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nuclear binding energy
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Quantum tunnelling thru Coulomb barrier
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at the nuclear radius r, ~ A"*1.44x10™ cm, E_,, =~ Z,Z, Mev.

On the other hand, E, ~kT ~10° eV at T 10" K (leV ~10°K), whichis<<E,.

The high -energy tail of the Maxwell - Boltzmann distribution is inadequate!

So, owing to particle - wave duality, quantum tunnelling thru the Coulumb barrier

should be included to enhance the reaction.

Formally, we should solve the Schroedinger's equation for two interacting particles in a radial potential :
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But we may estimate the penetration factor exp(—kr), please see the next slide.
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Quantum tunnelling thru Coulomb barrier

« Schrodinger equation for proton wavefunction:
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o = probability of barrier penetration.
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Thermonuclear reaction rate

For n; particles per unit volume, the total number of reactions per units of volumeand time is
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But the relative velocityV,,, is not uniform but Maxwellian
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The integrand has appreciable values around its maximum, the so - called Gamow peak.
If the energy Q is released per reaction, the energy generation rate per unit mass:
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RELATIVE PROBABILITY

The Gamow window

Energy region where there is the best combination of nucleon energies
and width of Coulomb barrier that must be penetrated.
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Properties of Gamow peak

(1) to first approximation, Gamow peak is Gaussian chracterized by
it mean value E,, full width at half maximum AE,, and peak value exp(-rz):

J'(E)=0= E, =(%77ij
J(E) = fy+ f,'(E—E,)+(1/2) f,"(E—E,)? +......
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Moreover, 0.5exp(-7) = exp{—r —Z(E—lj = A, _ 4 (In2)
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(2) The thermonuclear reaction rate strongly sensitive to T :
<G\/rel > oC Tz exp(—z-)
0 In<aVre|> T

y= = 2 (i.e. written as a power law)
oinT 3

T=10'K = r~20, v~5= thermonuclear reaction rate is a steep function of T!




Basic particle interactions

Conservation of leptons and baryons

(1) beta decay
N—>P+e +v, P+e > N+v
(2) positron decay :
P—>N+e +v
(3) (P,y) Process:
Z+P>M"(Z+D)+y
(4) (a,y) and (¥, a) Processes
(5) (N,») and (¥, N) Processes
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Thermonuclear reactions during
pre-main sequence phase

temperature increases
due to virial theorem

‘D+ 'H — “He. 5.5 MeV ~108 K

°Li+ '"H — “He + *He, 4.0 ~3x108 K
"Li+ 'H — 2*He, 17.3 ~4x10° K
‘Be +2'H — *He +2°%He. 6.2 ~5x10°K
"Be + 2'H — 3%He + ™, 19.3 ~8x10°K
"B+ 'H— 3 *He. 8.7 ~8x106 K

W stellar birth line in Hayashi phase

B the theoretical definition of brown dwarfs (M>13 M_Jupiter)

B estimate age by Li abundance (Li is brought by convection to the
center of a pre-main sequence star and hence is depleted with

time). N.B. “Li burning also happens in PPIl shown in the next slide.
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Hydrogen burning (Mx0.08M,,)

Ron Taam: summer student lecture

T=107 K

Energy production in the Sun: the p-p chain

p++p+—>3H+e@
N—

9SG 11 %

Weak interactions are slow,

and controls the rate of

hydrogen burning; it has given

the Sun an age sufficiently
long to permit the Earth to
host the evolution of life!
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8Be*—>*Het+*He

plus small contribution by CNO-cyle (= 1.5%)

pplll

net result: 4p 3> a + 2e* + 2v, + 26.7 MeV




Hydrogen burning

Ron Taam: summer student lecture

(pyy) The CNO Cycle
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CNO cycle vs. PP-chain

Hansen & Kawaler: Stellar Interiors
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Log,p (Luminosity) (in solar units)
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Helium burning (Mz0.25M,)

T=108 K to overcome the higher Coulomb batrrier.

3 o reaction:
4He + 4He - < 8Be
8Be + 4He - 12C + ¢
(a,v) process:
12C + 4He - 160 + v
160 + 4He - 20Ne + v

Q.. ~7.28x10" erg/g

Ve = Veno =~ Vep
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Carbon burning and beyond

12C burning: Tz 5-10X108 K to overcome the even higher Coulomb barrier.
Produce nuclei of A=20-24

160 burning: Tz 10° K to overcome the even higher Coulomb barrier.
Produce nuclei of A=24-32

When Tx 10° K, photodisintegration becomes important because the
radiation contains a significant number of photons with energies in the Mev
range, which can break up a nucleus (analogue of photoionization of atoms
iIn atomic processes). For example,

y+5Si—> Mg +a —9.98 Mev

The resulting lighter nuclei (e.g. Al, Mg, Ne) will also be subject to
photodisintegration, producing more free n, p, and ¢ particles, which can
be subsequently captured by Si. When particle capture reactions slightly
dominate over photodisintegration, 28Si build up gradually heavier nuclei
until >6Fe is reached, Ultimately, two 28Si are converted into °6Fe, which is
normally referred to as silicon burning. 17



Stellar nucleosynthesis beyond Fe

As suggested in the plot for binding energy per nucleon, nuclei synthesized
beyond Fe can be done by capture of neutrons to overcome the Coulomb

barrier, although these processes are not important to power stars.
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Element abundance in the solar system




summary

fusion & fission: nuclear binding energy release

Gamow peak: enhance tail of Maxwell
distribution thru wave tunneling, determine the
temperature sensitivity and hence characterize
different thermonuclear syntheses in the course
of stellar evolution

definitions of gas giant planets, brown dwarfs,
and stars

elements heavier than °°Fe: s- and r-processes
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