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Chapter 1

Essential Mathematics

1.1 Derivatives

The derivative of a continuous function f(x) is usually written as f ′(x) or
df/dx. From its definition

f ′(x) ≡ lim
∆x→0

f(x + ∆x)− f(x)

∆x
, (1.1)

it is clear that f ′(x) is the slope of the tangent line of the curve y = f(x) at x,
and it represents the rate of change of f(x) at x. For instance, if D(t) is the
distance of a particle from the origin at time t, then D′(t) is the instantaneous
velocity of the particle at time t. If V (x) is the potential energy of a particle
at position x, then −V ′(x) is the force experienced by the particle at position
x.

The operation of deriving f ′(x) from f(x) is called differentiation. From
the definition in Eq. (1.1) it is clear that differentiation is a linear operation.
Namely, if h(x) = af(x) + bg(x), where a and b are two constants, then
h′(x) = af ′(x) + bg′(x).

Let us see what is the derivative of a polynomial. Because differentiation
is a linear operation, it is sufficient to consider the derivative of xn.

(xn)′ = lim
∆x→0

(x + ∆x)n − xn

∆x

1



2 Chapter 1. Essential Mathematics

= lim
∆x→0

(Cn
1 xn−1 + Cn

2 xn−2∆x + · · ·+ Cn
n−1x∆xn−2 + Cn

n∆xn−1)

= nxn−1. (1.2)

If h(x) = f(x)g(x), then

h′(x) = lim
∆x→0

f(x + ∆x)g(x + ∆x)− f(x)g(x)

∆x

= lim
∆x→0

f(x + ∆x)g(x + ∆x)− f(x)g(x + ∆x)

∆x

+ lim
∆x→0

f(x)g(x + ∆x)− f(x)g(x)

∆x
= f ′(x)g(x) + g′(x)f(x). (1.3)

This is known as the multiplication rule of differentiation. Let g(x) =
1/f(x), then h′(x) = 0. By the multiplication rule we have

f ′(x)g(x) + g′(x)f(x) = 0. (1.4)

Namely

g′(x) = − f ′(x)

f(x)2
. (1.5)

From this formula, we obtain (x−n)′ = −nx−n−1.

If h(x) is the composition function of f(x) and g(x), namely h(x) =
f [g(x)], then

h′(x) = lim
∆x→0

f [g(x + ∆x)]− f [g(x)]

∆x

= lim
∆x→0

f [g(x + ∆x)]− f [g(x)]

g(x + ∆x)− g(x)
× g(x + ∆x)− g(x)

∆x

= f ′[g(x)]g′(x). (1.6)

This is known as the chain rule of differentiation. As an example, we have
[f(x)n]′ = nf(x)n−1f ′(x). If f(x) and f−1(x) are inverse functions of each
other, namely f [f−1(x)] = x, we have

1 = f ′[f−1(x)](f−1)′(x),

namely,

(f−1)′(x) =
1

f ′[f−1(x)]
. (1.7)
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Now we are ready to extend the derivative of xk from an integer k to a
rational number k. Let k = 1/q where q is an integer, then (x1/q)q = x.
Differentiating both sides, by the chain rule we have

1 = q(x
1
q )q−1(x

1
q )′. (1.8)

In other words,

(x
1
q )′ =

1

q
x

1
q
−1. (1.9)

Now let k = p/q, where p and q are integers. By the chain rule we have

(x
p
q )′ =

[
(xp)

1
q

]′
=

1

q
(xp)

1
q
−1p xp−1 =

(
p

q

)
x( p

q )−1. (1.10)

Finally let us consider the derivative of xr when r is a real number. Before
doing that, we must note that the definition of xr is not as trivial as xp/q

when p and q are integer. The expression xp/q is defined by the number
α that satisfies αq = xp. But what do we mean by xr when r cannot be
expressed as p/q? It turns out that one must use a sequence of rational
numbers k1 = p1/q1, k2 = p2/q2, k3 = p3/q3, · · · that approaches r to define
xr. In other words

xr ≡ lim
kn→r

xkn . (1.11)

With this definition we have

(xr)′ = lim
∆x→0

limkn→r(x + ∆x)kn − limkn→r xkn

∆x

= lim
∆x→0

lim
kn→r

(x + ∆x)kn − xkn

∆x

= lim
kn→r

knx
kn−1 = rxr−1. (1.12)

Note that we have swapped the order of the two limiting process ∆x → 0
and kn → r. This is not always safe because in some special cases they may
lead to two different values. However, how to do it rigorously is beyond the
scope of this lecture.

Now we turn our attention to transcendental functions. Consider the
derivative of ax, where a is a real number.

(ax)′ = lim
∆x→0

ax+∆x − ax

∆x
= ax lim

∆x→0

a∆x − 1

∆x
. (1.13)
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Assuming the limit in Eq. (1.13) exists, let

b = lim
∆x→0

a∆x − 1

∆x
. (1.14)

We may rewrite the limit as

b = lim
n→∞

a
1
n − 1

1
n

, (1.15)

which means for an arbitrarily small ε there exists an M such that for any
n > M we have

b− ε ≤ a
1
n − 1

1
n

≤ b + ε, (1.16)

or equivalently

(
1 +

b− ε

n

)n

≤ a ≤
(

1 +
b + ε

n

)n

. (1.17)

Note that
(

1 +
b + ε

n

)n

−
(

1 +
b− ε

n

)n

= 2ε


 1

n

n−1∑

k=0

(
1 +

b + ε

n

)k (
1 +

b− ε

n

)n−1−k

 . (1.18)

Since we can make ε arbitrarily small by choosing a sufficiently large n, and
while doing so the term in the square bracket remains finite, it can be seen
from Eqs. (1.17) and (1.18) that

a = lim
n→∞

(
1 +

b

n

)n

. (1.19)

Let us consider the special case of b = 1. In this case (ax)′ = ax and we have

αn =
n∑

k=0

Cn
k

(
1

n

)k

. (1.20)

Consider another sequence of numbers sn defined by

sn =
n∑

k=0

1

k!
. (1.21)
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Since

Cn
k

(
1

n

)k

=
n(n− 1)(n− 2) . . . (n− k + 1)

k!nk
≤ 1

k!
, (1.22)

we have αn ≤ sn. Consider yet another sequence of numbers rm(n) (m < n)
defined by

rm(n) =
m∑

k=0

Cn
k

(
1

n

)k

= 1 + 1 +
(n− 1)

2n
+

(n− 1)(n− 2)

6n2
. . .

+
(n− 1)(n− 2) . . . (n−m + 1)

m!nm−1
. (1.23)

Since rm(n) contains only the first m terms of αn and every term in αn is
positive, we have rm(n) ≤ αn ≤ sn. Taking the limit of n →∞ we obtain

sm = lim
n→∞ rm(n) ≤ lim

n→∞αn ≤ lim
n→∞ sn. (1.24)

In other words, for any m we have

sm ≤ a ≤ lim
n→∞ sn. (1.25)

Therefore

a = lim
n→∞ sn =

∞∑

k=0

1

k!
≈ 2.718282 . (1.26)

This is a special number which makes (ax)′ = ax, therefore it is the natural
choice for the base of the exponential function in calculus. It deserves to be
represented by a special symbol, hence from now on we use e to represent
this number.

e = lim
n→∞

(
1 +

1

n

)n

=
∞∑

k=0

1

k!
≈ 2.718282 . (1.27)

Now we can go back to Eq. (1.13) and write

(ex)′ = ex. (1.28)

Let us define the inverse function of ex to be ln x ≡ logex. Eq. (1.13) can be
written as

(ax)′ =
[(

eln a
)x]′

=
(
ex ln a

)′
= (ln a) ex ln a = (ln a) ax. (1.29)
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Fig. 1.1: The radius of the arc is 1, and the angle of span is x. The area
enclosed in the small triangle is sin x/2, in the arc is x/2, and in the large
triangle is tan x/2.

From Eqs. (1.7) and (1.28),

ln′(x) =
1

eln x
=

1

x
. (1.30)

To derive the derivative of sin x and cos x, we note that for small x,
sin x ≤ x ≤ tan x as shown in Fig. 1.1. Therefore

1 ≤ lim
x→0

x

sin x
≤ lim

x→0

1

cos x
= 1, (1.31)

hence

lim
x→0

sin x

x
= 1. (1.32)

We will also need the following limit.

lim
x→0

1− cos x

x
= 0. (1.33)

To prove Eq. (1.33), let us note

1− cos x

x
=

1− cos2 x

x(1 + cos x)
=

sin2 x

x(1 + cos x)
. (1.34)

Since

lim
x→0

sin x

x
= 1, (1.35)

lim
x→0

sin x

1 + cos x
= 0, (1.36)
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we have Eq. (1.33). With Eqs. (1.32) and (1.33), we can derive

sin′ x = lim
∆x→0

sin x cos(∆x) + cos x sin(∆x)− sin x

∆x
= cos x. (1.37)

cos′ x = lim
∆x→0

cos x cos(∆x)− sin x sin(∆x)− cos x

∆x
= − sin x. (1.38)

1.2 Integration

Consider a continuous function f(x) defined in [a, b]. Let us divide [a, b]
into n intervals [xi, xi+1], where i = 1, 2, · · · , n, x1 = a, xn+1 = b, and
xi+1 − xi = ∆x = (b − a)/n. In each interval we select an arbitrary sample
point x̄i ∈ (xi, xi+1). Integration of a function f(x) from a to b is defined by

∫ b

a
f(x) dx ≡ lim

∆x→0

n∑

i=1

f(x̄i)∆x. (1.39)

It is known as the Riemann sum of f(x) over the interval [a, b], which
represents the area under the curve y = f(x) between x = a and x = b as
shown in Fig. 1.2. To have a well-defined Riemann sum, it is important that
the limit in Eq. (1.39) does not depend on the choice of x̄i. To prove that,
let us first consider the following function defined in [a, b].

g(x) = f(x)− f(b)− f(a)

b− a
(x− a)− f(a). (1.40)

Since g(a) = g(b) = 0, there is some real number c ∈ [a, b] such that g(c) is
maximum or minimum, hence g′(c) = 0. Then we have

f ′(c) =
f(b)− f(a)

b− a
. (1.41)

For a different choice x̄′i in Eq. (1.39), we have

lim
∆x→0

n∑

i=1

[f(x̄i)− f(x̄′i)] ∆x ≤ lim
∆x→0

n∑

i=1

|f(x̄i)− f(x̄′i)|∆x

= lim
∆x→0

n∑

i=1

|f ′(ci)| (∆x)2

≤ lim
∆x→0

n∑

i=1

M(∆x)2

= lim
∆x→0

M(b− a)∆x = 0, (1.42)
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where ci is some number in between x̄i and x̄′i, and M is the maximum value
of |f ′(x)| in [a, b]. Now consider the integration

I(y) =
∫ y

y0

f(x) dx, (1.43)

where y0 < y is an arbitrary starting point. The derivative of I(y) is

I ′(y) = lim
∆y→0

∫ y+∆y
y0

f(x) dx− ∫ y
y0

f(x) dx

∆y

= lim
∆y→0

∫ y+∆y
y f(x) dx

∆y
= f(y). (1.44)

This is known as the fundamental theorem of calculus. Hence if I ′(x) =
f(x), we have

∫ b

a
f(x) dx =

∫ b

y0

f(x) dx−
∫ a

y0

f(x) dx = I(b)− I(a). (1.45)

Note that the condition I ′(x) = f(x) does not determine I(x) completely.
An arbitrary constant can be added to I(x) without changing I ′(x). We
must know the value of I(x) for at least one x to determine the constant c.
In Eq. (1.43) the definition itself requires that I(y0) = 0. Therefore if we
redefine I(x) by the equation I ′(x) = f(x) instead of Eq. (1.43), we may
write

I(y) =
∫ y

f(x) dx + c, (1.46)

where
∫ y f(x) dx represents any function whose derivative is f(x) and c is to

be determined by the value of I(x) at some x.

Example 1.1. To demonstrate the usefulness of the fundamental theorem
of calculus, let us calculate the volume V of a pyramid shown in Fig. 1.3. We
can cut the pyramid into n slices in the direction parallel to the base plane
of the pyramid. At a distance zi from the tip of the pyramid, the area of the
ith slice is L2z2

i /h
2, where L is the side-length of the base and h is the height

of the pyramid. The sum of the volume of all the slices can be written as

V =
n∑

i

L2z2
i

h2
∆z. (1.47)

In the limit of ∆z → 0,

V =
∫ h

0

L2

h2
z2 dz. (1.48)
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Fig. 1.2: The area under f(x) between a and b is equal to the Riemann sum
of f(x) over the interval [a, b].

Let us define V (y) by

V (y) =
∫ y

y0

L2

h2
z2 dz. (1.49)

If we know what V (y) is, then V in Eq. (1.48) is simply equal to V (h)−V (0).
According to the fundamental theorem of calculus, V ′(y) = L2y2/h2. From
(xn)′ = nxn−1, we can easily see V (y) = L2y3/(3h2) + c, where c is an
arbitrary constant. Since V (0) = 0, we have c = 0. Thus the volume of the
pyramid is V (h) = hL2/3.

From the view point of analytical calculation, in most cases integration
is much more difficult than differentiation. Given f(x), there is no general
rules to find an I(x) such that I ′(x) = f(x). And what is worse, among
the infinite varieties of f(x) there are only finite classes for which analytical
expressions of I(x) can be found. In what follows, we shall illustrate three
commonly used methods that may help to change an integral into a more
familiar form.

The first method is known as integration by substitution. Consider

I(y) =
∫ b

a
f(x) dx. (1.50)

If we change the integration variable by x = g(s), then

I(y) =
∫ g−1(b)

g−1(a)
f [g(s)]g′(s) ds. (1.51)
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Fig. 1.3: A pyramid and a thin slice parallel to the base plane. The volume
of the pyramid is equal to the sum of the volume of all the infinitesimally
thin slices.

For some substitutions, f [g(s)]g′(s) is easier to integrate than f(x).

Example 1.2. It is not obvious how to integrate

I(y) =
∫ y

0

1

x2 + 1
dx. (1.52)

By substituting x = tan θ and dx = sec2 θ dθ, the integration can be reduced
to

I(y) =
∫ tan−1 y

0
dθ = tan−1 y. (1.53)

Example 1.3.

I =
∫ 1

0

√
1− x2 dx. (1.54)

By substituting x = sin θ and dx = cos θ dθ, the integration can be reduced
to

I =
∫ π/2

0
cos2 θ dθ =

∫ π/2

0

1 + cos(2θ)

2
dθ =

π

4
. (1.55)

Because the equation for a circle of unit radius in the first quadrant is y(x) =√
1− x2, Eq. (1.54) represents the area of a circle in the first quadrant, as

shown in Fig. 1.4. Hence the area of a full circle of unit radius is π.
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Fig. 1.4: The part of a circle in the first quadrant. Its area is equal to the
sum of the area of all the infinitesimally thin strips.

Example 1.4. Consider the arc length of a parabolic described by y = x2/2.
The line element is

ds =
√

dx2 + dy2 =

√√√√1 +

(
dy

dx

)2

dx =
√

1 + x2 dx (1.56)

Hence the arc length from x = 0 to x = a is

s(a) =
∫ a

0

√
1 + x2 dx. (1.57)

Define

sinh x ≡ ex − e−x

2
,

cosh x ≡ ex + e−x

2
. (1.58)

We have

1 + sinh2 x = cosh2 x
d

dx
sinh x = cosh x,

d

dx
cosh x = sinh x. (1.59)

Let x = sinh u. The integration becomes

s(a) =
∫ sinh−1 a

0
cosh2 u du =

∫ sinh−1 a

0

cosh 2u + 1

2
du
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=

(
sinh 2u

4
+

1

2
u

)∣∣∣∣∣
sinh−1 a

0

=
1

2

[
a
√

a2 + 1 + ln
(
a +

√
a2 + 1

)]
. (1.60)

Example 1.5.

I(y) =
∫ y

0

1

cos x
dx. (1.61)

By substituting u = tan(x/2), we have

cos x =
1− u2

1 + u2
,

sin x =
2u

1 + u2
,

dx =
2

1 + u2
du. (1.62)

This is a well-known substitution to reduce rational expressions of trigonom-
etry functions to rational functions. Hence we have

I(y) =
∫ y

0

1

cos x
dx =

∫ tan(y/2)

0

2

1− u2
du

=
∫ tan(y/2)

0

(
1

1 + u
+

1

1− u

)
du

= ln
(

1 + u

1− u

)∣∣∣∣
tan(y/2)

0

= ln

(
1 + u2

1− u2
+

2u

1− u2

)∣∣∣∣∣
tan(y/2)

0

= ln (sec y + tan y). (1.63)

The second method is known as integration by parts. It is based on
the identity [u(x)v(x)]′ = u(x)v′(x) + v(x)u′(x) which implies

∫ b

a
u(x)v′(x) dx =

∫ b

a
[u(x)v(x)]′dx−

∫ b

a
v(x)u′(x) dx

= u(b)v(b)− u(a)v(a)−
∫ b

a
v(x)u′(x) dx. (1.64)

The technique is useful when v(x)u′(x) is easier to integrate than u(x)v′(x).
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Example 1.6. Consider

I =
∫ π/2

0
x cos x dx. (1.65)

Let v(x) = sin x and u(x) = x, then the integral can be reduced to

I =
π

2
sin

π

2
−

∫ π/2

0
sin x dx. (1.66)

Example 1.7.

I(y) =
∫ y

1
ln x dx. (1.67)

Let v(x) = x and u(x) = ln x, then the integral can be reduced to

I(y) = y ln y −
∫ y

1
dx = y ln y − y + 1. (1.68)

Example 1.8.

I(y) =
∫ y

0
tan−1 x dx. (1.69)

Let v(x) = x and u(x) = tan−1 x, then integration by parts leads to

I(y) = y tan−1 y −
∫ y

0

x

1 + x2
dx. (1.70)

Substituting s = x2 + 1 and ds = 2xdx,

I(y) = y tan−1 y −
∫ y2+1

1

1

2s
ds = y tan−1 y − 1

2
ln(y2 + 1). (1.71)

The third method, known as integration by partial fractions, can be
used for the integration of rational functions. Consider the integration of a
rational function

∫
f(x) dx =

∫ p(x)

q(x)
dx, (1.72)

where p(x) and q(x) are polynomials of x. If the order of p(x) is larger than
or equal to that of q(x), we may reduce the integration to

∫
f(x) dx =

∫
h(x) dx +

∫ r(x)

q(x)
dx, (1.73)
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where h(x) is a polynomial and the order of r(x) is smaller than that of q(x).
Since we already know how to integrate h(x), we shall consider only the case
in which the order of p(x) is smaller than that of q(x). Let us assume the
order of q(x) is n and the n roots of q(x) are ri (i = 1, 2, . . . n), then we may
express f(x) as

p(x)

q(x)
=

n∑

i=1

ai

x− ri

, (1.74)

where ai (i = 1, 2, . . . n) are n constants. The reason we can always do that
is because the order of p(x) is at most n− 1, hence we have

p(x) =
n−1∑

i=0

cix
i, (1.75)

where ci (i = 0, 2, . . . n − 1) are n constants. For any set of ci we may
solve Eq. (1.74) to find the corresponding set of ai. A unique solution exists
because the number of ci is the same as that of ai. Once we have done the
decomposition in Eq. (1.74), the integration of f(x) becomes trivial.

Finally, we note that some useful integrals in physics are difficult to eval-
uate directly, but can be evaluated by introducing another dimension, as
shown in the following examples.

Example 1.9. To evaluate

I(α) =
∫ ∞

−∞
e−αx2

dx, (1.76)

one may evaluate the following integral first.

I2(1) =
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy. (1.77)

By changing variables to the polar coordinates, we have

I2(1) =
∫ ∞

0

∫ 2π

0
e−r2

rdrdθ = −π e−r2
∣∣∣
∞
0

= π. (1.78)

Therefore

I(1) =
∫ ∞

−∞
e−x2

dx =
√

π. (1.79)

Changing variable from x to
√

αx, we obtain

I(α) =
∫ ∞

−∞
e−αx2

dx =

√
π

α
. (1.80)
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Example 1.10. To evaluate

I2n(α) =
∫ ∞

−∞
x2ne−αx2

dx, (1.81)

one may differentiate Eq. (1.80) with respect to α n times.

I2(α) = − d

dα

∫ ∞

−∞
e−αx2

dx =
1

2
α−

3
2
√

π, (1.82)

I4(α) =

(
− d

dα

)2 ∫ ∞

−∞
e−αx2

dx =
1

2

3

2
α−

5
2
√

π, (1.83)

...

I2n(α) =

(
− d

dα

)n ∫ ∞

−∞
e−αx2

dx =
(2n)!

n!22n
α−

2n+1
2
√

π. (1.84)

Example 1.11.

I =
∫ ∞

0

sin x

x
dx. (1.85)

To get rid of the x in the denominator which makes the integration difficult,
we may evaluate the following function first.

g(y; ε) =
∫ ∞

ε

e−xy sin x

x
dx, (1.86)

where ε is a positive constant much smaller than 1. Differentiate with respect
to y, we have

g′(y; ε) = −
∫ ∞

ε
e−xy sin x dx = −

∫ ∞

ε

e−xy+ix − e−xy−ix

2i
dx

=
i

2

[−eε(i−y)

i− y
+
−e−ε(i+y)

i + y

]
. (1.87)

Expanding eε(i−y) and e−ε(i+y) to the second order of ε, we have

g′(y; ε) ≈ − 1

1 + y2
+

ε2

2
. (1.88)
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From Eq. (1.53) we have

g(y; ε) ≈ − tan−1 y +
ε2

2
y + c. (1.89)

Because Eq. (1.89) is valid for any ε as long as it is sufficiently small, for a
sufficiently large y we have

g(y; 1/y) ≈ − tan−1 y +
1

2y
+ c. (1.90)

Let y → ∞, the left-hand side of Eq. (1.90) approaches zero, therefore c =
π/2. Now let y be a small number and remember again that Eq. (1.89) is
valid for any ε as long as it is sufficiently small, we have

g(y; y) ≈ − tan−1 y +
y3

2
+

π

2
. (1.91)

Let y → 0, we have

∫ ∞

0

sin x

x
dx =

π

2
. (1.92)

1.3 Taylor Expansion

Consider a continuous function f(x) in the neighborhood of a fixed point a.
If f(x) is a polynomial, we have

f(x) = f(a) +
n∑

k=1

ck(x− a)k, (1.93)

where ck is the coefficients. Differentiating both sides by m times and sub-
stituting in x = a, we have

f (m)(a) = cmm!, (1.94)

therefore cm = f (m)(a)/m! . If f(x) is a not a polynomial, intuitively we
can use a polynomial to approximate it. The more complex f(x) is, the
higher-order polynomial is needed. Hence we can write

f(x) ≈ f(a) +
n∑

k=1

f (k)(a)

k!
(x− a)k. (1.95)
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This is known as the Taylor expansion of f(x) around a.

In Taylor expansion, in principle n can approach infinity. But in practice
at which n should we truncate the series? To answer this question we need
to know how good the approximation is. Let us rewrite the Taylor expansion
as

f(x) = f(a) +
n∑

k=1

f (k)(a)

k!
(x− a)k + Rn(x, a), (1.96)

where Rn(x, a) is the nth remainder. Now we shall estimate how large
|Rn(x, a)| can be. In the following Taylor expansion, consider b to be fixed
and the point of expansion a to be variable.

f(b) = f(a) +
n∑

k=1

f (k)(a)

k!
(b− a)k + Rn(b, a). (1.97)

Differentiating Eq. (1.97) with respect to a, from the multiplication rule it
becomes

0 = f ′(a) +
n∑

k=1

[
f (k+1)(a)

k!
(b− a)k − f (k)(a)

(k − 1)!
(b− a)k−1

]
+ R′

n(b, a). (1.98)

The second term in the bracket for k = i cancels the first term in the bracket
for k = i + 1, therefore almost all terms cancel out and we are left with

0 =
f (n+1)(a)

n!
(b− a)n + R′

n(b, a). (1.99)

Integrating with respect to a, we obtain

Rn(b, a) =
∫ a

y0

−f (n+1)(x)

n!
(b− x)n dx + c. (1.100)

Because Rn(b, b) = 0, we have

c =
∫ b

y0

f (n+1)(x)

n!
(b− x)n dx, (1.101)

hence

Rn(b, a) =
∫ b

a

f (n+1)(x)

n!
(b− x)n dx. (1.102)

We can find the upper bound of |Rn(b, a)| by

|Rn(b, a)| ≤
∫ b

a

|f (n+1)(x)|
n!

|(b− x)n| dx ≤ M
|(b− a)n+1|

(n + 1)!
, (1.103)
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where M is assumed to be the common upper bound of |f (n+1)(x)| in [a, b] for
all n. Because (n+1)! À |(b−a)n+1| for sufficiently large n, limn→∞ |Rn(b, a)| =
0 if M exists.

As an example, let us find the Taylor expansion of ex around zero. Be-
cause dex/dx = ex,

ex =
∞∑

k=0

xk

k!
. (1.104)

Let x = 1, we have

e =
∞∑

k=0

1

k!
≈ 2.718282 . (1.105)

Similarly, the Taylor expansions for cos x and sin x around zero are

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k,

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1. (1.106)

Comparing Eq. (1.104) with Eq. (1.106), we have the Euler formula

eix = cos x + i sin x. (1.107)

An important application of Taylor expansion is numerical calculation.
For example, a simple method for calculating the numerical value of π is
using Taylor expansion in Eq. (1.52).

π

4
=

∫ 1

0

1

x2 + 1
dx

=
∫ 1

0
(1− x2 + x4 − x6 + · · ·) dx

= 1− 1

3
+

1

5
− 1

7
+ · · ·

=
∞∑

n=0

(
1

4n + 1
− 1

4n + 3

)
. (1.108)

For large n, this sequence is essentially 1/(8n2), hence it converges rather
slowly. Noting that tan(π/8) =

√
2− 1, it is better to use

π

8
=

∫ √
2−1

0

1

x2 + 1
dx
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=
∫ √

2−1

0
(1− x2 + x4 − x6 + · · ·) dx

= (
√

2− 1)− (
√

2− 1)3

3
+

(
√

2− 1)5

5
− (

√
2− 1)7

7
+ · · · . (1.109)

This series converges much faster because
√

2−1 is significantly smaller than
1.

In order to extend the exponential function to the complex domain, we
may use Eq. (1.104) as the definition of ez when z is a complex number. For
any two complex numbers y and z,

eyez =

( ∞∑

k=0

yk

k!

) ( ∞∑

m=0

zm

m!

)

=
∞∑

k=0

∞∑

m=0

ykzm

k!m!

=
∞∑

k=0

∞∑

n=k

ykzn−k

k!(n− k)!

n!

n!

=
∞∑

n=0

n∑

k=0

ykzn−k

k!(n− k)!

n!

n!

=
∞∑

n=0

(y + z)n

n!

= e(y+z). (1.110)

This allows us to define, for z = x + iy, ez = exeiy = ex(cos y + i sin y), and
consequently ln z = ln(|z|eiθ) = ln |z| + i arg z. Moreover, uz can be defined
as ez ln u. For any three complex numbers u, y and z,

(uz)y = ey ln(uz) = ey ln(ez ln u). (1.111)

If −π < Im(z ln u) ≤ π, we may write

ln(ez ln u) = z ln u, (1.112)

otherwise

ln(ez ln u) = z ln u− 2nπi, (1.113)

where n is an integer that ensures −π < Im(z ln u−2nπi) ≤ π. Eqs. (1.111)–
(1.113) show that under the restriction −π < Im(z ln u) ≤ π we have

(uz)y = ey ln(uz) = ey ln(ez ln u) = eyz ln u = uyz. (1.114)

Under proper restrictions, Eqs. (1.110) and (1.114) extend the characteristics
of the real exponential function to the complex domain.
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1.4 Ordinary Differential Equations

An equation that contains differential operators in it is called a differential
equation. The order of the differential equation is marked by the highest
order of the differential operator in the equation. In physics it often occurs
that the rate of change of some variable is a function of the variable itself.
In such cases the equation describing that variable is a differential equation.
For example, the deceleration of a free-falling particle in air is a function of
its speed, and we need to find out from the differential equation dv/dt = f(v)
how v change with t. A common form of first-order differential equation is the
following, and it can be solved by the method of separation of variables.

dx

dt
= f(x)g(t) =⇒

∫ dx

f(x)
=

∫
g(t)dt. (1.115)

Example 1.12. Consider

dx

dt
=

x(1− x)

t
. (1.116)

Separation of variables leads to

∫ dx

x(1− x)
=

∫ dt

t
. (1.117)

The solution is

ln
(

x

1− x

)
= ln t + c1, (1.118)

where c1 is a constant. Solving x in terms of t, we obtain

x =
t

t + c2

. (1.119)

The constant c2 = e−c1 can be determined by the initial value of the equation.
For example, if we know at t = 1, x = 1/2, then c2 = 1 in the above equation.

Another form of first-order differential equation often encountered in
physics is the linear equation.

dx

dt
+ f(t)x = g(t). (1.120)



1.4. Ordinary Differential Equations 21

Let us solve first for the special case g(t) = 0. Separation of variable yields

ln x = −
∫ t

t0
f(s) ds + c0, (1.121)

or

x(t) = c exp
[
−

∫ t

t0
f(s) ds

]
, (1.122)

where c = x(t0). We can now modify this solution to suit for the case g(t) 6= 0.
The method is known as variation of parameters. In Eq. (1.122), c is a
parameter that does not depend on t. If we force it to change with t, then
this dependence will generate new terms in Eq. (1.120) to cancel g(t). Let

x(t) = c(t)h(t), (1.123)

where c is now a function of t and

h(t) = exp
[
−

∫ t

t0
f(s) ds

]
. (1.124)

Substitute x(t) = c(t)h(t) into Eq. (1.120), we have

dc(t)

dt
h(t) = g(t), (1.125)

hence

dc(t)

dt
=

g(t)

h(t)
, (1.126)

or

c(t) =
∫ t

t0

g(u)

h(u)
du + x(t0). (1.127)

Eqs. (1.123) and (1.126) can be written as

d

dt

[
x(t)

h(t)

]
=

g(t)

h(t)
. (1.128)

The function 1/h(t) is called the integration factor. Because

d

dt

[
1

h(t)

]
= − 1

h2(t)

dh(t)

dt
=

f(t)

h(t)
, (1.129)
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by multiplying both sides of Eq. (1.120) with the integration factor 1/h(t),
it is reduced to Eq. (1.128). The solution is

x(t) = h(t)
∫ t

t0

g(u)

h(u)
du + x(t0)h(t). (1.130)

Example 1.13. Consider the equation

dx

dt
+ tx = t3. (1.131)

The integration factor 1/h(t) is obviously et2/2. Multiplying both sides by
1/h(t), the equation becomes

d

dt

(
et2/2x

)
= et2/2t3. (1.132)

The solution is

et2/2x =
∫ t

t0
es2/2s3 ds + c0. (1.133)

Using integration by parts by setting u = s2 and dv = ses2/2 ds, one obtains

∫ t

t0
es2/2s3 ds = t2et2/2 − 2et2/2 + c. (1.134)

Therefore

et2/2x(t) = t2et2/2 − 2et2/2 + c, (1.135)

or equivalently

x = t2 − 2 + ce−t2/2. (1.136)

There is no general method to solve high-order differential equations ex-
cept when the equation is linear and has constant coefficients,

dnx

dtn
+ a1

dn−1x

dtn−1
+ a2

dn−2x

dtn−2
+ · · ·+ anx = f(t), (1.137)

where a1, a2, · · · , an are arbitrary constants. If x1 and x2 are two solutions of
Eq. (1.137), then their difference x1− x2 satisfies the homogeneous equation

dnx

dtn
+ a1

dn−1x

dtn−1
+ a2

dn−2x

dtn−2
+ · · ·+ anx = 0. (1.138)
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Therefore we only need to find one particular solution xp of Eq. (1.137) in
addition to the solutions xh of the homogeneous Eq. (1.138). All the solutions
of Eq. (1.137) can be written as x = xp + xh. The solution xh has the form

xh = ceλt, (1.139)

where λ satisfies

λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an = 0. (1.140)

Eq. (1.140) has n roots, therefore the general solution for xh is

xh =
n∑

i=1

cie
λit, (1.141)

where the coefficients ci are determined by specifying the initial conditions

x(0),
dx

dt

∣∣∣∣∣
x=0

, . . .
d(n−1)x

dt(n−1)

∣∣∣∣∣
x=0

.

