Taiwan's Possible Interests in SKA

Hiroyuki Hirashita (ASIAA)

and members of the SKA discussion group at ASIAA

Outline

- 1. Gas Absorption and Emission
- 2. Continuum (Galaxies, AGNs)
- 3. Wide Frequency Range
- 4. Summary

1. Gas Absorption and Emission

Hirashita et al. (2003)

Statistical work on Damped Lyman α clouds

Put the background source randomly

This method is applied for 21 cm line statistics. Merit of 21 cm \Rightarrow Spin temperature, Velocity dispersion

HI Emission: Intensity Mapping at z=0.8 Cross-correlating GBT HI & DEEP2 optical galaxies at z ~ 0.7-1.1

Chang, Pen, Bandura, Peterson, in Nature 2010

Measure HI & DEEP2 optical cross-correlation on 9 Mpc (spatial) x 2 Mpc (redshift) comoving scales

HI brightness temperature on these scales at z=0.8:

 $T = 157 \pm 42 \mu K$

Ω_{HI}rb = (5.5 ± 1.5) x 10⁻⁴

Highest-redshift detection of HI in emission at 4-sigma statistical significance.

GBT: preliminary 3D HI power spectrum at z~1

The GBT HIM collaboration Tzu-Ching Chang's slide

CO Intensity Mapping

CO large-scale structure 3D maps of the universe at around the redshifts of EoR
 CO (1-0): 115 GHz / (1 + z)

CO intensity mapping at EoR

LIDZ, FURLANATTO, OH, AGUIRRE, CHANG, DORE, PRITCHARD 2011 TZU-CHING CHANG'S SLIDE

CO (star formation) large-scale structure at high redshifts (T ~ 1 μK)
 HI-Co anti-correlates on large-scales, constraining size evolution of ionized regions at EoR (Lidz et al. 2009)

Righi et al. 2008, Gong et al 2010, Carilli 2011, Lidz et al 2011

CO intensity mapping with AMiBA-DACOTA

1.2 m dish, 6 m baseline, currently operate at 83-102 GHz
At 30-32 GHz, probes 6.19 < z < 6.67 for CO[2-1], 2.59 < z < 2.83 CO[1-0]
At 31 GHz, resolution=6.7', FoV =28', probes >10 Mpc scales
AMiBA team (ASIAA): Paul Ho, Kai-Yang Lin, Ming-Tang Chen, Homin Jiang+
DACOTA team (Berkeley/Arizona): Geoff Bower, Dave Deboer, Dan Marrone+

Continuum Flux Levels

Expected Radio continuum from galaxies (Murphy 2009)

AGN Feedback in Cooling Core Cluster

- Exploring fossil radio bubbles (X-ray cavities) at low freq.
- SKA will give further constraints on models
- Do AGN inflations carry magnetic energy over ICM scales?

Imaging Re-collimation Process of the M87 jet Asada et al.

Dynamic Range of current our EVN image is ~ 2500 !!

- SKA will improve it > 1,000,000
- Is the M87 jet over-collimated ?

Imaging the counter-jets

Detection of counter-jets is important !!

- evaluation of jet true speed.
- estimation of viewing angle.
- jet physicsAGN geometry

3. Wide Frequency Range

(1)Lines

- Can trace the evolution along *z*
- Can determine the excitation temperature and density (ex. CO(1-0) and CO(2-1))

(2) Continuum

- Can receive a larger number of photons
- A special imaging technique to deal with a large dynamic range should also be developed.

4. Summary

(1) Small science group \Rightarrow Collaboration is necessary.

(2) Possible science collaborations

- a. H I emission and absorption at high z
- b. Galaxy evolution in radio
- c. AGN and magnetism

(3) Requirements:

- a. Microjansky sensitivities
- b. Imaging techniques should also be developed.