Systems of First Order PDEs

• For an ODE

\[u'(x) = f(x, u(x)), \]

we found that the existence of solutions was no harder to prove for a function
\(u : \mathbb{R} \to \mathbb{R}^n \) than it was for the case of a function \(u : \mathbb{R} \to \mathbb{R} \).

Namely, we could consider (1) to be a system of equations

\[u'_i(x) = f_i(x, u_1(x), \ldots, u_n(x)). \]

This enables us to solve an \(n \)-th order equation

\[u^n(x) = f(x, u(x), u'(x), \ldots, u^{(n-1)}(x)), \]

since equation (2) is equivalent to the system of equations

\[
\begin{cases}
 u' = u_1 \\
 u'_1 = u_2 \\
 \vdots \\
 u'_{n-2} = u_{n-1} \\
 u'_{n-1} = f(x, u(x), u'(x), \ldots, u^{(n-1)}(x)).
\end{cases}
\]

More precisely, if \(u \) satisfies (2), then \((u, u', \ldots, u^{(n-1)})\) satisfies (3); conversely, if \((u, u', \ldots, u^{(n-1)})\) satisfies (3), then \(u \) satisfies (2) and moreover \(u_i = u^{(i)} \).

Since (3) can be solved with any initial conditions \((u(x_0), \ldots, u_{n-1}(x_0))\), equation (2) can be solved with any initial conditions \(u(x_0), u'(x_0), \ldots, u^{(n-1)}(x_0)\).

• There is no such general theorem about system of first order PDEs.

Because of the considerations in the previous section, we will assume that the partials of \(u \) with respect to one of the variables, which we call \(x_1, \ldots, x_n \). Thus we consider the equation

\[\frac{\partial^k u}{\partial x_1^j \cdots \partial x_n^j}(x) = f\left(x, u(x), \frac{\partial^l u}{\partial x_1^l \cdots \partial x_n^l}, \ldots\right); \]

the partial derivatives appearing on the right are all of order \(\ell \leq k \), and the order \(j \) with respect to \(y \) is \(\leq k - 1 \).

Second Order Equations in 2 Variables

• In order to make the situation less unwieldy, let us take the simple, but completely representative, case of a second order equation in 2 variables

\[\frac{\partial^2 u}{\partial y^2}(x, y) = f(x, y, u(x, y), u_x(x, y), u_y(x, y), u_{xx}(x, y), u_{xy}(x, y), u_{yy}(x, y)), \]

with the initial conditions

\[
\begin{cases}
 u(x, 0) = \xi(x) \\
 \frac{\partial u}{\partial y}(x, 0) = \eta(x).
\end{cases}
\]

Typeset by A4S-\TeX
To reduce this to a system of first order equations, we introduce new unknown functions

\[p_1, p_2, p_{11}, p_{12}, p_{22} \]

for \(u_x, u_y, u_{xx}, u_{xy}, u_{yy} \).

We will denote the various partial derivatives of \(f \) in (4) by

\[f_x, f_y, f_u, f_{p1}, f_{p2}, f_{p11}, f_{p12} \]

Consider the following system of equations for \(p_1, p_2, p_{11}, p_{12}, p_{22} \)

\[
\begin{align*}
(i) \quad & \frac{\partial u}{\partial y} = p_2 \\
(ii) \quad & \frac{\partial p_1}{\partial y} = p_{12} \\
(iii) \quad & \frac{\partial p_2}{\partial y} = p_{22} \\
(iv) \quad & \frac{\partial p_{11}}{\partial y} = \frac{\partial p_{12}}{\partial x} \\
(v) \quad & \frac{\partial p_{22}}{\partial y} = f_y + f_u \cdot p_2(x, y) + f_{u_x} \cdot p_{12}(x, y) + f_{u_y} \cdot p_{22}(x, y) \\
& + f_{u_{xx}} \cdot \frac{\partial p_{12}}{\partial x}(x, y) + f_{u_{xy}} \cdot \frac{\partial p_{22}(x, y)}{\partial x},
\end{align*}
\]

where the last equation is obtained by differentiating (4) with respect to \(y \), and all partials of \(f \) are evaluated at \((x, y, u(x, y), p_1(x, y), p_2(x, y), p_{11}(x, y), p_{12}(x, y))\).

This system expresses partials with respect to \(y \) in terms of partials with respect to \(x \) alone;
it was precisely in order to achieve this that we had to introduce new unknowns for all the partials of \(u \) up to order 2, unlike the case of a second order ODE, where we only introduce the first derivatives as a new unknown.

This system is first order and also \textbf{quasilinear}.

If \(u \) is a \(C^3 \) function satisfying (4), then \((u, u_x, u_y, u_{xx}, u_{xy}, u_{yy})\) satisfies (6).

However, it is \textbf{not} true that every solution \((u, u_x, u_y, u_{xx}, u_{xy}, u_{yy})\) of (6) has \(u \) satisfying (4).