If there are m roots of the same λ in Eq. (1.140), the m linearly independent
solutions corresponding to this λ are tmeλt (m = 0, 1, . . . , m − 1). This can
be seen from the following equation:

(
d

dt
− λ

)
ctkeλt = cktk−1eλt. (1.142)

There is no general method to find xp. For simple cases xp can be derived
by guessing from f(t). In what follows we give six examples of such guess
work.

Example 1.14.

d2x

dt2
+ 3

dx

dt
+ 2x = t2. (1.143)

First we solve the homogeneous equation

d2x

dt2
+ 3

dx

dt
+ 2x = 0. (1.144)

Substituting Eq. (1.138) into Eq. (1.144), we have

λ2 + 3λ + 2 = 0. (1.145)
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The solutions are λ = −1 and λ = −2, therefore

xh = c1e
−t + c2e

−2t. (1.146)

For the particular solution, we guess

xp = at2 + bt + c. (1.147)

Substituting this into Eq. (1.143), we have

2at2 + (6a + 2b)t + (2a + 3b + 2c) = t2. (1.148)

Comparing the coefficients of both sides, we have

2a = 1, 6a + 2b = 0, 2a + 3b + 2c = 0. (1.149)

That is

a =
1

2
, b = −3

2
, c =

7

4
. (1.150)

Therefore the particular solution is

xp =
1

2
t2 − 3

2
t +

7

4
, (1.151)

and the general solution is

x = xp + xh =
1

2
t2 − 3

2
t +

7

4
+ c1e

−t + c2e
−2t. (1.152)

Example 1.15.

d2x

dt2
− 4

dx

dt
− 5x = 3et. (1.153)

First we solve the homogeneous equation

d2x

dt2
− 4

dx

dt
− 5x = 0. (1.154)

Since the roots of

λ2 − 4λ− 5 = 0 (1.155)

are λ = −1 and λ = 5, we have

xh = c1e
−t + c2e

5t. (1.156)
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For the particular solution, we guess

xp = aet. (1.157)

Substituting this into Eq. (1.153), we have

(a− 4a− 5a)et = 3et. (1.158)

Comparing the coefficients of both sides, we have

a = −3

8
. (1.159)

Therefore the particular solution is

xp = −3

8
et, (1.160)

and the general solution is

x = xp + xh = −3

8
et + c1e

−t + c2e
5t. (1.161)

Example 1.16.

d2x

dt2
− 4

dx

dt
+ 3x = sin t. (1.162)

First we solve the homogeneous equation

d2x

dt2
− 4

dx

dt
+ 3x = 0. (1.163)

Since the roots of

λ2 − 4λ + 3 = 0 (1.164)

are λ = 1 and λ = 3, we have

xh = c1e
t + c2e

3t. (1.165)

For the particular solution, we guess

xp = a sin t + b cos t. (1.166)

Substituting this into Eq. (1.162), we have

(2a + 4b) sin t + (−4a + 2b) cos t = sin t. (1.167)
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Comparing the coefficients of both sides, we have

2a + 4b = 1, −4a + 2b = 0. (1.168)

That is

a =
1

10
, b =

1

5
. (1.169)

Therefore the particular solution is

xp =
1

10
sin t +

1

5
cos t, (1.170)

and the general solution is

x = xp + xh =
1

10
sin t +

1

5
cos t + c1e

t + c2e
3t. (1.171)

Example 1.17.

d2x

dt2
− 4

dx

dt
+ 3x = et. (1.172)

First we solve the homogeneous equation

d2x

dt2
− 4

dx

dt
+ 3x = 0. (1.173)

As stated in Eq. (1.165), it is

xh = c1e
t + c2e

3t. (1.174)

For the particular solution, we cannot guess xp = aet, because it is the
solution of the homogeneous equation. We guess instead

xp = atet. (1.175)

Substituting this into Eq. (1.172), we have

−2aet = et. (1.176)

Therefore

a = −1

2
. (1.177)
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The particular solution is then

xp = −1

2
tet, (1.178)

and the general solution is

x = xp + xh = −1

2
tet + c1e

t + c2e
3t. (1.179)

Note that the particular solution for
(

d

dt
− λ1

) (
d

dt
− λ2

)
x = aeλ2t (1.180)

is xp = bteλ2t, because

(
d

dt
− λ1

) (
d

dt
− λ2

)
bteλ2t =

(
d

dt
− λ1

)
beλ2t = b(λ2 − λ1)e

λ2t, (1.181)

and b can be chosen to be a/(λ2 − λ1).

Example 1.18.

d2x

dt2
− 4

dx

dt
+ 4x = et. (1.182)

First we solve the homogeneous equation

d2x

dt2
− 4

dx

dt
+ 4x = 0. (1.183)

Since λ = 2 is the multiple root of

λ2 − 4λ + 4 = 0, (1.184)

the second solution for xh is te2t, namely

xh = c1e
2t + c2te

2t. (1.185)

For the particular solution, we guess

xp = aet. (1.186)

Substituting this into Eq. (1.182), we have

aet = et. (1.187)
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Therefore

a = 1. (1.188)

The particular solution is then

xp = et, (1.189)

and the general solution is

x = xp + xh = et + c1e
2t + c2te

2t. (1.190)

Note that the second solution for the homogeneous equation

(
d

dt
− λ

)2

x = 0 (1.191)

is xh = cteλt, because

(
d

dt
− λ

)2

cteλt =

(
d

dt
− λ

)
ceλt = 0. (1.192)

Example 1.19.

d2x

dt2
− 4

dx

dt
+ 4x = e2t. (1.193)

First we solve the homogeneous equation

d2x

dt2
− 4

dx

dt
+ 4x = 0. (1.194)

As stated in Eq. (1.165), it is

xh = c1e
2t + c2te

2t. (1.195)

For the particular solution, we cannot guess xp = ae2t or xp = ate2t, because
they are the solutions of the homogeneous equation. Instead we guess

xp = at2e2t. (1.196)

Substituting this into Eq. (1.193), we have

2ae2t = e2t. (1.197)
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Therefore

a =
1

2
. (1.198)

The particular solution is then

xp =
1

2
t2e2t, (1.199)

and the general solution is

x = xp + xh =
1

2
t2e2t + c1e

2t + c2te
2t. (1.200)

Note that the particular solution for
(

d

dt
− λ

)2

x = aeλt (1.201)

is xp = bt2eλt, because
(

d

dt
− λ

)2

bt2eλt =

(
d

dt
− λ

)
2bteλt = 2beλt, (1.202)

and b can be chosen to be a/2.

In general an n-th order differential equation can be written as

dnx

dtn
= f

(
dn−1x

dtn−1
. . .

dx

dt
, x

)
. (1.203)

The solution x(t) must contain n undetermined parameters to accommodate
various possible initial conditions. These parameters are determined by the
n equations

x(t0) = x0

ẋ(t0) = ẋ0

ẍ(t0) = ẍ0

... (1.204)

that specify the initial state (x, ẋ, ẍ, . . .) of the system at t = t0 to be
(x0, ẋ0, ẍ0, . . .). If two solutions x1(t) and x2(t) satisfy the same initial con-
dition, namely

x1(t0) = x2(t0)

ẋ1(t0) = ẋ2(t0)

ẍ1(t0) = ẍ2(t0)
... (1.205)
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then Eq. (1.203) and its derivatives guarantee that

dmx1

dtm

∣∣∣∣∣
t=t0

=
dmx2

dtm

∣∣∣∣∣
t=t0

(1.206)

for all m. This means x1(t) and x2(t) have the same Taylor expansion at t =
t0, hence x1(t) = x2(t). In other words, the solution is uniquely determined
by the initial condition.

1.5 Fourier Transform

In physics we often deal with periodic functions in space and time. Period
functions can be expanded into a series of sine and cosine functions of shorter
and shorter periods. Such a series is known as the Fourier series. Let us
assume for the time being that any periodic function can be constructed with
a linear combination of sine and cosine functions. Namely

f(x) = a0 +
∞∑

k=1

(ak cos kx + bk sin kx). (1.207)

Multiplying both sides by cos nx and sin nx respectively and integrating from
−π to π, and using the following relations

∫ π

−π
cos nx dx =

∫ π

−π
sin nx dx = 0,

∫ π

−π
cos kx sin nx dx =

∫ π

−π

1

2
[sin(k + n)x− sin(k − n)x] dx = 0,

∫ π

−π
cos kx cos nx dx =

∫ π

−π

1

2
[cos(k + n)x + cos(k − n)x] dx = πδkn,

∫ π

−π
sin kx sin nx dx =

∫ π

−π

1

2
[cos(k − n)x− cos(k + n)x] dx = πδkn,

(1.208)

where δkn = 1 when k = n and δkn = 0 when k 6= n, we have

a0 =
1

2π

∫ π

−π
f(x) dx,

ak =
1

π

∫ π

−π
f(x) cos kx dx,

bk =
1

π

∫ π

−π
f(x) sin kx dx. (1.209)
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If we imaging cos kx and sin kx to be vectors of (uncountable) infinite di-
mensions, Eq. (1.208) means these vectors are orthogonal to each others,
and their lengths are

√
π. Then ak, bk are proportional to the projection of

f(x) on these vectors.

