General First Order Equations

- Let us write a general nonlinear equation $F\left(x, y, u, u_{x}, u_{y}\right)=0$ as

$$
\begin{equation*}
F(x, y, u, p, q)=0, \quad \text { where } p=u_{x}, q=u_{y} \tag{1}
\end{equation*}
$$

We assume that $F=F(x, y, u, p, q)$ is a smooth function of its arguments and, to avoid trivial cases, that

$$
F_{p}^{2}+F_{q}^{2} \neq 0
$$

- In the quasilinear case,

$$
F(x, y, u, p, q)=a(x, y, u) p+b(x, y, u) q-c(x, y, u)
$$

and $F_{p}=a(x, y, u), F_{q}=b(x, y, u)$ so that $F_{p}^{2}+F_{q}^{2} \neq 0$ says that a and b does not vanish simultaneously.

- As in the quasilinear case, we want to derive some ODEs which can integrate to find the characteristics.

Geometric Interpretation of (1):

- At each point $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$, we consider the set of all vectors $(p, q,-1)$ with

$$
F\left(x_{0}, y_{0}, z_{0}, p, q\right)=0
$$

and the corresponding family $\mathcal{F}\left(x_{0}, y_{0}, z_{0}\right)$ of planes perpendicular to such vectors.

- If u is a solution of (1) and M_{u} is the graph of u, then the tangent plane of M_{u} at $\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right)$ is a member of the family $\mathcal{F}\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right)$.
- Now the relation

$$
F\left(x_{0}, y_{0}, z_{0}, p, q\right)=0
$$

is one equation in the two unknowns p and q, so $\mathcal{F}\left(x_{0}, y_{0}, z_{0}\right)$ ought to be a one-parameter family of planes.

- In fact, if we assume that $F_{q}\left(x_{0}, y_{0}, z_{0}, p, q\right) \neq 0$, then the implicit function theorem determines q as a function of p :

$$
F\left(x_{0}, y_{0}, z_{0}, p, q(p)\right)=0, \quad \forall p
$$

The possible tangent planes to the graph $z=u(x, y)$ are given by

$$
\begin{equation*}
z-z_{0}=p\left(x-x_{0}\right)+q(p)\left(y-y_{0}\right) \tag{2}
\end{equation*}
$$

which, as p varies, describes a one-parameter family of planes through the point $\left(x_{0}, y_{0}, z_{0}\right)$.

- This suggests that there is a cone $K\left(x_{0}, y_{0}, z_{0}\right)$, having it vertex at $\left(x_{0}, y_{0}, z_{0}\right)$, with the property that a plane P is in $\mathcal{F}\left(x_{0}, y_{0}, z_{0}\right)$ iff P is tangent to $K\left(x_{0}, y_{0}, z_{0}\right)$ along a generator of this cone. Indeed, we recall the following definition.

Definition. Suppose S_{a} is a one-parameter family of surfaces in \mathbb{R}^{3} given by

$$
\begin{equation*}
z=w(x, y ; a) \tag{3}
\end{equation*}
$$

w depends smoothly on x, y and the real parameter a. Consider also the equation

$$
\begin{equation*}
\partial_{a} w(x, y ; a)=0 . \tag{4}
\end{equation*}
$$

For a fixed value of a, these two equations (3), (4) determine a curve γ_{a} in \mathbb{R}^{3}. The envelope \mathcal{E} of the family of the surfaces S_{a} is the union of these curves γ_{a}.
$\odot \gamma_{a}$ is the curve on the surface (3) approached by the intersection curve of the surface (3) and the surface $z=w(x, y ; a+\delta a)$ as $\delta a \rightarrow 0$.
\odot Along γ_{a} the tangent planes to the surface (3) and the envelope coincide.
\odot The equation for \mathcal{E} is found simply by solving (4) for a as a function of x and y, $a=f(x, y)$ and then substituting into (3) to obtain

$$
z=w(x, y ; f(x, y))
$$

Moreover, along γ_{a}, a is constant and we have

$$
d z=w_{x} d x+w_{y} d y, \quad 0=w_{a x} d x+w_{a y} d y
$$

Example. Let S_{a} be the one-parameter family of two-dimensional spheres in \mathbb{R}^{3} of radius 1 and center $(a, 0,0)$. Then the envelop \mathcal{E} of this family is the cylinder of radius 1 centered on the x-axis.

Monge Cones

- If we apply this to the family (2), where p is the parameter, we obtain the "envelope" which is s surface C called the Monge cone, which satisfies (2) and

$$
\left\{\begin{array}{l}
d z=p d x+q d y \tag{5}\\
0=d x+\frac{d q}{d p} d y
\end{array}\right.
$$

If we differentiate (1) with respect to p, we obtain

$$
F_{p}+F_{q} \frac{d q}{d p}=0
$$

combining this with the second equation in (5), we obtain

$$
\frac{d x}{F_{p}}=\frac{d y}{F_{q}}
$$

In consideration of the first equation in (5), these equations can be written in parametric form as

$$
\begin{array}{r}
\frac{d x}{d t}=F_{p}(x, y, z, p, q), \quad \frac{d y}{d t}=F_{q}(x, y, z, p, q) \tag{6}\\
\frac{d z}{d t}=p \frac{d x}{d t}+q \frac{d y}{d t}=p F_{p}(x, y, z, p, q)+q F_{q}(x, y, z, p, q) .
\end{array}
$$

Remark. Notice that, in general, the Monge cone C will not be a right circular cone, but rather a ruled surface, everywhere containing a line of tangency with one of the planes defined by (2).

- We can now imagine a field of cones in \mathbb{R}^{3}; a C^{1} function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a solution of equation (1) iff the corresponding surface $M_{u}=\{(x, y, u(x, y))\}$ is tangent to the Monge cone $K\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right)$ at each point $\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right)$.
- This gives a field of directions at each point of M_{u}, namely the direction which lies along a generator of the Monge cone at that point.
- Namely, consider a solution u of (1), and let

$$
z_{0}=u\left(x_{0}, y_{0}\right), \quad p_{0}=u_{x}\left(x_{0}, y_{0}\right), \quad q_{0}=u_{y}\left(x_{0}, y_{0}\right)
$$

The tangent plane of M_{u} at $\left(x_{0}, y_{0}, z_{0}\right)$ consists of points (x, y, z) satisfying

$$
z-z_{0}=p_{0}\left(x-x_{0}\right)+q_{0}\left(y-y_{0}\right)
$$

Equations (6) shows that points (x, y, z) which are on both this tangent plane and the Monge cone $K\left(x_{0}, y_{0}, z_{0}\right)$ have to satisfy

$$
\frac{x-x_{0}}{F_{p}}=\frac{y-y_{0}}{F_{q}}=\frac{z-z_{0}}{p_{0} F_{p}+q_{0} F_{q}}, \quad\left[F_{p}, F_{q} \text { evaluated at }\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right)\right] .
$$

Therefore, these points lie along the line through $\left(x_{0}, y_{0}, z_{0}\right)$ with direction

$$
\begin{equation*}
\left(F_{p}, F_{q}, p_{0} F_{p}+q_{0} F_{q}\right) \quad\left[F_{p}, F_{q} \text { evaluated at }\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right)\right] \tag{7}
\end{equation*}
$$

- An integral surface is defined to be a surface S that, at each point $\left(x_{0}, y_{0}, z_{0}\right)$, has a tangent plane P which is also tangent to the Monge cone C.
- The unique line of tangency between C and P determines a direction field on S. Integral curves of this field are again defined to be characteristic curves, although they depend on the choice of the tangent plane P, i.e. on the choice of p_{0}, since this determines $q_{0}=q\left(p_{0}\right)$.
- Notice that, in the quasilinear case $a p+b q=c$, the cone C degenerates to a line, so we need not specify p_{0}.

Characteristic Strips

- The system (6) correspond to the characteristic system for the quasilinear equations, but with two more unknown functions $p(t)$ and $q(t)$; thus the system (6) is underdetermined, and we need equations for $\frac{d p}{d t}$ and $\frac{d q}{d t}$.
- Proceeding formally, from (1) we can write

$$
\begin{aligned}
\frac{d p}{d t} & =u_{x x}(x(t), y(t)) \frac{d x}{d t}+u_{x y}(x(t), y(t)) \frac{d y}{d t} \\
& =u_{x x}(x(t), y(t)) F_{p}+u_{x y}(x(t), y(t)) F_{q}
\end{aligned}
$$

\odot We have to get rid of the second order derivatives.

