii) Conversely, let X ∈ g with dσ(X) = X .
If α is the one-parameter subgroup that corresponds to X ,

⇒ the curve σ◦α is the one-parameter subgroup of X with the same initial velocity,
⇒ σ ◦ α = α.
⇒ α ∈ Gσ, and in fact α ∈ Go

σ ⊂ K.
⇒ X ∈ k.
(2) (i) The sum is evidently direct. Now let X ∈ g and set

Xk =
1
2
(X + dσ(X)), Xm =

1
2
(X − dσ(X)).
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Since σ is an involution, so is dσ. Hence

dσ(Xk) = Xk, dσ(Xm) = −Xm,

which implies
Xk ∈ k, Xm ∈ m.

Thus g = k + m.
(3) Let X ∈ m and k ∈ K. In view of (2), we need to claim:

dσ(Ad(k)X) = −Ad(k)X.

Since σ(k) = k, the automorphisms σ and the inner automorphism Ik of G
commute; indeed,

σIk(g) = σ(kgk−1) = σ(k)σ(g)σ(k−1) = kσ(g)k−1 = Ikσ(g).

Thus we have that

dσ(Ad(k)X) =d(σIk)(X) = d(Ikσ)(X)

=Ad(k)dσ(X) = Ad(k)(−X), by (2),

= − Ad(k)X.

(4) The first inclusion holds since K is a Lie subgroup of G.
The second is because of (3).
For the third, if X, Y ∈ m, then

dσ([X, Y ]) = [dσ(X), dσ(Y )] = [−X,−Y ] = [X, Y ],

hence [X, Y ] ∈ k. �

The Geometry of a Symmetric Space

• As we saw in Proposition 4, a symmetric space is reductive, and we know that
the Ad(K)-invariant subspace m can be naturally identified with the tangent
space To(G/K).

• Due to (4) in Proposition 4, [m, m] ⊂ k, the natural reductive condition

〈[X, Y ]m, Z〉 = 〈X, [Y, Z]m〉 (X, Y, Z ∈ m)

holds trivially; here 〈 , 〉 is the scalar product on m, corresponding to the G-
invariant metric of G/K. Thus we obtain the following.

Proposition 5. Let M = G/K be a symmetric space. Then the sectional curva-
ture

〈R(X, Y )X, Y 〉 = 〈[[X, Y ], X ], Y 〉, ∀X, Y ∈ m.

Proof. Take into account that M is naturally reductive (i.e. U ≡ 0), and the
inclusion (4) of Proposition 4. �


