Possible Single Dish Sciences proposed from ASIAA

Hiroyuki Hirashita (ASIAA, Taiwan)

ASIAA Single Dish Discussion Group

1. Why Single Dish?

Suitable for diffuse source/survey. Easy for the first experiment to grasp the global structures.

Our telescope! Free for 11 months in a year. Chance to execute our own science (or establish our original idea) with a large degree of freedom (even a time-consuming one).

2. General Requirement

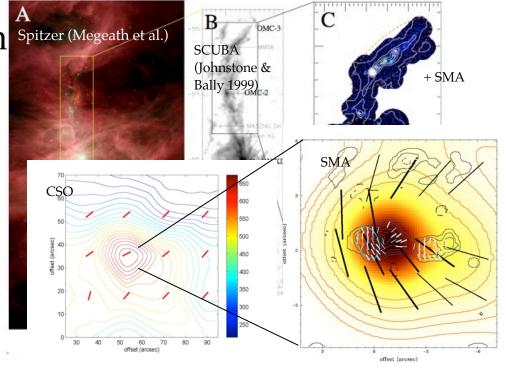
Exploring a new thing ⇒
(1) Opening a new wavelength: THz.
(2) Submm for summer.
(3) Construction as early as possible.

3. Scientific Cases

"Star formation" - its processes and consequences

 (1) Chemistry and evolution in diffuse to dense ISM.
 (2) Dust formation and evolution.
 (3) Time-variable FIR-submm Universe.

(1) Chemistry and evolution of diffuse to dense ISM


Panoramic View by Continuum

Multi-scale fragmentation

processes. Sensitivity < 0.5 mJy/beamArea: square degree (or targeted on $10\Box$) Polarization to see magnetic field structures over arcmin (between core and large scale) in THz:

Sensitivity: 10 mJy/_"

S. Takahashi, P. M. Koch

Tang et al.

al.

* Similar resolution to SMA/ALMA but different wavelength

* Higher resolution than other single dishes (Herschel, SHARC-II, BLAST-pol)

Chemistry View by Lines

N. Hirano, S. Takakuwa

 H_3^+ and CH are key elements in interstellar chemistry from diffuse to dense ISM ($H_3^+ + X \rightarrow HX^+ + H_2$,

 $CH \rightarrow$ carbon chain/organic molecules).

H₂D⁺ (1.4 THz, 372 GHz), D₂H⁺ (1.5 THz, 692 GHz): free from depletion on dust. 100 CH (1.48 THz) Wide area (> deg) survey N II] with high frequency resolution ~ 0.1 km/s (500 kHz). [N II] (1.5 GHz) to trace 20 ionized regions.

0.2

0.4

0.6

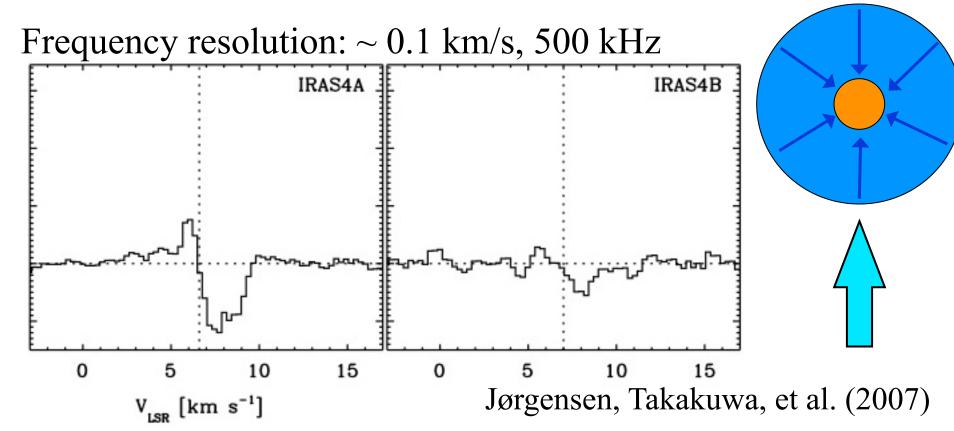
0.8

1.2

Frequency (THz)