- Since u is a solution (1), the identity

$$
F\left(x, y, u(x, y), u_{x}(x, y), u_{y}(x, y)\right)=0
$$

holds. Partial differentiation with respect to x yields, since $u_{x y}=u_{y x}$,

$$
F_{x}+F_{u} u_{x}+F_{p} u_{x x}+F_{q} u_{x y} \equiv 0
$$

Computing along $x=x(t), y=y(t)$, we obtain

$$
u_{x x}(x(t), y(t)) F_{p}+u_{x y}(x(t), y(t)) F_{q}=-F_{x}-p(t) F_{u}
$$

Thus, we define for p the following differential equation:

$$
\frac{d p}{d t}=-F_{x}(x, y, u, p, q)-p F_{u}(x, y, u, p, q)
$$

Similarly, we find

$$
\frac{d q}{d t}=-F_{y}(x, y, u, p, q)-q F_{u}(x, y, u, p, q)
$$

In conclusion, we are led to the following characteristic system of five autonomous equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F_{p}, \quad \frac{d y}{d t}=F_{q}, \quad \frac{d z}{d t}=p F_{p}+q F_{q} \tag{8}\\
\frac{d p}{d t}=-F_{x}-p F_{u}, \quad \frac{d q}{d t}=-F_{y}-q F_{u}
\end{array}\right.
$$

Observe that $F=F(x, y, u, p, q)$ is a first integral of (8). In fact

$$
\begin{align*}
& \frac{d}{d t} F(x(t), y(t), u(t), p(t), q(t)) \\
= & F_{x} \frac{d x}{d t}+F_{y} \frac{d y}{d t}+F_{u} \frac{d z}{d t}+F_{p} \frac{d p}{d t}+F_{q} \frac{d q}{d t} \\
= & F_{x} F_{p}+F_{y} F_{q}+F_{u}\left(p F_{p}+q F_{q}\right)+F_{p}\left(-F_{x}-p F_{u}\right)+F_{q}\left(-F_{y}-q F_{q}\right) \tag{9}\\
\equiv & 0
\end{align*}
$$

and therefore, if $F\left(x\left(t_{0}\right), y\left(t_{0}\right), u\left(t_{0}\right), p\left(t_{0}\right), q\left(t_{0}\right)\right)=0$ at some t_{0}, then

$$
F(x(t), y(t), u(t), p(t), q(t)) \equiv 0, \quad \text { for all } t
$$

Thus the curve

$$
x=x(t), \quad y=y(t), \quad z=z(t)
$$

still called a characteristic curve, is still contained in an integral surface, while

$$
p=p(t), \quad q=q(t)
$$

gives the normal vector at each point, and can be associated with a piece of the tangent plane.

- We regard a point $\left(x_{0}, y_{0}, z_{0}, p, q\right) \in \mathbb{R}^{5}$ as a plane passing through $\left(x_{0}, y_{0}, z_{0}\right)$ and perpendicular to the vector $(p, q,-1)$.
- A curve $C(t)=\left(c_{1}(t), c_{2}(t), c_{3}(t), c_{4}(t), c_{5}(t)\right)$ in \mathbb{R}^{5} is then regarded as a family of planes, the plane at time t passing through $\Gamma(t)=\left(c_{1}(t), c_{2}(t), c_{3}(t)\right)$ and perpendicular to the vector $\left(c_{4}(t), c_{5}(t),-1\right)$.
- We refer to this curve $\Gamma(t)=\left(c_{1}(t), c_{2}(t), c_{3}(t)\right)$ as the base curve of $C(t)$.
- An arbitrary curve $C(t)=\left(c_{1}(t), c_{2}(t), c_{3}(t), c_{4}(t), c_{5}(t)\right)$ in \mathbb{R}^{5} is called a strip if the tangent vector $\Gamma^{\prime}(t)$ of the base curve $\Gamma(t)$ always lies in the plane determined by $C(t)$ at time t. This means that

$$
\Gamma^{\prime}(t)=\left(c_{1}^{\prime}(t), c_{2}^{\prime}(t), c_{3}^{\prime}(t)\right) \text { is perpendicular to }\left(c_{4}(t), c_{5}(t),-1\right)
$$

So $C(t)$ is a strip iff it satisfies the strip condition

$$
\frac{d c_{3}(t)}{d t}=c_{4}(t) \frac{d c_{1}(t)}{d t}+c_{5}(t) \frac{d c_{2}(t)}{d t}
$$

- Notice that any solution of (8) is automatically a strip.
\odot For this reason, a solution $(x(t), y(t), u(t), p(t), q(t))$ of (8) is called characteristic strip, because the specification of p and q gives infinitesimal pieces of the tangent planes along the curve $(x(t), y(t), z(t))$.
- If u is a solution of (1), then M_{u}, the graph of u, is the union of certain base curves of characteristic strips.
- Notice that in order to construct our integral surface S, we are really only interested in the base curve of the strip, namely the curve $(x(t), y(t), z(t))$, but to find it we also need to find the functions $p(t)$ and $q(t)$.