- For one thing, the first five equations do not even allow us to identify \(p_1, p_2, p_{11}, p_{12}, p_{22} \) with \(u_x, u_y, u_{xx}, u_{xy}, u_{yy} \).
- Equations (i) and (iii) give
 \[p_2 = u_y, \text{ and thus } p_{22} = \frac{\partial p_2}{\partial y} = u_{yy}, \]
 but equation (v), for example, gives only
 \[\frac{\partial p_{12}}{\partial y} = \frac{\partial p_{22}}{\partial x} = u_{yy} = u_{xyx}, \]
 and hence
 \[p_{12}(x, y) = u_{xy}(x, y) + A(x), \]
 for an arbitrary function \(A \).
- Moreover, even if we know that the \(p \)'s were the partial derivatives of \(u \), equation (vi) would still not imply equation (i), for the two sides could differ by an arbitrary function of \(x \).
On the other hand, there is a Cauchy problem for the system (6) which is equivalent to the Cauchy problem (4)(5); namely, if \(u, p_1, p_2, p_{11}, p_{12}, p_{22} \), satisfies (6) with the initial conditions

\[
\begin{aligned}
&u(x, 0) = \xi(x) \\
&p_1 = \xi'(x) \\
&p_2 = \eta(x) \\
&p_{11} = \xi''(x) \\
&p_{12} = \eta'(x) \\
&p_{22}(x, 0) = f(x, 0, \xi(x), \xi'(x), \eta(x), \xi''(x), \eta'(x)),
\end{aligned}
\]

and \(u \) is \(C^3 \), then \(u \) satisfies (4) with the initial condition (5) and moreover \(u_x = p_1, u_y = p_2, u_{xx} = p_{11}, u_{xy} = p_{12}, u_{yy} = p_{22} \).

\(\circ \) To prove this, we note first that equations (i) and (iii) of (6) give

\[
\begin{aligned}
p_{22} &= u_y, \\
p_{22} &= u_{yy},
\end{aligned}
\]

- The equation (v) of (6) gives

\[
\frac{\partial p_{12}}{\partial y} = \frac{\partial u_{yy}}{\partial x} = \frac{\partial u_{xy}}{\partial y},
\]

while the initial conditions give

\[
p_{12}(x, 0) = \eta'(x) = \frac{\partial p_2}{\partial x}(x, 0) = \frac{\partial u_y}{\partial x}(x, 0) = u_{xy}(x, 0),
\]

so that we must have

\[
p_{12} = u_{xy}.
\]

- The equation (ii) of (6) gives

\[
\frac{\partial p_1}{\partial y} = p_{12} = u_{xy}, \quad \text{by (9)}
\]

while the initial conditions give

\[
p_1(x, 0) = \xi'(x) = u_x(x, 0),
\]

so that we must have

\[
p_1 = u_x.
\]

- Finally, the equation (iv) of (6) and (9) give

\[
\frac{\partial p_{11}}{\partial y} = \frac{\partial p_{12}}{\partial x} = \frac{\partial u_{xy}}{\partial x} = \frac{\partial u_{xx}}{\partial y}.
\]
while the initial conditions give
\[p_{11}(x,0) = \xi''(x) = \frac{\partial p_1}{\partial x}(x,0) = u_{xx}(x,0), \quad \text{by (10)}, \]
so that we must have
\[p_{11} = u_{xx}. \]

Equation (vi) of (6) now shows that the two sides of (4) have the same partial
derivatives with respect to \(y \).
The initial conditions then imply that the two sides are equal.

Higher Order Equations in \(n + 1 \) Variables

- Exactly the same procedure, but with considerably more complicated notation,
proves that the equation
\[
\frac{\partial^k u}{\partial y^k}(x_1, \cdots, x_n, y) = f(x_1, \cdots, x_n, y, u(x_1, \cdots, x_n, y), \cdots, \frac{\partial^\ell u}{\partial x^{i_1}\cdots\partial x^{i_n}\partial y^j}, \cdots)
\]
with the initial conditions
\[
\begin{cases}
 u(x_1, \cdots, x_n, 0) = \xi_0(x_1, \cdots, x_n) \\
 \frac{\partial^{k-1} u}{\partial x^m_n}(x_1, \cdots, x_n, 0) = \xi_{k-1}(x_1, \cdots, x_n)
\end{cases}
\]
is equivalent to a system of first order quasi-linear equations with initial conditions.

- The equations expresses the partial derivatives of the unknown functions with
respect to \(y \) in terms of partial derivatives with respect to \(x_1, \cdots, x_n \);
the number of unknown functions will be the number of distinct derivatives
\[
\frac{\partial^\ell u}{\partial x^{i_1}\cdots\partial x^{i_n}\partial y^j}, \quad \text{with } 0 \leq \ell \leq k, \text{ and } j \leq k - 1.
\]

Systems of Equations in \(n + 1 \) Variables

- Similar procedures allow us to reduce a Cauchy problem for a (not necessarily
quasi-linear) system of equations to the Cauchy problem for a quasi-linear system
in more unknowns.
 - To take a simple example, consider a first order system
\[
\begin{align*}
 u_i^j &= F_i^j(x, y, \cdots, u_i, \cdots, u_k^j, \cdots), \\
 u_i^j(x, 0) &= \xi_i^j(x),
\end{align*}
\]
with initial conditions
we simply construct the new system
\[
\begin{cases}
 u_i^j = F_i^j(x, y, \cdots, u_i, \cdots, p_i^j, \cdots) \\
 p_i^j = F_i^j + \sum_j F_{u_i}^j \cdot u_k^j + \sum_j F_{p_j}^i \cdot p_k^j
\end{cases}
\]
with initial conditions
\[
\begin{cases}
 u_i^j(x, 0) = \xi_i^j(x), \\
 p_i^j(x, 0) = \xi_i^j(x).
\end{cases}
\]
This system is quasi-linear, and the solution \(\{u^i, p^i\} \) clearly gives us a solution
\(\{u^i\} \) of the original system.