Let us define the partial sum Sn(x) by

Sn(x) =
n∑

k=0

(ak cos kx + bk sin kx). (1.210)

We wish to show that limn→∞ Sn(x) converges to f(x). Before doing that,
let us show first that ak → 0, bk → 0 as k →∞. This is of course a necessary
condition for the convergence of Eq. (1.207). Consider the following integral

∫ π

−π
[f(x)− Sn(x)]2 dx =

∫ π

−π

[
f 2(x)− 2f(x)Sn(x) + S2

n(x)
]

dx

=
∫ π

−π
f 2(x) dx− 2π

n∑

k=0

(a2
k + b2

k) + π
n∑

k=0

(a2
k + b2

k). (1.211)

Since the left-hand side cannot be negative, we have

n∑

k=0

(a2
k + b2

k) ≤
1

π

∫ π

−π
f 2(x) dx. (1.212)

This implies ak → 0, bk → 0 as k →∞ if
∫ π
−π f 2(x) dx is finite. Namely

lim
k→∞

∫ π

−π
f(x) cos kx dx = lim

k→∞

∫ π

−π
f(x) sin kx dx = 0. (1.213)

Using Eq. (1.209), we can rewrite Sn(x) as

Sn(x) =
1

2π

∫ π

−π
f(t) dt +

1

π

∫ π

−π
f(t)

n∑

k=1

(cos kt cos kx + sin kt sin kx) dt

=
1

2π

∫ π

−π
f(t) dt +

1

π

∫ π

−π
f(t)

n∑

k=1

cos k(t− x) dt. (1.214)

Changing variable to τ = t− x, we have

Sn(x) =
1

2π

∫ π−x

−π−x
f(τ + x) dτ +

1

π

∫ π−x

−π−x
f(τ + x)

n∑

k=1

cos kτ dτ. (1.215)

Since f(τ+x) and cos kτ are periodic functions with period 2π, it is equivalent
to

Sn(x) =
1

2π

∫ π

−π
f(τ + x) dτ +

1

π

∫ π

−π
f(τ + x)

n∑

k=1

cos kτ dτ. (1.216)
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Using the formula

sin
τ

2

n∑

k=1

cos kτ =
1

2

n∑

k=1

[
sin

(
k +

1

2

)
τ − sin

(
k − 1

2

)
τ
]

=
1

2

[
sin

(
n +

1

2

)
τ − sin

τ

2

]
, (1.217)

namely

n∑

k=1

cos kτ =
sin

(
n + 1

2

)
τ

2 sin τ
2

− 1

2
, (1.218)

we have

Sn(x) =
1

π

∫ π

−π
f(x + τ)

sin
(
n + 1

2

)
τ

2 sin τ
2

dτ

=
1

π

∫ π

−π

[
f(x + τ) + f(x− τ)

2

]
sin

(
n + 1

2

)
τ

2 sin τ
2

dτ. (1.219)

By integrating Eq. (1.218), we have

∫ π

−π

sin
(
n + 1

2

)
τ

2 sin τ
2

dτ = π. (1.220)

As we shall see, the application of Fourier series is not limited to continuous
functions. Therefore let us define

f(x+) ≡ lim
ε→0

f(x + |ε|),
f(x−) ≡ lim

ε→0
f(x− |ε|). (1.221)

Using Eq. (1.220) in Eq. (1.219), we obtain

Sn(x)− f(x+) + f(x−)

2
=

1

π

∫ π

−π
g(τ) sin

(
n +

1

2

)
τ dτ

=
1

π

∫ π

−π
g(τ)

(
sin nτ cos

τ

2
+ cos nτ sin

τ

2

)
dτ, (1.222)

where

g(τ) =
f(x + τ) + f(x− τ)− f(x+)− f(x−)

4 sin τ
2

. (1.223)
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Note that g(τ) is finite as τ → 0 even though it has a factor of sin(τ/2) in
the denominator. This can be seen by expanding both the numerator and
the denominator in Taylor series.

lim
τ→0

|g(τ)| =
∣∣∣∣∣
f ′(x+)τ − f ′(x−)τ

2τ

∣∣∣∣∣ =

∣∣∣∣∣
f ′(x+)− f ′(x−)

2

∣∣∣∣∣ . (1.224)

Therefore one can safely argue that by Eq. (1.213), the right-hand side of
Eq. (1.222) approached zero as n →∞. In other words,

lim
n→∞Sn(x) =

f(x+) + f(x−)

2
. (1.225)

Using the Euler formula, Eq. (1.207) can be written as

f(x) = a0 +
∞∑

k=1

(
ak − ibk

2
eikx +

ak + ibk

2
e−ikx

)
. (1.226)

If we define c0 ≡ a0, ck ≡ (ak − ibk)/2, and c−k ≡ (ak + ibk)/2, Eq. (1.226)
becomes

f(x) =
∞∑

m=−∞
cmeimx, (1.227)

where we have changed the dummy index from k to m. From Eq. (1.209),
the coefficients cm can be written as

cm =
1

2π

∫ π

−π
f(x)e−imx dx. (1.228)

In Eq. (1.207) f(x) has a fixed period 2π. If we replace x by 2πy/T , the
expansion can be used on functions of period T .

g(y) =
∞∑

m=−∞
cmei( 2πm

T )y, (1.229)

cm =
1

2π

2π

T

∫ T
2

−T
2

g(y)e−i( 2πm
T )y dy. (1.230)

If we define a real variable k ≡ 2πm/T and a function u(k) ≡ cmT/
√

2π, such
that the mapping k → u(k) corresponds to 2πm/T → cmT/

√
2π, Eqs. (1.229)

and (1.230) can be written as

g(y) =
1√
2π

∞∑

m=−∞
u(k)eiky

(
2π

T

)
=

1√
2π

∞∑

m=−∞
u(k)eiky∆k, (1.231)

u(k) =
1√
2π

∫ T
2

−T
2

g(y)e−iky dy, (1.232)
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where ∆k = 2π(m+1)/T −2πm/T = 2π/T . If we let T →∞, then ∆k → 0.
Eq. (1.231) becomes the Riemann sum of u(k)eiky/

√
2π with respect to k.

Therefore we can write

g(y) =
1√
2π

∫ ∞

−∞
u(k)eiky dk, (1.233)

u(k) =
1√
2π

∫ ∞

−∞
g(y)e−iky dy. (1.234)

In Eq. (1.234) u(k) is the Fourier transform of g(y), and in Eq. (1.233)
g(y) is the inverse Fourier transform of u(k).

Eq. (1.233) and Eq. (1.234) can be combined to yield an identity:

u(k) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
u(k′)eik′y dk′e−iky dy

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
u(k′)ei(k′−k)y dy dk′. (1.235)

A short-hand notation for the “generalized function” δ(k′ − k) has been
invented, which is well defined only as part of the integrand, such that

u(k) =
∫ ∞

−∞
u(k′)δ(k′ − k) dk′. (1.236)

Comparing with Eq. (1.235), we have

δ(k′ − k) =
1

2π

∫ ∞

−∞
ei(k′−k)y dy. (1.237)

The integral on the right-hand side does not converge by itself, therefore it
is not well defined as a stand-alone expression. It can only be used in an
integral.

Eq. (1.237) can be used to prove an important theorem in Fourier trans-
form: Let h(x) be the convolution of f(x) and g(x), namely,

h(u) =
∫ ∞

−∞
f(x)g(u− x) dx, (1.238)

and h̃(k), f̃(k), and g̃(k) be the Fourier transform of h(x), f(x), and g(x)
respectively. Then

h̃(k) =
√

2πf̃(k)g̃(k). (1.239)
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This is known as the convolution theorem of Fourier transform. To
prove the theorem, let us express f(x) and g(u− x) in terms of their Fourier
transforms.

h(u) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f̃(k′)eik′x
√

2π

g̃(k)eik(u−x)

√
2π

dk′dkdx

=
∫ ∞

−∞

∫ ∞

−∞
f̃(k′)g̃(k)eiku

[∫ ∞

−∞
ei(k′−k)x

2π
dx

]
dk′dk

=
∫ ∞

−∞
g̃(k)eiku

[∫ ∞

−∞
f̃(k′)δ(k′ − k)dk′

]
dk

=
∫ ∞

−∞
f̃(k)g̃(k)eikudk. (1.240)

Comparing with Eq. (1.233), we have

h̃(k) =
√

2πf̃(k)g̃(k). (1.241)

An important relation that is often used in physics is the Fourier trans-
form of the Gaussian function. Let us first evaluate the following integrals.

I0 =
∫ ∞

−∞
e−x2

dx. (1.242)

We may write

I2
0 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy =

∫ ∞

0

∫ 2π

0
e−r2

r dφdr = π. (1.243)

Hence I0 =
√

π. Next we evaluate

I2 =
∫ ∞

0
x2e−x2

dx. (1.244)

Set u = x and dv = xe−x2
dx, one obtains from integration by parts

∫ ∞

0
x2e−x2

dx = − x

2
e−x2

∣∣∣∣
∞

0
+

1

2

∫ ∞

0
e−x2

dx (1.245)

=
1

2

∫ ∞

0
e−x2

dx =
1

2

√
π

2
. (1.246)

Similarly set u = x3 and dv = xe−x2
dx, one obtains from integration by parts

∫ ∞

0
x4e−x2

dx =
3

2

∫ ∞

0
x2e−x2

dx =
3

2

1

2

√
π

2
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...

...

∫ ∞

0
x2ne−x2

dx =
2n− 1

2
· · · 3

2

1

2

√
π

2
=

(2n)!

n!22n

√
π

2
. (1.247)

This is the same formula we have derived in Eq. (1.84) using a different
method. To evaluate

∫ ∞

−∞
e−x2

e−ikx dx = 2
∫ ∞

0
e−x2

cos(kx)dx, (1.248)

we expand cos(kx) into its Taylor series and use the integrals evaluated above.

2
∫ ∞

0
e−x2

cos(kx)dx = 2
∞∑

n=0

(−1)nk2n

(2n)!

∫ ∞

0
x2ne−x2

dx (1.249)

= 2
∞∑

n=0

(−1)nk2n

n!22n

√
π

2
(1.250)

=
√

πe−k2/4. (1.251)

We see that the Fourier transform of the Gaussian function is the Gaussian
function itself. The fact can be written in a more symmetric form:

1√
2π

∫ ∞

−∞
e−x2/2e−ikx dx = e−k2/2. (1.252)

Another relation in that is often used in elementary physics is the Fourier
transform of the following function

g(x) =

{
e−αx sin βx when x ≥ 0
0 when x < 0.