The Cauchy Problem

- As usual, the Cauchy problem consists in looking for a solution u of (1), assuming prescribed values on a given curve γ_{0} in the (x, y)-plane.
- If γ_{0} has the parameterization

$$
x=f(s), \quad y=g(s), \quad s \in I \subseteq \mathbb{R}
$$

it is desired that

$$
u(f(s), g(s))=h(s), \quad s \in I
$$

where $h=h(s)$ is a given function.

- We assume that $0 \in I$ and the f, g, h are smooth functions in I.
- Let Γ_{0} be the initial curve, given by the parameterization

$$
x=f(s), \quad y=g(s), \quad z=h(s)
$$

this only specify the "initial" points for x, y and z.

- To solve the Cauchy problem for (1), we must assume the initial curve Γ_{0} is noncharacteristic, i.e. at each point of Γ_{0}, the Monge cone is not tangent to Γ_{0}.
- Even so, the Cauchy problem as it stands is unreasonable.

Geometrically, this is because (1) only determines a cone along Γ_{0}, and we do not know which direction to flow along a characteristic;
analytically, we have a system of five ODEs to solve, but we only give initial values for x, y and z.

- The way to resolve this is to specify along Γ_{0} two functions ϕ and ψ to give initial conditions for p and q.
- Suppose that we have an arbitrary curve $\Sigma=(f(s), g(s), h(s), \varphi(s), \psi(s))$ in \mathbb{R}^{5}, with base curve σ, and that $F(\Sigma(s))=0$ for all s.
- There is a unique solution of (8) through each point $\Sigma(s)$, and by (9), this solution is a characteristic strip.
- We thus obtain a family of characteristic strips $C(t)$.
- The union of the corresponding base curves $c(t)$ is a surface M_{u}, containing the base curve $\sigma(s)$.
- In it reasonable to suppose now that u is a solution of (1)? The answer is no, for there is no hope unless Σ also a strip. When this condition is satisfied, then everything works out.
- In fact, we will prove the following.

Theorem 1. Assume that F is C^{2} in a domain $D \subseteq \mathbb{R}^{5}$, and $F_{p}^{2}+F_{q}^{2} \neq 0$.
If $\sigma=(f, g):[a, b] \rightarrow \mathbb{R}^{2}$ is a given C^{2} curve, $h(s):[a, b] \rightarrow \mathbb{R}$ is a given C^{2} function, and $\varphi, \psi:[a, b] \rightarrow \mathbb{R}$ are two C^{1} functions satisfying

$$
\begin{equation*}
F(\Sigma(s))=F(f(s), g(s), h(s), \varphi(s), \psi(s))=0, \quad \forall s \in[a, b] \tag{10}
\end{equation*}
$$

and the strip condition

$$
\begin{equation*}
\frac{d h(s)}{d s}=\varphi(s) \frac{d f(s)}{d s}+\psi(s) \frac{d g(s)}{d s}, \quad \forall s \in[a, b] \tag{11}
\end{equation*}
$$

If, furthermore, $\sigma^{\prime}(s)=\left(f^{\prime}(s), g^{\prime}(s)\right)$ and the projection of the characteristic direction (7) onto xy-plane namely, $F_{p}\left(\Sigma(s), F_{q}(\Sigma(s))\right)$, are linearly independent, i.e.

$$
\begin{equation*}
f^{\prime}(s) F_{q}(\Sigma(s)) \neq g^{\prime}(s) F_{p}(\Sigma(s)), \quad \forall s \in[a, b] \tag{12}
\end{equation*}
$$

then there is a unique solution u of (1) satisfying

$$
u(\sigma(s))=h(s), \quad u_{x}(\sigma(s))=\varphi(s), \quad u_{y}(\sigma(s))=\psi(s), \quad \forall s \in[a, b]
$$

