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Stellar Physics
lecture 1: basic concepts and equations

辜品高

gu@asiaa.sinica.edu.tw
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Hydrostatic equilibrium
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Commonly, they are called the dynamical timescale, describing how long it 
takes for an entire star to restore/adjust to the hydrostatic equilibrium in 
response to a perturbation. For the sun, tdyn ~ 30 mins.

N.B.: energy equation, which is related the “thermal timescale”, is not involved
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Virial theorem
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fluid: Eulerian description (r,t) & Lagrangian description (m,t)
where m is the mass coordinate

The force equation in the last slide describes the local balance of
momentum at all points in the star. The virial theorem, by contrast,
representing a global, or integrated, expression of momentum balance.
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Virial theorem
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Recall: virial theorem applies to any gravitational bound systems, such       
as planetary system, stellar cluster, cluster of galaxy. One can obtain 
the so-called “virial mass” of a system by temperature 
(Mvirial~3kTR/Gmu) or by velocity dispersion (Mvirial~σ2R/2G), which 
gives an upper limit of the true mass of the system.

Full version of the virial theorem includes more terms: 
kinetic energy, magnetic energy, surface pressure & magnetic terms,
and even in a tensor form.



5

negative specific heat
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i.e. half of the energy liberated by the contraction is radiated away
and the other half is used to heat the star  behave like a body 
having a negative specific heat.

Recall: gravothermal catastrophe of stellar clusters
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Can gravitational energy 
power a star?

The Kelvin-Helmholtz time-scale for a cooling and hence contracting star:
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But, we shall see that gravitational contraction is the main stellar
energy source during the pre-main sequence phase. Then a
proto-star evolves on the time-scale tKH. 

call for another energy source: nuclear energy,
binding energy per nucleon rises to a maximum near A=56
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Nuclear energy timescale
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4 Hydrogen nuclei: 6.693x10-27 kg
1 Helium nucleus: 6.645x10-27 kg
mass difference = 0.7 %
Einstein energy-mass equivalent relation E=Δmc2
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Energy equation for stars
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Energy equations for stars
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Time scales
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In most cases, timescales under consideration >> tdyn, hydrostatic is a 
good approximation.

If we consider a process with timescale >> tKH, such as the stellar 
evolution governed by nuclear fusion, the adjustment to new 
hydrostatic and thermal equilibrium (ε=dl/dm) should be quickly 
reached and therefore the hydrostatic and thermal equilibrium (i.e. time 
derivative terms in the momentum and energy equations can be set to 
zero) can be used for model calculation.

If we consider a process with timescale << tKH, such as some pulsating 
stars, the change of stellar properties is nearly adiabatic, i.e. heating 
and cooling processes can be ignored. 
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summary
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Global descriptions of force and energy balance:
virial theorem: in hydrostatic equilibrium, Ei and Eg are coupled 
global energy: describe thermal evolution, gives a more intuitive view

for energy transfer between different forms