(1.253)

A simple integration yields

1√
2π

∫ ∞

−∞
g(x)e−ikx dx =

1√
2π

1

2i

∫ ∞

0
e(−α+iβ−ik)x − e(−α−iβ−ik)x dx

=
1√
2π

(−1

2

) [
1

k − (β + iα)
− 1

k − (β − iα)

]

=
1√
2π

[
β

(α2 + β2) + 2ikα− k2

]
. (1.254)
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1.6 Volume Elements

Consider the volume V spanned by n vectors in an n-dimensional space. We
shall prove that V is simply the determinant of the matrix made of these n
vectors. Let us write these n vectors as aij, where i = 1 . . . n is the index for
the vectors and j = 1 . . . n is the index for the components of each vector. One
can imagine that V = DnA(Sn), where A(Sn) is the area of the hyperplane
Sn spanned by the n−1 vectors aij (i = 1 . . . n−1) and Dn is the projection of
anj along the normal vector of the hyperplane. If we add a vector cna1j to anj,
where cn is a constant, to make a new vector bnj = anj +cna1j, then it is clear
that the volume spanned by bnj and aij (i = 1 . . . n − 1) is still V , because
adding a vector on the hyperplane to anj does not change the projection Dn.
For a reason that will become apparent in a moment, we choose cn is such
a way that it makes bn1 zero. Namely, cn = −an1/a11. Next, we consider
another hyperplane Sn−1 spanned by the n − 1 vectors aij (i = 1 . . . n − 2)
and bnj. Let Dn−1 be the projection of a(n−1)j along the normal vector of
this new hyperplane. Again we have V = Dn−1A(Sn−1), where A(Sn−1) is
the area of the new hyperplane. We can add cn−1a1j to a(n−1)j to make a
new vector b(n−1)j, in such a way that b(n−1)1 = 0. Repeating this process to
all aij except for i = 1, we find that V is equal to the volume spanned by a1j

and bij (i = 2 . . . n). Since bi1 = 0, bij (i = 2 . . . n) spans a hyperplane S1 in
an (n − 1)-dimensional space. As before, we have V = D1A(S1), where D1

is simply a11.

For a 2-dimensional surface spanned by two vectors (a11, a12) and (a21, a22)
it is clear that the area is det[aij]. Assume for the (n− 1)-dimensional space
the volume is also det[aij]. We have A(S1) = det[bij]. For the n-dimensional
space we have already known that V = D1A(S1) = a11det[bij], and that can
be written as

V = det




a11 a12 a13 . . . a1n

0 b22 b23 . . . b2n

0 b32 b33 . . . b3n
...

...
...

. . .

0 bn2 bn3 bnn




. (1.255)

Because the transformation from aij to bij (i = 2 . . . n) does not change the
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determinant, we have

det [aij] = det




a11 a12 a13 . . . a1n

0 b22 b23 . . . b2n

0 b32 b33 . . . b3n
...

...
...

. . .

0 bn2 bn3 bnn




, (1.256)

therefore

V = det [aij] . (1.257)

One may wonder what does it mean if det [aij] < 0? In fact, a volume
element in n-dimensional space is just a surface element in n+1-dimensional
space. A surface element can be treated as a vector pointing to the normal
direction of the surface with a length equal to the area of the surface element.
In this point of view, a “volume” element can indeed have a negative value
depending on its “orientation”. This will become clear when we discuss
vector analysis in Section 1.9.

1.7 Change of Variables

Consider the integration of a function

S =
∫

f(p, q, r) dp dq dr. (1.258)

If we change variables to (u, v, w) by

p = p(u, v, w),

q = q(u, v, w),

r = r(u, v, w), (1.259)

how should we write S in terms of (u, v, w)? Eq. (1.259) implies

dp =

(
∂p

∂u

)
du +

(
∂p

∂v

)
dv +

(
∂p

∂w

)
dw,

dq =

(
∂q

∂u

)
du +

(
∂q

∂v

)
dv +

(
∂q

∂w

)
dw,

dr =

(
∂r

∂u

)
du +

(
∂r

∂v

)
dv +

(
∂r

∂w

)
dw. (1.260)
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In the matrix notation, we have




dp
dq
dr


 =




∂p
∂u

∂p
∂v

∂p
∂w

∂q
∂u

∂q
∂v

∂q
∂w

∂r
∂u

∂r
∂v

∂r
∂w







du
dv
dw


 . (1.261)

Let us denote the matrix in Eq. (1.261) M, which is known as the Jacobian
matrix. We have




dp
dq
dr


 = M




du
dv
dw


 , (1.262)

or



du
dv
dw


 = M−1




dp
dq
dr


 . (1.263)

This leads to

dp dq dr = det(M) du dv dw. (1.264)

or

du dv dw = det(M−1) dp dq dr, (1.265)

Hence we have

S =
∫

f(u, v, w) det(M) dudvdw. (1.266)

Consider the differentiation of a function

df =

(
∂f

∂p

)
dp +

(
∂f

∂q

)
dq +

(
∂f

∂r

)
dr. (1.267)

Using Eq. (1.261), we have

df =

(
∂f

∂p

∂p

∂u
+

∂f

∂q

∂q

∂u
+

∂f

∂r

∂r

∂u

)
du

+

(
∂f

∂p

∂p

∂v
+

∂f

∂q

∂q

∂v
+

∂f

∂r

∂r

∂v

)
dv

+

(
∂f

∂p

∂p

∂w
+

∂f

∂q

∂q

∂w
+

∂f

∂r

∂r

∂w

)
dw. (1.268)
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But we also have

df =

(
∂f

∂u

)
du +

(
∂f

∂v

)
dv +

(
∂f

∂w

)
dw. (1.269)

Comparing the coefficients of du, dv, and dw, and using the matrix notation,
we have




∂f
∂u
∂f
∂v
∂f
∂w


 = MT




∂f
∂p
∂f
∂q
∂f
∂r


 , (1.270)

where MT is the transpose of M. This is the formula for the transformation
of differential operators under the change of variables.

1.8 Diagonalizing a Matrix

Consider a transformation T that maps a vector to another vector in an
n-dimensional vector space. If T satisfies

T(av1 + bv2) = aT(v1) + bT(v2) (1.271)

for any two vectors v1 and v2, where a and b are two arbitrary constants, we
call T a linear transformation. Let us expand an arbitrary vector v in terms
of a set of basis vectors ei (i = 1 . . . n). We have

v = ajej, (1.272)

where repeated indices are summed over from 1 to n to simplify the notation.
Similarly let us expand T(v). We have

T(v) = biei = ajT(ej). (1.273)

Expanding T(ej) also in terms of the basis vectors and using Mkj to represent
the coefficients , we have

T(ej) = Mkjek. (1.274)

Putting back to Eq. (1.273), we have

T(v) = biei = ajMkjek. (1.275)
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Taking the inner product with el and noting that el · ei = δil, we have

biel · ei = bl = ajMkjel · ek = ajMlj. (1.276)

Replacing l by i, we have

bi = Mijaj. (1.277)

Eq. (1.277) shows that any linear transformation T can be represented by a
matrix Mij. For any vector represented by aj, the transformation is simply
the matrix product bi = Mijaj.

Since we can choose the basis vectors freely, it is natural to ask what
basis vectors will simplify the form of Mij? To answer this question, let us
consider how Mij changes under a change of basis vectors. Because any one
of the new basis vectors e′i can be expressed as a linear combination of the
old basis vectors ek, the two bases are related by a the following equation,

e′i = Skiek, (1.278)

where Ski is a matrix and its column vectors are the coefficients of the linear
combinations. If a vector u is represented by ulel in the old basis, it will be
represented by u′je

′
j in the new basis according to

u′je
′
j = u′jSkjek = ulel. (1.279)

Taking the inner product with ei and noting that ei · ek = δik, ei · el = δil,
we have

ui = Siju
′
j. (1.280)

With the new basis vectors, Eq. (1.274) can be written as

T(e′j) = M ′
ije

′
i, (1.281)

where M ′
ij is another matrix representing T in the new basis. From Eq. (1.278)

we have

T(e′j) = T(Skjek) = SkjT(ek) = SkjMlkel

= M ′
ijSmiem. (1.282)

Taking the inner product with en and noting that en · el = δnl, en · em = δnm

we have

SniM
′
ij = MnkSkj. (1.283)
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In the matrix notation we have

SM′ = MS, (1.284)

or

M′ = S−1MS. (1.285)

The transformation from M to M′ as a result of changing bases is called the
similarity transformation.

The simplest form of M′ one can imagine is the diagonal form M ′
ij =

δijλ
(i). In this form we have

T(e′j) = M ′
ije

′
i = λ(j)e′j, (1.286)

which means the transformation does not mix up vector components. Each
component e′j is only multiplied by a constant λ(j) after transformation.

Namely, for any v = a′je
′
j, T(v) = λ(j)a′je

′
j. But how do we find the ba-

sis vectors e′j that simplify T to such an extent? We note that Eq. (1.286)
can be written as

[M′ − λ(j)I](e′j) = 0, (1.287)

where I is the identity matrix. Substituting into Eq. (1.285), we have

S−1[M− λ(j)I]S(e′j) = 0. (1.288)

Because detS 6= 0, this implies det[M − λ(j)I] = 0 for j = 1 . . . n. We can
find λ(j) by solving the algebraic equation

det(M− λI) = 0 (1.289)

which is called the characteristic equation of M. Since the equation is
an nth-order algebraic equation, it has n roots corresponding to λ(j), j =
(1 . . . n). The value λ(j) is called the jth eigenvalue of T. Since det[M −
λ(j)I] = 0, the matrix M− λ(j)I must map at least one vector uj to the null
vector. The vectors that are mapped by M − λ(j)I to the null vector are
called the eigenvectors of T corresponding to the eigenvalue λ(j).

A linear transformation T is Hermitian if Mij = M∗
ji. In the matrix

notation we write M† = M, where M† defined by

M† ≡
(
MT

)∗
(1.290)
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is called the Hermitian conjugate of M. For any two complex vectors w =
wiei and v = vjej, the inner product is defined by

w · v ≡ w∗
i vi. (1.291)

This is an extension of the definition of inner product for real vectors, which
ensures v · v ≥ 0 for any complex vector v. Consider the following inner
products.

w ·T(v) = (wiei) ·T(vjej) = w∗
i vjMkjei · ek = w∗

i vjMij,

T(w) · v = T(wiei) · (vjej) = vjw
∗
i M

∗
kiej · ek = vjw

∗
i M

∗
ji. (1.292)

If T is Hermitian, we have w ·T(v) = T(w) · v. For any eigenvector u with
eigenvalue λ, we have

u ·T(u) = λu · u = T(u) · u = λ∗u · u. (1.293)

Hence the eigenvalues of a Hermitian transformation are all real numbers.
For any two eigenvectors ui and uj of T, we have

ui ·T(uj) = λ(j)ui · uj = T(ui) · uj = λ(i)∗ui · uj = λ(i)ui · uj. (1.294)

If λ(i) 6= λ(j), we must have ui · uj = 0. In other words, the eigenvectors of a
Hermitian transformation are orthogonal to each other if all the eigenvalues
are different. This means we can construct a set of basis vectors using these
eigenvectors. In the basis formed by the eigenvectors, the Hermitian matrix
Mij is reduced to the diagonal form M ′

ij = δijλ
(i).