Remark. Observe that if $\left(x_{0}, y_{0}, z_{0}\right)=(f(0), g(0), h(0))$ and p_{0}, q_{0} is a solution of the system

$$
\left\{\begin{array}{l}
F\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right) \equiv 0 \\
h^{\prime}(0)=p_{0} f^{\prime}(0)+q_{0} g^{\prime}(0)
\end{array}\right.
$$

by the implicit function theorem, the condition

$$
\left|\begin{array}{cc}
f^{\prime}(0) & F_{p}\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right) \\
g^{\prime}(0) & F_{q}\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right)
\end{array}\right| \neq 0
$$

assures the existence of a solution $\varphi(s)$ and $\psi(s)$ of

$$
\left\{\begin{array}{l}
F(f(s), g(s), h(s), \varphi(s), \psi(s)) \equiv 0 \\
h^{\prime}(s)=\varphi(s) f^{\prime}(s)+\psi(s) g^{\prime}(s)
\end{array}\right.
$$

in a neighborhood of $\left(x_{0}, y_{0}\right)$.

Proof of Theorem 1. (i) Solve the characteristic system (8) with initial conditions

$$
x(0)=f(s), \quad y(0)=g(s), \quad z(0)=h(s), \quad p(0)=\varphi(s), \quad q(0)=\psi(s)
$$

Suppose we find the solution

$$
\begin{equation*}
x=X(s, t), \quad y=Y(s, t), \quad z=Z(s, t), \quad p=P(s, t), \quad q=Q(s, t) \tag{13}
\end{equation*}
$$

of (8). If we can solve for s and t in terms of x and y via the first two equations in (13), and find $s=S(x, y), t=T(x, y)$ of class C^{1} in a neighborhood of $\left(x_{0}, y_{0}\right)$, such that

$$
S\left(x_{0}, y_{0}\right)=0, \quad T\left(x_{0}, y_{0}\right)=0
$$

then, from the third equation $z=Z(s, t)$ in (13), we obtain

$$
z=Z(S(x, y), T(x, y))
$$

Let us reason in a neighborhood of $s=t=0$, setting

$$
X(0,0)=f(0)=x_{0}, \quad Y(0,0)=g(0)=y_{0}, \quad Z(0,0)=h(0)=z_{0}
$$

From the Inverse Function Theorem, the system

$$
X(s, t)=x \quad \text { and } \quad Y(s, t)=y
$$

defines

$$
s=S(x, y) \quad \text { and } \quad t=T(x, y)
$$

in a neighborhood of $\left(x_{0}, y_{0}\right)$ if

$$
0 \neq J(0,0)=\left|\begin{array}{cc}
X_{s}(0,0) & X_{t}(0,0) \\
Y_{s}(0,0) & Y_{t}(0,0)
\end{array}\right|=\left|\begin{array}{cc}
f^{\prime}(0) & F_{p}\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right) \\
g^{\prime}(0) & F_{q}\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right)
\end{array}\right|
$$

(ii) Define $u(x, y)=Z(S(x, y), T(x, y))$. We claim: in (13),

$$
\begin{equation*}
u_{x}(X(s, t), Y(s, t))=P(s, t), \quad u_{y}(X(s, t), Y(s, t))=Q(s, t) \tag{14}
\end{equation*}
$$

This, (9) and (10) will prove

$$
\begin{aligned}
& F\left(x(t), y(t), u(x(t), y(t)), u_{x}(x(t), y(t)), u_{y}(x(t), y(t))\right) \\
& =F\left(x(0), y(0), u(x(0), y(0)), u_{x}(x(0), y(0)), u_{y}(x(0), y(0))\right)=0
\end{aligned}
$$

To prove the claim, we observe that we have, by (8),

$$
\begin{equation*}
\frac{\partial Z}{\partial t}=P \frac{\partial X}{\partial t}+Q \frac{\partial Y}{\partial t} \tag{15}
\end{equation*}
$$

Consider the function

$$
\Lambda=\frac{\partial Z}{\partial s}-P \frac{\partial X}{\partial s}-Q \frac{\partial Y}{\partial s}
$$

We will claim:

$$
\begin{equation*}
\Lambda(s, t) \equiv 0 \tag{16}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\frac{\partial Z}{\partial s}=P \frac{\partial X}{\partial s}+Q \frac{\partial Y}{\partial s} \tag{17}
\end{equation*}
$$

