
Stellar Physics: Midterm Exam - Apr 25, 2014

Name:

Student ID:

Please work all of the following 5 problems. No notes, books, internet resources to

be used. Some constants (in cgs units) that you may find useful are: G = 6.67 × 10−8,

h = 6.626× 10−27, e = 4.8× 10−10, mu = 1.66× 10−24, k = 1.38× 10−16, eV= 1.6× 10−12,

σ = 5.67× 10−5, M¯ = 1.99× 1033, R¯ = 6.96× 1010, L¯ = 3.9× 1033.

1. (20 pts) In the first homework set, you were asked to solve the interior structure of a

star of total mass M and radius R for a constant-density model (i.e. ρ = constant)

and for a linear-density model (i.e. ρ(r) ∝ 1 − r/R), subject to the zero outer

boundary condition, i.e. P (R) = T (R) = 0. Assume that the star is composed of an

ideal monatomic gas. Determine the range in radius for the convectively unstable

region in these two stellar models.

Solution: Thermal convection occurs in an ideal monatomic gas when

(d ln ρ/d ln P )ambient < (d ln ρ/d ln P )blob = 1/γ = 3/5, where the density change of the

blob has been assumed adiabatic. In a constant-density model,

(d ln ρ/d ln P )ambient = 0 < 3/5 =⇒ the entire star is convective. (1)

In a linear-density model, let x = r/R and then ρ(x) = ρc(1 − x). Furthermore,

dP/dr = −ρGM(r)/r2, Mr =
∫ r
0 4πr2ρc(1 − r/R)dr, and P (x = 1) = 0 give

P (x) = Pc(1 − 24x2/5 + 28x3/5 − 9x4/5) = Pc[1 + 2x − (9/5)x2](1 − x)2. Hence,

thermal convection occurs when

(d ln ρ/d ln P )ambient =
d ln(1− x)

dx
· dx

d ln[(1 + 2x− 9
5
x2)(1− x)2]

(2)

=
5 + 10x− 9x2

12x(4− 3x)
<

3

5
=⇒ 0.346 < x < 1.145

=⇒ convection zone lies in the region r ≥ 0.346R.

2. (20 pts)

2.1 Use the de Brogie’s relation for the particle-wave duality, the Coulomb

potential barrier, and the Maxwell-Boltzmann velocity distribution. Derive the

thermonuclear reaction rate∝ ∫∞
0 exp(−E/kT−η̄/

√
E)dE, i.e. the area below the

so-called “Gamow peak”. In the equation, E is the relative kinetic energy between
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two nuclei, T is the temperature, and η̄ ≈ Z1Z2e
2
√

(mu/2)[A1A2/(A1 + A2)]/h

with Z being the atomic number and A being the mass number of each nucleus.

Solution: refer to the class notes.

2.2 Find the value of the kinetic energy E = E0 that gives rise to the maximum value

of the Gamow peak. Consider the pp chain reaction at T = 107K. Calculate the

energy ratio E0/kT . What does the ratio physically mean?

Solution: The maximum value of the Gamow peak is obtained from

d(−E/kT − η̄/
√

E)/dE = 0 =⇒ E0 = [(1/2)η̄kT ]2/3. Hence,

E0

kT
=

[(1/2)η̄kT ]2/3

kT
≈ 0.45. (3)

The ratio ∼< 1 implies that the quantum tunneling does not enhance the pp-chain

reaction rate for thermal protons in the high energy tail of the Maxwellian energy

distribution against the Coulomb barrier. As a result, the reaction rate is less

sensitive to temperature than it ought to be.

Comment: in reality, E0/kT should be larger than 1 as we have learned in class.

The error comes from the simplified expression for η̄ we use, which underestimates

η̄. The more accurate expression is given by η̄ = π(2mreduced)
1/2Z1Z2e

2/h̄,

leading to E0/kT ≈ (4π2)2/3(0.45) = 5.2 > 1.

3. (20 pts) Consider a pre-main-sequence star of one solar mass on the Hayashi track.

Its luminosity is 10L¯ and its effective temperature is Teff = 4000 K.

3.1 Ignore any thermonuclear heating and any mass accretion onto the star. Estimate

the contraction timescale of the star due to radiative cooling from the stellar

surface.

Solution:

The radius of the star is given by R∗ =
√

L∗/4πσT 4
eff =

√
10L¯/4πσ(4000K)4 ≈

4.62× 1011 cm. The contraction time can then be estimated:

tKH =
GM2

∗
R∗L∗

≈ GM2
¯

(4.62× 1011 cm)(10L¯)
≈ 0.46 Myrs. (4)

3.2 Calculate the mean molecular weight and the number density n at the

photosphere of the star. Take the Rosseland mean opacity κR = 0.1 cm2/g,

X = 0.74, Y = 0.25. Assume that the gases are ideal, monatomic, and all

neutrals. Ignore the contributions from elements heavier than He.