What happens if some of the eigenvalues are the same for a Hermitian
transformation? From the fact that w ·T(u) = T(w) ·u, it can be seen that
if u is an eigenvector, we have

w ·T(u) = λw · u = T(w) · u, (1.295)

This means if w is orthogonal to u, so is T(w). In other words, both w and
T(w) are in the (n− 1)-dimensional subspace orthogonal to u. Therefore T
is also a Hermitian transformation in that subspace. By repeating this argu-
ment n times, it is seen that we can distill n orthogonal eigenvectors after the
original n-dimensional space is exhausted. Therefore, we can construct a set
of basis vectors using these eigenvectors regardless whether the eigenvalues
are different or not.

It is worth noting that if we use the eigenvectors as the basis vectors,
the jth eigenvector e′j can be represented by the array u′j = (0, . . . , 1, . . . , 0),
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where 1 appears at the jth column. Substituting it into Eq. (1.280), we
see that in the original basis the jth eigenvector is represented by ui = Sij.
Therefore, after all the eigenvectors uj have been found out from the equation

[M− λ(j)I]uj = 0, (1.296)

we obtain the transformation matrix S whose column vectors are just uj.
Let uj = akjek, we have

Skj = akj. (1.297)

The fact that ui · uj = δij means a∗kiakj = δij, hence S∗kiSkj = δij. In the
matrix notation this is

S†S = I. (1.298)

Any matrix satisfying Eq. (1.298) is called a unitary matrix. For a unitary
matrix we have

S† = S−1, (1.299)

hence for a Hermitian transformation Eq. (1.285) can also be written as

M′ = S†MS. (1.300)

To illustrate the usefulness of the concept of eigenvalue and eigenvector,
let us solve an old high-school mathematical problem with the technique we
have just learned. Consider the equation Ax2+2Bxy+Cy2 = 1. Under what
conditions this equation represents an ellipse and a hyperbola respectively?
To answer this question, let us write the equation in the matrix form

[
x y

] [
A B
B C

] [
x
y

]
= 1. (1.301)

By changing to another set of basis vectors, we wish to make the equation
look like

[
x′ y′

] [
λ(1) 0
0 λ(2)

] [
x′

y′

]
= λ(1)x′2 + λ(2)y′2 = 1. (1.302)

If λ(1) and λ(2) have the same sign, the equation is a ellipse, otherwise it is a
hyperbola. According to Eq. (1.289) λ(1) and λ(2) are determined by

det

[
A− λ B

B C − λ

]
= 0. (1.303)
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Hence we have

λ2 − (A + C)λ + (AC −B2) = 0. (1.304)

The condition for the two roots to have the same sign is AC − B2 > 0. If
AC − B2 > 0 the equation represents an ellipse, otherwise a hyperbola. In
addition, if |λ(1)| ≥ |λ(2)|, the semi-major axis a and semi-minor axis b are
given by a2 = 1/|λ(2)|, b2 = 1/|λ(1)| respectively.

To find out which transformation matrix reduces Eq. (1.301) to Eq. (1.302),
we start from Eq. (1.280).

[
x
y

]
=

[
S11 S12

S21 S22

] [
x′

y′

]
. (1.305)

Substituting it into Eq. (1.301), we have

[
x′ y′

] [
S11 S21

S12 S22

] [
A B
B C

] [
S11 S12

S21 S22

] [
x′

y′

]
= 1. (1.306)

Comparing with Eq. (1.302) we see the problem is reduced to finding a trans-
formation matrix S such that

[
S11 S21

S12 S22

] [
A B
B C

] [
S11 S12

S21 S22

]
=

[
λ(1) 0
0 λ(2)

]
. (1.307)

If u and v are the two eigenvectors that satisfy

[
A B
B C

] [
u1

u2

]
= λ(1)

[
u1

u2

]
,

[
A B
B C

] [
v1

v2

]
= λ(2)

[
v1

v2

]
, (1.308)

we may assign (S11, S21) = (u1, u2), (S12, S22) = (v1, v2). With the orthonor-
mal conditions that |u| = |v| = 1 and u · v = 0, we see that Eq. (1.307) is
satisfied. Therefore

[
S11 S12

S21 S22

]
=

[
u1 v1

u2 v2

]
. (1.309)

The class of matrix that can be diagonalized is much larger than the class
of Hermitian matrix. If a matrix satisfies the condition M†M = MM†, it
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can be diagonalized. To prove, note that if M satisfies M†M = MM†, so
does S−1MS. Also note by definition we have

T(w) · v = T(wiei) · (vjej) = w∗
i M

∗
kivj(ek · ej)

= w∗
i M

†
ikvk = w ·T†(v). (1.310)

If w is a normalized eigenvector of M with eigenvalue λ and v is orthog-
onal to w, then T†(v) is also orthogonal to w. In other words, both v
and T†(v) are in the (n− 1)-dimensional subspace orthogonal to w. There-
fore T† is also a linear transformation in that subspace. Let us denote T†

that are restricted to the (n − 1)-dimensional subspace orthogonal to w by
T†

(n−1) and its representing matrix by M†
(n−1), then M†

(n−1) satisfies the same

condition M†
(n−1)M(n−1) = M(n−1)M

†
(n−1). Let u be a normalized eigenvec-

tor of T†
(n−1). By the same argument we can find an (n − 2)-dimensional

subspace orthogonal to u in which T restricted to this (n − 2)-dimensional
subspace is a linear transformation T(n−2) whose representing matrix satis-

fying M†
(n−2)M(n−2) = M(n−2)M

†
(n−2). Let us assume M(n−2) can be diago-

nalized with a suitable set of normalized eigenvectors vi with eigenvalue λi

(i = 3, 4, . . . n). In the bases formed by w, u, and vi (i = 3, 4, . . . n), M has
the following form

M =




λ a12 0 . . . 0
0 a22 0 . . . 0
0 a32 λ3 . . . 0
...

...
...

. . .

0 an2 0 λn




, (1.311)

where the expansion of T(u) in the same bases is

T(u) = a12w + a22u +
n∑

i=3

ai2vi. (1.312)

Since

M† =




λ∗ 0 0 . . . 0
a∗12 a∗22 a∗32 . . . a∗n2

0 0 λ∗3 . . . 0
...

...
...

. . .

0 0 0 λ∗n




. (1.313)

The condition M†M = MM† implies

a12 = 0,

ai2 = 0 (i = 3, 4, . . . n). (1.314)
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Hence M is diagonal. What we have proved is that if M(n−2) can be diag-
onalized, so can M. Since the cases for n = 1 and n = 2 are trivially true,
by mathematical induction one can see the condition M†M = MM† implies
that M can be diagonalized.

1.9 Vector Analysis

In single-variable calculus, the fundamental theorem of calculus relates the
integration of f ′(x) over [a, b] to f(b) − f(a). In multi-variable calculus,
the situation is diverse. First, the integrand can be a multi-variable vector
function F(x, y, x), and the integration can be over a curve, a surface, or a
solid volume in the three dimensional space. In addition, as we shall see,
there are different kinds of derivatives for vector functions. Each of them has
a different meaning in physics. Because of such diversity, the fundamental
theorem of calculus in the multi-variable case appears in different forms.

The gradient of a scalar function φ(r) is defined by

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
. (1.315)

Consider the difference of φ for two adjacent points r = (x, y, z) and r+∆s =
(x + ∆x, y + ∆y, z + ∆z).

∆φ = φ(x + ∆x, y + ∆y, z + ∆z)− φ(x, y, z)

= φ(x + ∆x, y + ∆y, z + ∆z)− φ(x, y + ∆y, z + ∆z)

+ φ(x, y + ∆y, z + ∆z)− φ(x, y, z + ∆z)

+ φ(x, y, z + ∆z)− φ(x, y, z)

≈ ∂φ

∂x
∆x +

∂φ

∂y
∆y +

∂φ

∂z
∆z = ∇φ ·∆s. (1.316)

Hence we have

φ(r2)− φ(r1) =
∫ r2

r1

∇φ · ds. (1.317)

For a fixed distance |∆s|, the difference ∆φ is maximum when ∆s is parallel
to ∇φ. Therefore, ∇φ is the direction in which the increase rate of φ is the
largest.
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The divergence of a vector function U = (Ux, Uy, Uz) is defined by

∇ ·U =
∂Ux

∂x
+

∂Uy

∂y
+

∂Uz

∂z
. (1.318)

Consider the outgoing flux of U in a small volume element v spanned by
three vectors (∆x, 0, 0), (0, ∆y, 0), (0, 0, ∆z) at (x0, y0, z0). The outgoing flux
is defined by

∫ z0+∆z

z0

∫ y0+∆y

y0

[Ux(x0 + ∆x, y, z)− Ux(x0, y, z)] dydz

+
∫ x0+∆x

x0

∫ z0+∆z

z0

[Uy(x, y0 + ∆y, z)− Uy(x, y0, z)] dzdx

+
∫ y0+∆y

y0

∫ x0+∆x

x0

[Uz(x, y, z0 + ∆z)− Uz(x, y, z0)] dxdy

≈ ∂Ux

∂x
∆x∆y∆z +

∂Uy

∂y
∆x∆y∆z +

∂Uz

∂z
∆x∆y∆z

= (∇ ·U) ∆x∆y∆z. (1.319)

We may define the surface element ∆a to be the surface normal vector times
the surface area, then the six surface elements ∆aj (j = 1, · · · , 6) enclosing v
are ±∆y∆zex, ±∆x∆zey, and ±∆x∆yez, where ex, ey, and ez are the unit
vectors in the x, y, and z directions respectively. The product ∆x∆y∆z in
Eq. (1.319) is simply the volume of v, and it is customarily written as ∆v for
simplicity in notation. We can write Eq. (1.319) in a compact and general
form

6∑

j=1

U ·∆aj = ∇ ·U∆v. (1.320)

Imagine that a region V is composed of many small volumes. Summing over
all the component v in the region V , we have

∑
v

6∑

j=1

U ·∆aj =
∑
v

∇ ·U∆v. (1.321)

On the left hand side we find that the outgoing fluxes in adjacent v cancel
at the shared interfaces, therefore only the outgoing flux at the boundary
surface S is left. Letting ∆x, ∆y, ∆z → 0, we may then rewrite the equation
as

∫

S
U · da =

∫

V
∇ ·U dv. (1.322)
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Note that at the boundary surface the surface elements do not need to be
perpendicular to one of the coordinate axes. If the area of a surface element
is dA and the surface normal vector is n, then

U · da = (UxnxdA + UynydA + UznzdA). (1.323)

Because the projection of dA onto the x-axis is nxdA, and similarly for the
y and z-axes, we see U · da is the infinitesimal outgoing flux at the surface
element da. Eq. (1.322) is known as Gauss’ theorem.

