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Hydrostatic equilibrium

a spherically symmetricstar
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then Jeans unstable.
In hydrostatic equilibrium: t; ~t

sound crossing

Commonly, they are called the dynamical timescale, describing how long it
takes for an entire star to restore/adjust to the hydrostatic equilibrium in
response to a perturbation. For the sun, t; , ~ 30 mins.

N.B.: energy equation, which is related the “thermal timescale”, is not involved
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Virial theorem

The force equation in the last slide describes the local balance of
momentum at all points in the star. The virial theorem, by contrast,
representing a global, or integrated, expression of momentum balance.

fluid: Eulerian description (r,t) & Lagrangian description (m,t)
where m is the mass coordinate
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where om = p4ar?or.
Assume an ideal gas p =nkT = (R/ x)pT with R=k/m, =8.31x10"ergK* g™

and p=nm__.. =num, and m, =lamu=1.66x10"* g,
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In hydrostatic equilibrium, f =¥ =0=2E, +E, =0 3



Virial theorem

For a general equation of state, define a quantity ¢ by BB =_U
Yo,

anidealgas: ¢ =3(y —1), £ =2 for the monatomic case.
aphotongas: p=aT*/3 and pu=aT* = ¢ =1

If £ is constant throughout the star, the general virial theorem
In hydrostatic equilibriumis given by ¢E; +E, =0, I.e.
E; and E, arecoupledin a gravitational bound system.

Full version of the virial theorem includes more terms:
kinetic energy, magnetic energy, surface pressure & magnetic terms,
and even in a tensor form.

Recall: virial theorem applies to any gravitational bound systems, such
as planetary system, stellar cluster, cluster of galaxy. One can obtain
the so-called “virial mass” of a system by temperature
(M,;in~3KTR/Gm,) or by velocity dispersion (M~ o ?R/2G), which
gives an upper limit of the true mass of the system.



negative specific heat

Define the total energy

W=E +E, =(-{)E ="_"E

g’

W <0 fora gravitationally bound system.
W =0 inthecaseof £ =1 (y =4/3).

—W is the binding energy of the system.

Let L be the luminosity of the star. Conservation of energy demands
L :_dﬂ: (g_l)ﬁz_gdi
dt dt ¢ dt
For an ideal gas undergoing gravitational contraction (Eg <0):
L=-E /2=FE
l.e. half of the energy liberated by the contraction is radiated away

and the other half is used to heat the star = behave like a body
having a negative specific heat.

Recall: gravothermal catastrophe of stellar clusters



Can gravitational energy
power a star?

The Kelvin-Helmholtz time-scale for a cooling and hence contracting star:

t — ‘Eg‘ ~ Ei ~ GM i
““ L L RL
For the Sun, L = 3.8x10% erg/s

=t ~1.6x10" years<< t, ~4.6x10° years!

Sun

call for another energy source: nuclear energy,
binding energy per nucleon rises to a maximum near A=56

But, we shall see that gravitational contraction is the main stellar
energy source during the pre-main sequence phase. Then a
proto-star evolves on the time-scale t,,.



Nuclear energy timescale

4 Hydrogen nuclei: 6.693x1027 kg
1 Helium nucleus: 6.645x10-27 kg
mass difference = 0.7 %

Einstein energy-mass equivalent relation E= A mc?

4H > He+Q, Q=6.3x10"erg/g

_— Ene o M g years
L L

sun




Energy equation for stars

The first law of thermodynamics :
dl  du pdp
dg=du+pdv=du+pd(l/p)=>ec—=—-
g P D(P)Edm dt 7 dt
where ¢ Is the heating rate per unit mass (nuclear burning,
tidal heating, viscous heating, etc. depending on the problem)

and | = 4zr°F is the luminosity rate passing outward through
a sphere of mass coordinate m. | =0 at m =0 due to symmetry
and=Latm=M.



Energy equations for stars

In hydrostatic equilibrium, the pdv work is related to the
global gravitational energy :

E, :—3IOM Pim= E, :—3JOM —pdm+3_[0M p—pzpdm

E —j ——dm together with > _ Gm4£:> Egz—EIMEdm
om Aar” r 490 p

The above two give E_ = —jOM Lz,bdm
Yo,

So we have the global energy conservation in hydrostatic equilibrium
by integrating the local energy conservation over m

E.-L-L =E+E,=>E,-L-L = e - .. thermal expansion/contraction

If hydrostatic condition does not apply, we would have

d
E(Enuc - Ei - Eg - Ekinetic )_ L - Lv =0



Time scales

t.>1,, >t

nuc dyn

In most cases, timescales under consideration >>t, ., hydrostatic is a
good approximation.

If we consider a process with timescale >> t,,,, such as the stellar
evolution governed by nuclear fusion, the adjustment to new
hydrostatic and thermal equilibrium ( ¢ =dl/dm) should be quickly
reached and therefore the hydrostatic and thermal equilibrium (i.e. time
derivative terms in the momentum and energy equations can be set to
zero) can be used for model calculation.

If we consider a process with timescale << t,,,, such as some pulsating
stars, the change of stellar properties is nearly adiabatic, i.e. heating
and cooling processes can be ignored.
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summary

hydrostatic equilibrium : — P _ Gm4
om 4ar
. or 1
mass conservation : =—
om 4xar<p
energy conservatoin : _d_du_ p2 o
dn dt p° dt

Global descriptions of force and energy balance:
virial theorem: in hydrostatic equilibrium, E; and E  are coupled
global energy: describe thermal evolution, gives a more intuitive view
for energy transfer between different forms
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