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Poisson equation in spherical symmetry
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Polytropes
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Lane-Emden Equation
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Explicit solutions exist only for n=0,1, and 5. Otherwise, a numerical
solution is necessary.
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Properties of polytrope
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Given M* and K,
one can solve the
interior structure for
a particular polytropic
index n.
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Distribution function
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for example: photon gas (bosons)
g=2 (2 polarizations), ε=pc, εF=0
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Fermi-Dirac distribution
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application 1: complete degenerate gas
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White dwarf
For low-density W.D., the elections are N.R., so Γ=5/3 is a good 
description. As the density increases, the electrons become relativistic, 
first at the center and eventually throughout the star. In the high-density 
case, Γ=4/3 is a good description. We can derive a mass-radius relation 
for W.D. in these limits.
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 There is an important result
contained in these equations:
ρc increases as M* increases 
in the low-density regime. 
Hence, as M* increases, the 
white dwarf becomes more 
relativistic. Eventually, as ρc
  and R* 0, M*
approaches the value in the 
high density limit, a.k.a the 
Chandrasekhar limit.
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application 2: Hayashi line
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application 2: Hayashi line
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application 2: Hayashi line

log L/LŸ

. and  
affectsn compositio N.B.

2/
021.0
24.0
739.0

on  based solvedy numericall
 are  tracksHayashi The



 




pl
Z
Y
X

Kippenhahn & Weigert: Stellar Structure and Evolution
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application 2: Hayashi line
In the previous calculation, we fix n (=3/2) to find Hayashi lines. Now we
can fix κ but vary n to study the stability of a star near the Hayashi line.
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Hayashi line for a
fully convective star

Kippenhahn & Weigert: “Stellar Structure & Evolution”
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