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Interaction of a grain with radiation
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Cross section of grains
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Evans: The Dusty Universe
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cf. Figure 3.9 in Rybicki & Lightman



Babinet’s Principle
The proof of this goes as follows: suppose we have an infinite plane wave 
focused by an infinite lens onto a point on a wall. The power pattern should 
be a delta function at that point on the wall. Now suppose you place a 
screen with an aperture of diameter a between the plane wave and the
lens. We should now see an interference pattern on the wall. Call the power 
incident on a point on the wall P1. Now put in a new aperture which is the 
exact compliment of our previous one (it is a scattering body of diameter a), 
we should see a new power at our point on the wall: P2. However, the sum 
of waves incident on the wall under these two apertures should be the same 
as the wave from the sum of the apertures, which was a delta function. 
Thus: P1=P2. The first aperture (the slit) represented the scattering power 
from diffraction alone (Qsca = 1), and the second represented the absorbed 
power. The sum of these two powers, for everywhere but
the true focus point, is actually twice the incident power, and since P1 = P2, 
we get: Qsca + Qabs = 2. Note that if Qsca > 1, then the object in “shiny”: 
more light gets diffracted and less gets absorbed. Thus, although Qsca
changes, the sum remains the same.

.2   ,When  scaabs QQa 



Interstellar dust size
http://www.eso.org/public/images/eso9934b/

The size of most of interstellar dust should be < 1μm

Black Cloud B68

B V I

JHK



Gas in dark clouds

Dust grains (~0.1 μm size, silicates 
or carbonaceous material ≈ 1% by 
mass of ISM)

Dust required for H2 formation

Dusty region (region of extinction) 
are coincident with molecular clouds 
as defined by CO

Molecular clouds: the coldest 
objects in the universe

Bergin et al. (2002)



Dust extinction (UV, Optical, NIR)
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normalized extinction
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Extinction curve in MW
Fitzpatrick & Massa (2007): reddening increases with shorter wavelength
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A deep, broad
extinction centered
at λ~0.2175μm
due to carbon grains
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Extinction curves in nearby galaxies
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Extinction curves are not just give
extinction/color excess, but can also 
constrain dust properties (e.g. size
distribution, composition)!



dust temperature
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dust can be heated by radiation, impact of atoms/ions, chemical reactions on
grain surfaces. In the following, we focus only on radiative heating.



dust temperature
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A. Evans: The Dusty Universe



Dust temperature
The previous estimate of the dust temperature is more relevant to
circumstellar dust. However, an interstellar grain is clearly not heated by a
single star, but is heated by radiation from general background starlight; i.e. 
radiation comes from a few point sources (stars) scattered more-or-less at 
random over the space. Therefore the source of radiative heating in the 
energy balance equation for dust should be replaced by the interstellar 
radiation field (ISRF).
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A more detailed calculation of the dust temperature as a function of
dust size and composition (graphite or silicate) can be found in Draine
& Lee (1984). Typical Td is 12-20 K for a= 1 to 0.01 μm. Note that in 
the massive star forming regions, Td can be over 100 K due to high 
ISRF.



Dust thermal emission
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Infrared spectrum of MW
Dwek et al. (1997)

COBE data + Model

small grains
(hotter)

large grains (colder)

Jeans)-Rayliegh(
)( 2 

 dTBQI

PAH (3.3, 6.2, 
7.7, 11.3 μm)









Dust thermal emissions from 
protoplanetary disks

sub-mm/mm observations: 
trace the light (optically thin thermal emissions) directly from large particles 
(~ sub-mm sized) within a disk

Andrews et al. 2011

cavity: signposts of a 
giant planet?



