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Poisson equation in spherical symmetry

Poisson equation as a result of self - gravity
V Gy =47Gp
In hydrostatic equilibrium, Vp=-pVg_.,

Hence, V- (EVp] = —-47Gp.
o,

Assume spherical symmetry, the above equation becomes

2
12d r° dp _ _4aGp
redri p dr




Polytropes

p=Kp' =Kp , 1" = polytropicexponent, n = polytropicindex
e.g. fullyconvectivestar >V =V _, —» I = y = adiabatic exponent for an ideal gas

(n+1)/n

e.g. 7'=5/3,n=3/2 for N.R.ideal monatomic gas
for N.R. degenerate gas
I'=4/3,n=3 for E.R. ideal monatomic gas
for E.R. degenerate gas
"N.R."=nonrelativistic,  "E.R."=extreme relativistic

Rol 1
€0. p= pgas * Prag :%-’_gaTAf’ pgas Eﬁp and so Prad :(1_ﬁ)p

R 31 1/3 n 4 31 1/3
solveforT =T :(———'BJ PP =0 :[(j hd ,3] I3
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If #and « are not a function of r, thensuchagasisann=3 polytrope.



Lane-Emden Equation

Define p(r)= p.¢"(r)
— p(r) — Kp(n+1)/n _ Kpén+1)/n¢n+1 _ pc¢n+1
The Poisson equation in spherical symmetry becomes

1d(,d :
(n+DKp; 5 dr(rz dfj=—4ﬂ6pc¢

(n+DKpt"m 1"
47zGC } (unit of length) and & =

nondimensionalize the above hydrostatic equation

= é;—é( ’ S—Q =—¢" (Lane-Emden Equation)

2nd order ODE needs 2 boundary conditions :
atr=£=0: ¢(0) =1 (identify p, as p(r =0). This fixes the normalization of central density),

g—¢ =0 (dp/dr =0 at center by spherical symmetry)
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define az{ r
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Forn <5, thereisa zeroof ¢ at finite £, called &,.
— pressure vanishesat & = surface of polytropeis reached

n=0: §(&) =155 =6

n=1. ¢(§)=S%‘f,l=n
n=5: ¢(§):(1+ij Ew



Table 2-5
Constants of the Lane-Emden functionst

dé
“ EI 5 'EIE- (E&r ) .E—_-{;'i Eff-
0 2.4494 4.8088 1.0000
0.5 2.7528 3.7871 1.8361
1.0 3.14159 3.14159 3.28087
1.5 3.65375 2.71406 5.09071
2.0 4.35287 241105 11.40254

3 2.5 5.35528 2.18720 23.40646
3.0 6.89685 201824 54.1825
3.25 8.01804 1.04980 88.153
35 0.53581 1.80056 152.884

e 4.0 14.97155 1.79723 622.408

b 4.5 31.83646 1.73780 6,180.47

I 4.9 169.47 1.7355 034,800

e, 5.0 o0 1.73205 )

t S. Chandrasekhar, “An Introduction to the Study of Stellar Structure,”
~ p. 96; reprinted from the Dover Publications edition, Ca%:%t 1939 by
The Hmmty of chicago, as reprinted by permission of niversity of
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xplicit solutions exist only for n=0,1, and 5. Otherwise, a numerica
solution is necessary.



Properties of polytrope

(n+DHK :|1/2p(1n)/2né;
472G ° '

mass: m(&) = J'Oaé Anr? pdr = 47za3f PP EdE

:—4ﬂa3pcj05;—§( Zj—zjdfz—@zaspc 23—?

M, = m(g — 51) _ _47[[(n +1)K} pésn)/zn(fz d_(/ﬁJ
&

radius: R. =adé; :[

472G dé

1/n

M. —R. relation: K= - Ar — G 1-UnR-1+3/n
EH =4 n+l
1+1/n _ 1 GM?

central pressure: p, =K
P P T D), R

central concentration: p = 7 M. - P __34d¢

77Za3 13 IOC 51 d§ &

Given M, and K,

one can solve the
interior structure for
a particular polytropic
index n.

Recall that for an ideal gas

1y
Socln[p j
Yo,

when we studied thermal convection.
It can be shown that

p1/r
S oC In( ]oc InK
Yo,

for a polytropic equation of state.
So, K represents the stellar entropy.