1.4

1.6

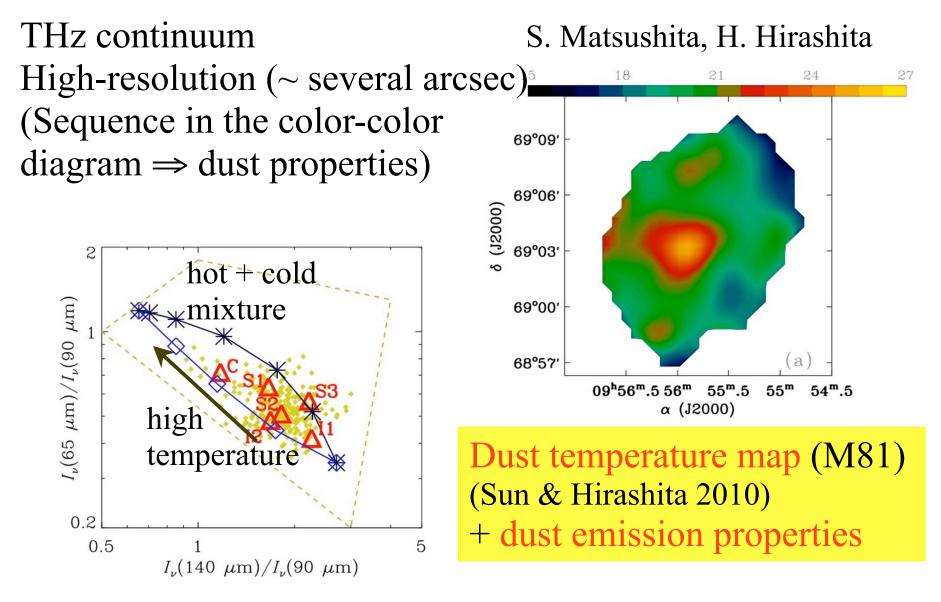

1.8

2.2

Unbiased Survey for Infall in First or Starless Cores S. Takakuwa

Continuum is optically thick, so we see a different layer in different frequency.

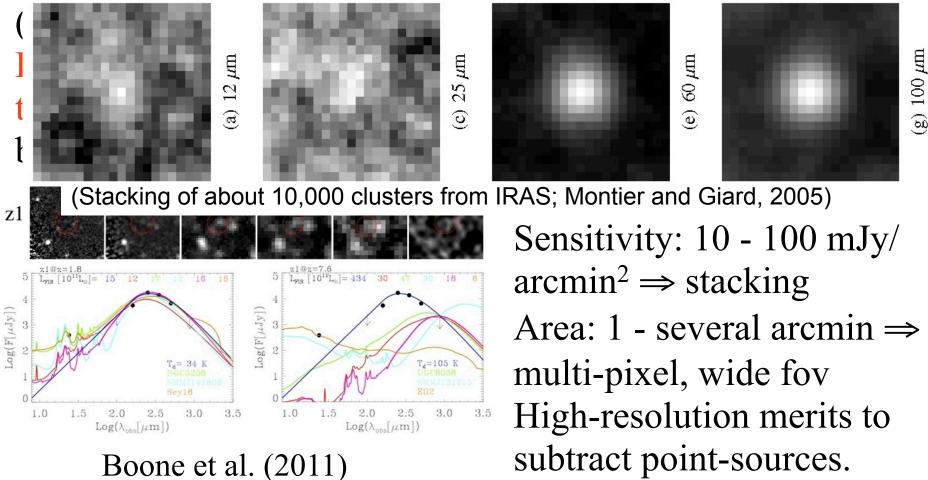
CO absorption to detect an inverse P-Cygni profile.



(2) Dust Formation and Evolution

Panoramic View of Dust Circulation THz continuum (peak) M. Otsuka, F. Kemper, H. Hirashita **Higher resolution** than an magation in stans Interstellar Herschel. SED predicted by Cloudy shocks by SED predicted by a modified BB for cold dust Sensitivity supernovae 10-109 8 (dust destruction) 10-SMP LMC53 Gas µm-1) < 3 MJy/sr10-10 Metals 10-11 Dust = 0.07 mJy/" 10-12 10-13 1.0 Cold Dust 10-14 NAS 10-15 $I_{\nu}(100 \ \mu \text{m})$ 10-16 10-17 10-18 10 100 1000 $(00 \ \mu m)$ Wavelength (µm) Graphite AGB stars: Origin of cold dust is not fully understood (Otsuka et alcular clouds (dust growth) 0.1 2011) 0.5 1 5 seous Pillars · M16 $I_{\nu}(140 \ \mu m)/I_{\nu}(100 \ \mu m)$

FIR colors are sensitive to dust properties (Hirashita et al. 2006)