Assume the truth of (16).
We observe that, differentiation the definition $u(x, y)=Z(S(x, y), T(x, y))$ gives

$$
\left\{\begin{array}{l}
\frac{\partial Z}{\partial t}=u_{x} \frac{\partial X}{\partial t}+u_{y} \frac{\partial Y}{\partial t} \tag{18}\\
\frac{\partial Z}{\partial s}=u_{x} \frac{\partial X}{\partial s}+u_{y} \frac{\partial Y}{\partial s} .
\end{array}\right.
$$

From (15) (17) and (18) we know that $(P(s, t), Q(s, t))$ and $\left(u_{x}(x, y), u_{y}(x, y)\right)$ are solutions for a system of two linear equations in two unknowns, whose determinant

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial X}{\partial t} & \frac{\partial Y}{\partial t} \\
\frac{\partial X}{\partial s} & \frac{\partial Y}{\partial t}
\end{array}\right) \neq 0
$$

in a neighborhood of $[a, b] \times\{0\}$. So the two solutions must be the same; in other words, (17) is true.
(iii) Thus it remains to prove (16). We have, by (11),

$$
\begin{equation*}
\Lambda(s, 0)=\frac{\partial h(s)}{\partial s}-p(s) \frac{\partial f(s)}{\partial s}-q(s) \frac{\partial g(s)}{\partial s}=0 \tag{19}
\end{equation*}
$$

We claim that for each fixed $s, \Lambda(s, t)$ satisfies the ODE

$$
\begin{equation*}
\frac{\partial \Lambda}{\partial t}=-F_{u} \Lambda \tag{20}
\end{equation*}
$$

which, together with the initial condition (18), implies (16).

- Thus, it remains to prove (20). For this, letting

$$
\beta(s, t)=(X(s, t), Y(s, t), Z(s, t), P(s, t), Q(s, t))
$$

we compute

$$
\begin{aligned}
\frac{\partial \Lambda}{\partial t}= & \frac{\partial^{2} Z}{\partial s \partial t}-\frac{\partial P}{\partial t} \frac{\partial X}{\partial s}-\frac{\partial Q}{\partial t} \frac{\partial Y}{\partial s}-P \frac{\partial^{2} X}{\partial s \partial t}-Q \frac{\partial^{2} Y}{\partial s \partial t} \\
= & \frac{\partial}{\partial s}\left(\frac{\partial Z}{\partial t}-P\left(\frac{\partial X}{\partial t}\right)-Q\left(\frac{\partial Y}{\partial t}\right)\right)+\frac{\partial P}{\partial s} \frac{\partial X}{\partial t}+\frac{\partial Q}{\partial s} \frac{\partial Y}{\partial t} \\
& -\frac{\partial P}{\partial t} \frac{\partial X}{\partial s}-\frac{\partial Q}{\partial t} \frac{\partial Y}{\partial s} \\
= & 0+F_{p}\left(\frac{\partial P}{\partial s}\right)+F_{q}\left(\frac{\partial Q}{\partial s}\right)+\left(F_{x}+F_{u} P\right) \frac{\partial X}{\partial s}+\left(F_{y}+T_{u} Q\right) \frac{\partial Y}{\partial s}
\end{aligned}
$$

(by (8), where all partial of F are evaluated at $\beta(s, t)$),
$=F_{x}\left(\frac{\partial X}{\partial s}\right)+F_{y}\left(\frac{\partial Y}{\partial s}\right)+F_{z}\left(\frac{\partial Z}{\partial s}\right)+F_{p}\left(\frac{\partial P}{\partial s}\right)+F_{q}\left(\frac{\partial Q}{\partial s}\right)$
$-F_{u}\left(\frac{\partial Z}{\partial s}-P \frac{\partial X}{\partial s}-Q \frac{\partial Y}{\partial s}\right)$
$=\frac{\partial}{\partial s} F(\beta(s, t))-F_{u} \Lambda$
$=-F_{u} \Lambda$.