Solution: The mean molecular weight for an ideal, monatomic, electrically

neutral gas consisting of H and He is given by

µ =

(
X

µH

+
Y

µHe

)−1

=
(

0.74

1
+

0.25

4

)−1

≈ 1.246. (5)
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The gas pressure at the photosphere is given by P = (2/3)g/κ =

(2/3)GM∗/R2
∗κ ≈ 4.15 × 103 dyne/cm2. The number density is obtained

from the ideal gas law:

n =
P

kTeff

≈ 7.52× 1015 cm−3. (6)

3.3 Calculate the thermal ionization fraction ≡ ne/n contributed from elements

K, Na, and H at the photosphere. Assume that the ions are far less than the

neutrals for each elements. The ionization potentials of K and Na are χK = 4.34

eV and χNa =5.14 eV. Take their abundances by number nK/n = 10−7 and

nNa/n = 10−5.5.

Solution: For a weakly ionized gas, n+
j << nj and the Saha equation

is reduced to n+
j /nj ≈ (mekT/2πh̄2)3/2 exp(−χj/kT ). Summing

over all species, we can obtain the thermal ionization fraction

ne/n ≈ [
∑

j(fj/n)(mekT/2πh̄2)3/2 exp(−χj/kT )]1/2 ≡ [
∑

j(ne/n)2
j ]

1/2,

where fj ≡ nj/n. Given that fK = 10−7, fNa = 10−5.5, and

fH = (ρH/µH)/(ρ/µ) = (µ/µH)X ≈ 0.922, the thermal ionization fraction is

given by

ne

n
≈

[(
ne

n

)2

K
+

(
ne

n

)2

Na
+

(
ne

n

)2

H

]1/2

≈ (2.76× 10−8 + 8.59× 10−8 + 5.61× 10−13)1/2 ≈ 3× 10−4. (7)

Comment: the results show that the assumption for weak ionization of the

alkaline elements K and Na is extremely poor. One should numerically solve the

full version of the Saha equation for the thermal ionization fraction.

3.4 Assume that the interior can be modeled as an n = 3/2 polytrope. Calculate

how much energy needs to be radiated away for the star to contract along the

Hayashi track down to L = L¯ and Teff = 4500 K.

Solution: The stellar radius at 4500 K is given by R∗ =
√

L∗/4πσT 4
eff =√

L¯/4πσ(4500K)4 ≈ 1.16× 1011 cm. The energy radiated away is given by the

difference of the total energy:

Wf −Wi = −αn=3/2
GM2

∗
2rf

+ αn=3/2
GM2

∗
2ri

≈ −8.5× 1047(αn=3/2) erg. (8)

where αn=3/2 needs to be solved numerically using the Lane-Emden Equation

but it should be on the order of unity.
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4. (20 pts) The concept of the Schönberg-Chandrasekhar limit for a collapse of an

isothermal inert He core in a star can apply to the condition for star formation in an

interstellar cloud.

4.1 Derive the virial theorem for a self-gravitating interstellar cloud of total mass M

and radius R confined by an external pressure of P0. Assuming that the cloud

has a constant temperature T .

Solution: Refer to the slide for the “Schönberg-Chandrasekhar limit. Starting

from the hydrostatic equilibrium, we have

dP

dm
= − Gm

4πr4
=⇒

∫

cloud
4πr3dP = −

∫

cloud

Gm

r
dm = Eg, (9)

where Eg is the gravitational energy of the cloud. Integration by parts on the

LHS gives

4πR3P0 − 3
∫

cloud
4πPr2dr = 4πR3P0 − 2

∫

cloud
(3/2)nkT4πr2dr = 4πR3P0 − 2Ei,

(10)

where Ei is the internal energy (Ei = (3/2)(RT/µ)M for a constant T ). Hence,

the virial theorem for the cloud confined by an external pressure is given by

4πR3P0 = 2Ei + Eg. (11)

4.2 Holding M and T fixed, show that a maximum value, Pmax, exists for the external

pressure for a certain value of the cloud radius, Rmax. Derive the expressions for

Rmax and Pmax in terms of the cloud mass M , temperature T , and fundamental

constants such as G. In what condition does the cloud gravitationally collapse?

Solution: Following up the above result (or referring to the class notes), we

have

P0 =

(
3RT

4πµ

)
M

R3
−

(
αG

4π

)
M2

R4
, (12)

where α ≡ −Eg/(GM2/R) and is an order of unit constant. At Rmax,

dP0/dR = 0, which yields

(−9RT

4πµ

M

R4
+

4αG

4π

M2

R5

)

R=Rmax

= 0 =⇒ Rmax =
(

4αGµ

9RT

)
M. (13)

Thus,

Pmax =

(
37R4

45πα3G3µ4

)
T 4

M2
. (14)

The cloud collapses when P0 > Pmax.
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5. (20 pts) Sketch and explain the evolution of a 1M¯ star from a pre-main-sequence

star to a cool white dwarf on the H-R diagram. You may draw the pre-main sequence

evolution and the main sequence and post-main sequence evolution on separate H-R

diagrams to avoid crowding.

Solution: refer to the class notes. There are a number of evolutionary states, but it

should be noted that the gravitational core collapse are as important as thermonuclear

reactions throughout the stellar evolution: stellar birth line, Hayashi track, Henyey

track, ZAMS (pp-chain H burning begins), MS (luminosity gradually increases),

Schönberg-Chandrasekhar limit, subgiant (He core contracts, H shell burning), RGB

(He core keeps contracting and becomes degenerate), He core flash, horizontal branch

(He core burning, H shell burning), AGB (H and He shell burning, C/O contracts and

becomes degenerate), AGB winds (He shell flashes), PNe, WD