Distribution function

Statistical mechanics: . .
.~ degeneracy of state | (statistical

g_ weight)
i
n(p) =5 Z
# b expl(e(p)—er) KT |1
Number density
In phase space /
energy of state j Fermi
Kinetic energy energy
as a function of +: fermions
momentum p - bosons
n = [n(p)4zp>dp e - € p>>kT:
vo_ oo classic fermions

kinetic energy : £(p)=(p°c® +m’c’) (Boltzmann distribution)

Hamilton's equation : v :Z—g
P
for example: photon gas (bosons)

1 2
=§jn(p) pv4p’dp g=2 (2 polarizations), e=pc, &.=0
E = [ n(p)e(p)47p*dp 9




Fermi-Dirac distribution

Probability that 1

oy U f(e) =
A particle will ex E—&¢ +1
Have energy ¢ P

degree of degeneracy
depends on ¢ /KT

KT

L f(e)

Y
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application 1: complete degenerate gas

. 2 EF 2 _872- ) _87[ h - 3
n_FO f(&)4np dp_Fo pdp—?(aj X

where X. = p. /mc and note that h =0.024 A is the Compton wavelength fore™.
m,C

-3
h
For a completely degenerate electrongas, n_ = 8—7[[—J X2,

* 3 {mgc
8 h )
Using ne:L,the above equation becomes P _ ﬂm“( J x>
:uemu ILIE 3 meC

3

e

-3
For isotropic pressure P, = %jn( p) pvézap®dp = {1(%J }meczF(xF),

where F(x.)=(8/5)x2 —(4/7)x[ +.... for x. <<1 (N.R.particles)

F(X:)=2X: —2X2 +.... for x. >>1 (E.R. particles)
Hence,
213 _4/3 2 5/3 5/3
p= 7 I [ £ j =1.004><1013[£j dyne cm? for N.R.
S MM 4 He

3328 e 413 P 413 11
P = 4/3( j :1.243x1015(—j dyne cm™ for E.R.
4 m L He



White dwarf

For low-density W.D., the elections are N.R., so ['=5/3 is a good
description. As the density increases, the electrons become relativistic,
first at the center and eventually throughout the star. In the high-density
case, ['=4/3 is a good description. We can derive a mass-radius relation

for W.D. in these limits.

52:—¢ =2.714

&

For I"=5/3,n=3/2= & =3.65375,

-3 -5
M.-R. reIation:>M*:O.7011( R. j (”—j M.,

10* km 2

-1/6 -5/6
where R,=1.122x10%| — £ ("‘—j km.
10° gkm 2

523—¢ =2.018

=l

For I"=4/3,n=3= & =6.89695,

He

-1/3 -2/
R, =3.347x10% — P (i) - km.
10° g/cm® 2

2
= M. =l.457(£j M., independent of p, and R.!

There is an important result
contained in these equations:
0 . increases as M. increases
in the low-density regime.
Hence, as M. increases, the
white dwarf becomes more
relativistic. Eventually, as o
- o and R.~> 0, M.
approaches the value in the
high density limit, a.k.a the

Chandrasekhar limit.
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application 2: Hayashi line

For simplicity, assume a fully ionized ideal gas in a fully convective star.

VaV_,=P=CT"" where not o q-3
V4 2

1+n
Apply P = ROV and P = Ko™ = C = K”(Bj
7 7

Use the mass - radius relation : K oc MR,

=C, ., =C._,R>**M"? whereC_ isknown forgivenn and .

Finally, stellar interior is described by

logT =0.4logP +O.4@Iog R. +%Iog M. —log C'}
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application 2: Hayashi line
For a more realistic model, consider the photospheric condition to

replace the zero outer B.C. in the polytrope:
1

2 arl
at the photosphere: P, = I oc( M. } with x oc P2TP

3k, | Ry
= (a+1)logP, =logM. —2logR. —blogT. +const.
Combining the polytropic interior and the photophspheric boundary,

we obtain the Hayashi line in the Hertzsprung - Russell (HR) diagram:
logT,. = Alog L.+ Blog M. + const.

where L, =4R%T4, A=Pa7025 —p 0.5a+1S

b+55a+1.5  b+55a+15
For H™ dominant opacity, a=0.5 b~85= A~0.01, B~0.14
= ologL. =£>>1:> Hayashi line is very steep!
ologT, A

Some books use modest opacity power law :a =1, b~ 3, but still get% >> 1. ”



log L/L

appllcatlon 2: Hayashl line

ellar Structure and Evolution

nsion (RGB,AGB)

Action (pre-main sequence)

L =4R 0T,
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application 2: Hayashi line

In the previous calculation, we fix n (=3/2) to find Hayashi lines. Now we

can fix f Ibut vary n to study the stability of a star near the Hayashi line.
average de

VA -1

Kippenhahn & Weigert: “Stellar Structure & Evolution” 16