- Thus, to solve the characteristic system, we have first to complete Γ_{0} into a strip $\Sigma(s)=(f(s), g(s), h(s), \varphi(s), \psi(s))$.
- The two functions $\varphi(s)$ and $\psi(s)$ represent the initial values for p and q and cannot be chosen arbitrarily.
- A first condition is that each tangent plane must be tangent to the Monge cone; in other words, $\varphi(s)$ and $\psi(s)$ have to satisfy the equation (10) (recalling (9))
- A second condition is that the planes must fit together smoothly along Γ_{0} like scales of a fish, namely from differentiating $h(s)=u(f(s), g(s))$ we obtain the so called strip condition (11).
- Now we are in position to give a (formal) procedure to construct a solution of our Cauchy problem: Determine a solution $u=u(x, y)$ of $F\left(x, y, u, u_{x}, u_{y}\right)=0$, containing the initial curve $(f(s), g(s), h(s))$:
Step 1: Solve for $\varphi(s)$ and $\psi(s)$ the (nonlinear) system

$$
\left\{\begin{array}{l}
F(f(s), g(s), h(s), \varphi(s), \psi(s)) \equiv 0 \\
h^{\prime}(s)=\varphi(s) f^{\prime}(s)+\psi(s) g^{\prime}(s)
\end{array}\right.
$$

Step 2: Solve the characteristic system (8) with initial conditions

$$
x(0)=f(s), \quad y(0)=g(s), \quad z(0)=h(s), \quad p(0)=\varphi(s), \quad q(0)=\psi(s) .
$$

Suppose we find the solution

$$
x=X(s, t), \quad y=Y(s, t), \quad z=Z(s, t), \quad p=P(s, t), \quad q=Q(s, t)
$$

Step 3: Solve

$$
x=X(s, t), \quad y=Y(s, t)
$$

for s, t in terms of x, y. Substitute

$$
s=S(x, y), \quad t=T(x, y)
$$

into $z=Z(s, t)$ to find a solution $z=u(x, y)$.
Example. Consider the initial value problem

$$
\left\{\begin{array}{l}
u=u_{x}^{2}-3 u_{y}^{2} \\
u(x, 0)=x^{2}
\end{array}\right.
$$

We have $F(p, q)=p^{2}-3 q^{2}-u$ and the characteristic system is

$$
\begin{gather*}
\frac{d x}{d t}=2 p, \quad \frac{d y}{d t}=-6 q, \quad \frac{d z}{d t}=2 p^{2}-6 q^{2}=2 z \tag{21}\\
\frac{d p}{d t}=p, \quad \frac{d q}{d t}=q \tag{22}
\end{gather*}
$$

A parameterization of the initial line is

$$
f(s)=s, \quad g(s)=0, \quad h(s)=s^{2}
$$

To complete the initial strip we solve the system

$$
\left\{\begin{array}{l}
\varphi^{2}-3 \psi^{2}=s^{2} \\
\varphi=2 s
\end{array}\right.
$$

There are two solutions:

$$
\varphi(s)=2 s, \quad \psi(s)= \pm s
$$

(i) The choice $\psi(s)=s$ yields, integrating equation (22),

$$
P(s, t)=2 s e^{t}, \quad Q(s, t)=s e^{t}
$$

whence, from (21),

$$
X(s, t)=4 s\left(e^{t}-1\right)+s, \quad Y(s, t)=-6 s\left(e^{t}-1\right), \quad Z(s, t)=s^{2} e^{2 t}
$$

Solving the first two equations for s, t and substituting into the third one, we obtain

$$
u(x, y)=\left(x+\frac{2}{y}\right)^{2}
$$

(ii) The choice $\psi(s)=-s$ yields

$$
u(x, y)=\left(x-\frac{2}{y}\right)^{2}
$$

- As the example shows, in general, there is no uniqueness, unless the system (10) has a unique solution.
- On the other hand, if the system (10) has no (real) solution, then the Cauchy problem has no solution as well.

Higher Dimensions.

- Consider the general first-order PDE

$$
\begin{equation*}
F\left(x_{1}, \cdots, x_{n}, u\left(x_{1}, \cdots, x_{n}\right), u_{x_{1}}\left(x_{1}, \cdots, x_{n}\right), \cdots, u_{x_{n}}\left(x_{1}, \cdots, x_{n}\right)\right)=0 \tag{23}
\end{equation*}
$$

We denote the partials of F by $F_{x_{i}}, F_{u}, F_{p_{i}}$.

