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Stellar Physics
Lecture 3: Stellar nucleosynthesis

辜品高
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nuclear binding energy
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Quantum tunnelling thru Coulomb barrier
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Quantum tunnelling thru Coulomb barrier

“evanescent” wave
Recall spiral density
waves are evanescent
near the corotation resonance
of a disk galaxy
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Thermonuclear reaction rate
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The Gamow window
Energy region where there is the best combination of nucleon energies
and width of Coulomb barrier that must be penetrated.

Thermonuclear reaction rate
proportional to the area below
the Gamow peak. The peak
value is a steep function of
temperature.
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Properties of Gamow peak
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Basic particle interactions
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Thermonuclear reactions during 
pre-main sequence phase

~106 K
~3x106 K
~4x106 K
~5x106 K
~8x106 K

~8x106 K

 stellar birth line in Hayashi phase
 the theoretical definition of brown dwarfs (M>13 M_Jupiter)
 estimate age by Li abundance (Li is brought by convection to the 
center of a pre-main sequence star and hence is depleted with 
time). N.B. 7Li burning also happens in PPII shown in the next slide.

temperature increases
due to virial theorem
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Hydrogen burning (Mt0.08MŸ)
Ron Taam: summer student lecture

Weak interactions are slow,
and controls the rate of
hydrogen burning; it has given
the Sun an age sufficiently
long to permit the Earth to
host the evolution of life!

Tt107 K
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Hydrogen burning

4He

Ron Taam: summer student lecture
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CNO cycle vs. PP-chain
Hansen & Kawaler: Stellar Interiors

PPCNO  
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Luminosity evolution

http://www.astro.princeton.edu/~burrows/

Blue: M dwarf
Green: brown dwarf
Red: gas giant planetH burning D burning
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Helium burning (Mt0.25MŸ)
Tt108 K to overcome the higher Coulomb barrier.

3αreaction:
4He + 4He  8Be
8Be + 4He  12C + γ

(α,γ) process:
12C + 4He  16O + γ
16O + 4He  20Ne + γ

PPCNO

HeQ
  



3

17 erg/g  1028.7



17

Carbon burning and beyond
12C burning: Tt 5-10X108 K to overcome the even higher Coulomb barrier.
Produce nuclei of A=20-24

16O burning: Tt 109 K to overcome the even higher Coulomb barrier.
Produce nuclei of A=24-32

When Tt 109 K, photodisintegration becomes important because the 
radiation contains a significant number of photons with energies in the Mev
range, which can break up a nucleus (analogue of photoionization of atoms 
in atomic processes). For example,

Mev 98.9MgSi 24
12

28
14  

The resulting lighter nuclei (e.g. Al, Mg, Ne) will also be subject to
photodisintegration, producing more free n, p, and α particles, which can 
be subsequently captured by Si. When particle capture reactions slightly 
dominate over photodisintegration, 28Si build up gradually heavier nuclei 
until 56Fe is reached, Ultimately, two 28Si are converted into 56Fe, which is 
normally referred to as silicon burning.
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Stellar nucleosynthesis beyond Fe
As suggested in the plot for binding energy per nucleon, nuclei synthesized
beyond Fe can be done by capture of neutrons to overcome the Coulomb
barrier, although these processes are not important to power stars.

events supernova during occurs    
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Element abundance in the solar system

fast α decay

Williams: Nuclear & Particle Physics
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summary
• fusion & fission: nuclear binding energy release
• Gamow peak: enhance tail of Maxwell 

distribution thru wave tunneling, determine the 
temperature sensitivity and hence characterize 
different thermonuclear syntheses in the course 
of stellar evolution

• definitions of gas giant planets, brown dwarfs, 
and stars

• elements heavier than 56Fe: s- and r-processes