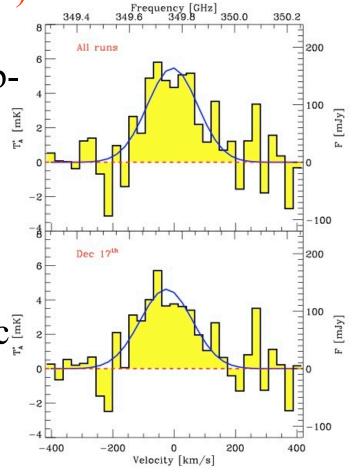

Nearby galaxies

Cosmological Evolution of Dust

W.-H. Wang (high z), P. M. Koch (clusters)

Galaxy formation and evolution Clusters of galaxies

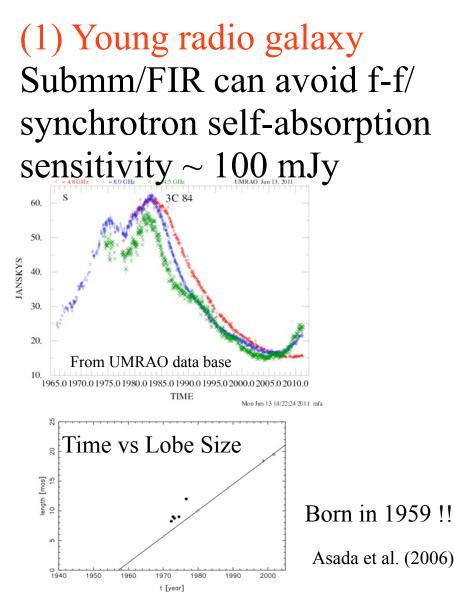
High-z Spectral Lines


Y.-T. Lin, W.-H. Wang

[C II] at 1.9/(1 + z) THz (main coolant) ([N II] 2.5/(1 + z), 1.5/(1 + z) THz)

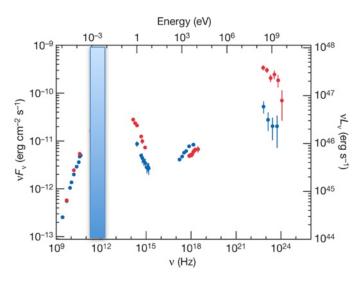
Wide-wavelength spectrometer in sub-

mm:


 $z \sim 2$: [C II] 633 GHz, [N II] 829 GHz, 487 GHz *z* ~ 3: [C II] 475 GHz, [N II] 614 GHz, 365 GHz Area > 500 deg² for baryonic acoustic \mathbb{E} oscillation to determine the cosmological parameters (nature of dark energy, initial non-gaussianity, neutrino mass).

Maiolino et al. (2009)

(3) Time-Variable FIR-submm Universe


Monitoring of AGNs

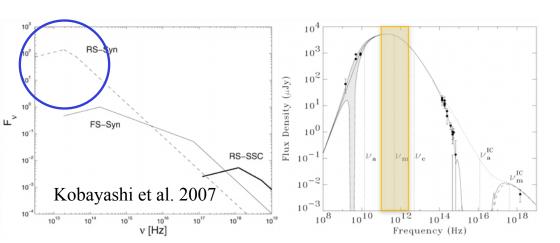
M. Nakamura, K. Asada

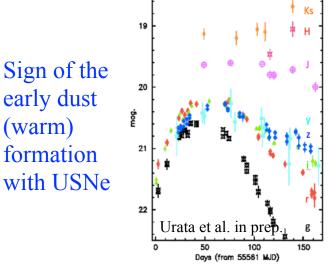
(2) Blasars

THz is just above the SSA peak \Rightarrow better determination of magnetic field. sensitivity ~ 100 mJy

Gamma-Ray Bursts and Supernovae

Gamma-ray burst


- Synchrotron from reverse shock
- Origin of dark GRBs *Prompt response (~ hrs) *Long-term monitoring *High resolution to avoid contamination


K.Y. Huang, Y. Urata Ultraluminous supernovae **Dust formation** *Long-term monitoring (~ yrs) *Cold dust *High resolution *Host galaxy properties

early dust

formation

(warm)

3. Summary

(1) Our scientific interests are

- i) chemistry and evolution in diffuse to dense ISM,
- ii) dust formation and evolution, and
- iii) time-variable universe.
- with wide area survey capability (~ arcmin) and higher resolution (than Herschel).
- (2) Array of bolometer/heterodyne detectors are necessary.
- (3) For lines, a high wavelength resolution (~ 100 kHz) is necessary for i).
- (4) For continuum, a high sensitivity is required (~ 1 mJy / beam).
- (5) Polarization capability is also required.