- Consider curves Γ in \mathbb{R}^{n+1} satisfying

$$
\begin{cases}\frac{d C_{i}(t)}{d t}=F_{p_{i}}(C(t)), & i=1, \cdots, n \\ \frac{d C_{n+1}(t)}{d t}=\sum_{i=1}^{n} C_{n+1+i}(t) F_{p_{i}}(C(t)), & \\ \frac{d C_{n+1+i}(t)}{d t}=-F_{x_{i}}(C(t))-C_{n+1+i}(t) F_{u}(C(t)), & i=1, \cdots, n\end{cases}
$$

As before, we easily check that if $C(t)$ satisfies this equations, then $F(C(t))$ is constant in t.

- A solution $C(t)$ with $F(C(t))=0$ for all t is called a characteristic strip.
\odot Now suppose we are given a bijection

$$
\sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right): \mathcal{D} \rightarrow \mathbb{R}^{n}, \quad \sigma_{i}=\sigma_{i}\left(s_{1}, \cdots, s_{n-1}\right)
$$

where $\mathcal{D} \subset \mathbb{R}^{n-1}$ is a compact $(n-1)$-dimensional manifold-with-boundary, and functions $h, \varphi_{i}, \cdots, \varphi_{n}: \mathcal{D} \rightarrow \mathbb{R}$, with

$$
F(\Sigma(s))=F\left(\sigma_{1}, \cdots, \sigma_{n}, h(s), \varphi_{1}(s), \cdots, \varphi_{n}(s)\right)=0, \quad \forall s \in \mathcal{D}
$$

Then there is a unique characteristic strip Γ through each point $\Sigma(s)$, and the union of the corresponding base curves is a hypersurface M_{u}.

- In order for the function u to be a solution to our PDE we will need two conditions, which allow us to extend the proof of Theorem 1 essentially without change.
(i) First the matrix

$$
\left(\begin{array}{cccc}
D_{1} \sigma_{1}(s) & \cdots & D_{n-1} \sigma_{1}(s) & F_{p_{1}}(\sigma(s), h(s)) \\
\vdots & \ddots & \vdots & \vdots \\
D_{1} \sigma_{n}(s) & \cdots & D_{n-1} \sigma_{n}(s) & F_{p_{n}}(\sigma(s), h(s))
\end{array}\right)
$$

must be non-singular. This means that
(1) the matrix $\left(D_{j} \sigma_{i}(s)\right)$ must have rank $n-1$, so that σ is an imbedding and $\sigma(\mathcal{D}) \subset \mathbb{R}^{n}$ is a hypersurface, and
(2) the vector $\left(F_{p_{1}}(\Sigma(s)), \cdots, F_{p_{n}}(\Sigma(s))\right.$ must not lie in the tangent space of $\sigma(\mathcal{D})$.
(ii) Second, we must have

$$
\frac{\partial h}{\partial s_{j}}=\sum_{i=1}^{n} \varphi_{i}(s) \frac{\partial \sigma_{i}}{\partial s_{j}}
$$

In terms of Σ, this condition reads

$$
\frac{\partial \Sigma_{n+1}}{\partial s_{j}}=\sum_{i=1}^{n} \Sigma_{n+1+i}(t) \frac{\partial \Sigma_{i}}{\partial s_{j}}
$$

and is called the strip manifold condition.
\odot If we think of a point $\left(x_{1}, \cdots, x_{n}, z, p_{1}, \cdots, p_{n}\right)$ in $\mathbb{R}^{2 n+1}$ as a hyperplane in \mathbb{R}^{n+1} passing through $\left(x_{1}, \cdots, x_{n}, z\right)$ and perpendicular to the vector $\left(p_{1}, \cdots, p_{n},-1\right)$, then $\Sigma: \mathcal{D} \rightarrow \mathbb{R}^{2 n+1}$ may be regarded as a family of hyperplanes along the $(n-1)$-dimensional submanifold $\sigma(\mathcal{D})$.

- It is easy to see that Σ satisfies the strip manifold condition iff the tangent space of $\sigma(\mathcal{D})$ at any point $\sigma(s)$ always lies in the hyperplane determined by Σ at s.
- We summerize by saying that we can solve the Cauchy problem for any strip manifold $\sigma_{1}, \cdots, \sigma_{n}, h(s), \varphi_{1}(s), \cdots, \varphi_{n}(s)$ for which the initial $(n-1)$-dimensional submanifold $\sigma(\mathcal{D})$ is noncharacteristic for the initial data $\left(h, \varphi_{1}, \cdots, \varphi_{n}\right)$.