Polarized scattered light from 
the surface of a protoplanetary disk
Strategic Explorations of Exoplanets and Disks with Subaru (SEEDS):
NIR polarized intensity map (PI=(Q2+V2)1/2) traces stellar light scattered 
from small particles (~μm) on the surface of the disk 

Muto et al. 2012: SAO 206462
0.5” ~ 70 AU

Grady et al. 2013: MWC 758
0.1” ~ 20-28 AU

“small-scale” spiral structures!
signpost of a planet?

coronagraph
to block out
light from
the central
star



Dust mass estimate
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mass of protoplanetary disks
Beckwith 1999: based on optically thin dust thermal emission at sub-mm

http://www.solstation.com/x-objects/chimney.htm

locations of star forming region
in Taurus & Ophiuchus



Linear polarization by Rayleigh scattering
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Forward scattering
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Forward scattering

A. Evans: The Dusty Universe



Example of forward scattering

debris disk around HD 107146

Ardila et al. 2004: g=0.2-0.3 in V and I bands

forward
scattering,
suggesting
this part of
the debris
disk tilts
toward us



Linear polarization by extinction
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Dust alignment & magnetic fields

spins. randomgrain   thehappen to t willsignifican Nothing field.-B changing  the with"up keep"can 
originategrain   theof magnetism-para hein which tmoment  dipole magnetic The field.-B static ain 

 it were though as behavesgrain    thespinning),not or slowly  spinning are grains (i.e.  1   If
.properties magneticgrain  on the depends    where,/  general,In 

)(
4)41(

: if ))exp(( field-B externalan under grain  a of properties Magnetic
grain. rotating aby 

 dexperience isn that dissipatio icparamagnet on the based is model The 206). 114, ApJ, (1957,
mechanism Greenstein-Davis  theintroduce  weHere .understood not well isalignment Dust 

1997) 1996,er  Weingartn& (Draine up-spin induce alsocan  ISRF  todue  torquesradiative addition,In 

years.  
K 100g/cm 2

10~
v

~~)v(

gas of massown  its with collidesgrain   theover which  time~   timescaleup spinning The

? large reach the  tolong howBut   1/s.  103  K,100 If  /3.  inertia ofmoment  The

m. 1.0~length  and g 106~ mass ofgrain  lcylindrica aConsider 

~(1/2):gas with collisions elastic  toduegrain  a ofspin  Random energy. kinetic

 onal translatias  wellas rotationalimpart   willmolecules and atoms with grains of collisionscenter -Off

,

00,

,,

0

2/1

3
72

52
d

21

2




































Im

Im

ImRmm

m

Curied

gas

gHH
spindspingHH

spin

ththgas

d

gasth

HiHM
MHHHB

TTtiBB

T
nm
alamalnm

TlmI

lm

kTI





















Dust alignment & magnetic fields
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Linear Polarization: reddening 
starlight & sub-mm dust emissions

Grains absorb and emit the electric field of radiation preferentially along 
their long axes. As long as the gas density is low enough to avoid spin 
randomization by collisions with gas.
 polarization by extinction gives polarization parallel to B
 polarization from dust thermal emission should lie on a plane normal to B



Galactic magnetic fields
Polarization vectors are only seen as projected in the plane of the sky.
Large-scale ordered field  (as seen from its plane-of-the-sky
Projection) along the Galactic plane.

Fosalba
et al.2002 

Loop 1 superbubble



Magnetic fields in a protostellar system

scenario

Girart, Rao, Marrone 2006:
NGC 1333 IRAS4: low-mass protostellar system
Polarized dust emission (SMA 345 GHz) 

Polarization
vectors

Magnetic fields



Radiation forces on dust
We have learned that dust can absorb, scatter, and reemit radiation, but
these processes should result in forces on the dust. Ref: Burns et al. 1979;
Gustafson 1994

Frad = radiation pressure (r) + Poynting-Robertson drag (θ)



Poynting-Robertson drag
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radiation pressure
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debris disk around 
Fomalhault
(北落師門)

ALMA
(thermal emissions trace 
large grains, less affected
by radiation pressure
 narrow debris ring
 closer to the collision site)

HST
(scattered radiation traces small
grains, more affected
by radiation pressure  “blow-up”
debris ring)

a
Frad

1
 

debris disk is postulated as
the 2nd generation of dust from
the collisions between planetesimals
which are leftover from the proto-
planetary disk. Similar to the debris
from asteroid and Keiper belt 
objects in the Solar System.

Kennedy et al. 2013

star
blackbody infrared excess

due to cold 
dust emission

SED of Fomalhault