The curl of a vector function F = (Fx, Fy, Fz) is defined by

∇× F =

(
∂Fz

∂y
− ∂Fy

∂z
,

∂Fx

∂z
− ∂Fz

∂x
,

∂Fy

∂x
− ∂Fx

∂y

)
. (1.324)

Consider the loop integral of F on a rectangular surface element ∆a at
(x0, y0, z0). Let us choose a coordinate frame relative to the surface ele-
ment ∆a in which the surface normal vector is in the z-direction. Then
we may assume the surface element is spanned by two orthogonal vectors
(∆x, 0, 0), (0, ∆y, 0). The loop integral is defined by

∫ x0+∆x

x0

Fx(x, y0, z0)dx +
∫ y0+∆y

y0

Fy(x0 + ∆x, y, z0)dy

+
∫ x0

x0+∆x
Fx(x, y0 + ∆y, z0)dx +

∫ y0

y0+∆y
Fy(x0, y, z0)dy

≈
(

∂Fy

∂x
∆x

)
∆y −

(
∂Fx

∂y
∆y

)
∆x

=

(
∂Fy

∂x
− ∂Fx

∂y

)
∆x∆y. (1.325)

The product ∆x∆y in Eq. (1.325) is simply the area of ∆a. We may define
the line element ∆l to be the tangent vector times the line length, then
the four line elements ∆lj (j = 1, · · · , 4) enclosing ∆a are the four vectors
connecting the four corners of ∆a. Namely ∆l1 start from (x0, y0, z0) to
(x0 + ∆x, y0, z0), ∆l2 from (x0 + ∆x, y0, z0) to (x0 + ∆x, y0 + ∆y, z0), ∆l3
from (x0 +∆x, y0 +∆y, z0) to (x0, y0 +∆y, z0), and ∆l4 from (x0, y0 +∆y, z0)
back to (x0, y0, z0). In the vector notation Eq. (1.325) can be written as

4∑

j=1

∫

∆lj
F · ds = (∇× F) ·∆a, (1.326)

where the line integral for each j on the left hand side is along the line
element ∆lj. Note that if a vector identity is true in one coordinate frame,
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it is true in all coordinate frames. Therefore Eq. (1.326) is not limited to the
special coordinate frame we choose to derive it.

Imagine that a surface A is composed of many small surface elements ∆a.
Summing over all the component surface elements ∆a, we have

∑

∆a

4∑

j=1

∫

∆lj
F · ds =

∑

∆a

(∇× F) ·∆a. (1.327)

On the left hand side we find that the line integrations
∫
∆lj

F · ds in adjacent
∆a cancel at the shared borders, therefore only the loop integration at the
boundary curve C is left. Letting ∆a → 0, we may rewrite the equation as

∮

C
F · ds =

∫

A
(∇× F) · da. (1.328)

This is known as Stokes’ theorem.

If a vector field F satisfies ∇× F = 0 everywhere, then the line integral∫
F · ds from a point ri to another point rf is independent of the path of

integration. This can be seen from the fact that

∫ rf

ri

F · ds (along path 1) +
∫ ri

rf

F · ds (along path 2)

=
∮

F · ds = 0, (1.329)

which implies

∫ rf

ri

F · ds (along path 1) =
∫ rf

ri

F · ds (along path 2). (1.330)

We may define

φ(r)− φ(r0) ≡
∫ r

r0

F · ds, (1.331)

where r0 is an arbitrary reference point. Because the line integration is
independent of path, such a definition gives a unique φ(r). From the fact
that

∫ r

r0

∇φ · ds = φ(r)− φ(r0), (1.332)

we have F = ∇φ. In other words, if ∇ × F = 0 everywhere, there exists a
scalar field φ such that F = ∇φ.
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Now we see the fundamental theorem of calculus in the three dimensional
vector space has three forms. The first one, Eq. (1.332), relates the line
integration of ∇φ to the values of φ at the end points of the integration
path. The second one, Eq. (1.328), relates the surface integration of ∇× F
to the line integration of F along the boundary of the surface. The third one,
Eq. (1.322), relates the volume integration of ∇·U to the surface integration
of U at the boundary.

1.10 Calculus in Curved Coordinate Systems

Let us consider general coordinate systems in which the three axes remains
orthogonal to each other, but the orientations of the axes and length scale for
each axis may be functions of the position. Unlike the rectangular coordinate
system, in a general coordinate system the coordinates are no longer simply
the length of the projection of the position vector on the fixed coordinate
axes. Instead we must make a clear distinguish between the coordinates
and the components of the position vector. For example, in the spherical
coordinate system a position is marked by the coordinates {r, θ, φ}, and the
local coordinate axes are er, eθ, and eφ, where

er = sin θ cos φex + sin θ sin φey + cos θez,

eθ = cos θ cos φex + cos θ sin φey − sin θez,

eφ = − sin φex + cos φey. (1.333)

Clearly, the orientations of er, eθ, and eφ are functions of the coordinates θ
and φ. A line element at {r, θ, φ} can be written as

dl = drer + rdθeθ + r sin θdφeφ, (1.334)

where on the right-hand side r in the second term and r sin θ in the third
term are the scale lengths for dθ and dφ respectively. Clearly the scale lengths
are also functions of the coordinates r and θ. In a rectangular coordinate
system, we specify a point in the space either by the coordinates {x, y, z}
or by the position vector xex + yey + zez which is also written as (x, y, z).
Because of this equivalence, we do not distinguish {x, y, z} from (x, y, z). In
a non-rectangular coordinate system, the situation is different. For example
in the spherical coordinate system we may use the coordinates {r, θ, φ} or the
position vector rer to specify a point in the space. In this case the meaning
of {r, θ, φ} and (r, θ, φ) are different.
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Let us investigate how a non-rectangular coordinate system changes the
appearance of vector analysis. Assume the line element in a general coordi-
nate system is

dl = h1dq1e1 + h2dq2e2 + h3dq3e3, (1.335)

where {q1, q2, q3} are the coordinates and {h1, h2, h3} are the scale lengths.
Consider the gradient operator ∇u. Since

du = ∇u · dl
=

∂u

∂q1

dq1 +
∂u

∂q2

dq2 +
∂u

∂q3

dq3, (1.336)

we have

∇u =

(
1

h1

∂u

∂q1

,
1

h2

∂u

∂q2

,
1

h3

∂u

∂q3

)
. (1.337)

In cylindrical coordinate systems q1 = r, q2 = θ, q3 = z, h1 = 1, h2 = r,
h3 = 1, hence

∇u =
∂u

∂r
r̂ +

1

r

∂u

∂θ
θ̂ +

∂u

∂z
ẑ. (1.338)

In spherical coordinate systems q1 = r, q2 = θ, q3 = φ, h1 = 1, h2 = r,
h3 = r sin θ, hence

∇u =
∂u

∂r
r̂ +

1

r

∂u

∂θ
θ̂ +

1

r sin θ

∂u

∂φ
φ̂. (1.339)

Now we consider the divergence operator ∇ ·F. For a volume element V
at {q1, q2, q3}, by Gauss’ theorem we have

∫

S
F · da =

∫

V
∇ · FdV, (1.340)

where S represents the six surface elements enclosing V . Let us use the sub-
scripts (1+) and (1−) to denote evaluating at {q1+dq1, q2, q3} and {q1, q2, q3}
respectively, and similarly for (2+), (2−) and (3+), (3−). Since

da(1+) ≡ h2(q1 + dq1, q2, q3)h3(q1 + dq1, q2, q3)dq2dq3e1,

da(1−) ≡ −h2(q1, q2, q3)h3(q1, q2, q3)dq2dq3e1,
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and similarly for da(2)+, da(2−), da(3+), and da(3−), we have
∫

S
F · da =

[
F(1+) · da(1+) + F(1−) · da(1−)

]

+
[
F(2+) · da(2+) + F(2−) · da(2−)

]

+
[
F(3+) · da(3+) + F(3−) · da(3−)

]

=
[
(F1h2h3)(1+) − (F1h2h3)(1−)

]
dq2dq3

+
[
(F2h1h3)(2+) − (F2h1h3)(2−)

]
dq1dq3

+
[
(F3h1h2)(3+) − (F3h1h2)(3−)

]
dq1dq2

=

[
∂ (F1h2h3)

∂q1

dq1

]
dq2dq3

+

[
∂ (F2h1h3)

∂q2

dq2

]
dq1dq3

+

[
∂ (F3h1h2)

∂q3

dq3

]
dq1dq2

=

[
∂ (F1h2h3)

∂q1

+
∂ (F2h1h3)

∂q2

+
∂ (F3h1h2)

∂q3

]
dq1dq2dq3.

Since

dV = h1h2h3 dq1dq2dq3,

comparing with the volume integral on the right-hand side of Eq. (1.340)
∫

V
∇ · FdV = ∇ · Fh1h2h3 dq1dq2dq3,

we have

∇ · F =
1

h1h2h3

[
∂ (h2h3F1)

∂q1

+
∂ (h1h3F2)

∂q2

+
∂ (h1h2F3)

∂q3

]
. (1.341)

In the cylindrical coordinate system, q1 = r, q2 = θ, q3 = z, h1 = 1, h2 = r,
h3 = 1, hence

∇ · F =
1

r

[
∂ (rFr)

∂r
+

∂Fθ

∂θ
+

∂ (rFz)

∂z

]
. (1.342)

In the spherical coordinate system, q1 = r, q2 = θ, q3 = φ, h1 = 1, h2 = r,
h3 = r sin θ, hence

∇ · F =
1

r2 sin θ

[
∂ (r2 sin θFr)

∂r
+

∂ (r sin θFθ)

∂θ
+

∂ (rFφ)

∂φ

]
. (1.343)
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Next we consider the Laplacian operator.

∇2u = ∇ · ∇u

= ∇ ·
(

1

h1

∂u

∂q1

,
1

h2

∂u

∂q2

,
1

h3

∂u

∂q3

)

=
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂u

∂q1

)

+
∂

∂q2

(
h1h3

h2

∂u

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂u

∂q3

)]
. (1.344)

In the cylindrical coordinate system, q1 = r, q2 = θ, q3 = z, h1 = 1, h2 = r,
h3 = 1, hence

∇2u =
1

r

[
∂

∂r

(
r
∂u

∂r

)
+

∂

∂θ

(
1

r

∂u

∂θ

)
+

∂

∂z

(
r
∂u

∂z

)]
. (1.345)

In the spherical coordinate system, q1 = r, q2 = θ, q3 = φ, h1 = 1, h2 = r,
h3 = r sin θ, hence

∇2u =
1

r2 sin θ

[
∂

∂r

(
r2 sin θ

∂u

∂r

)

+
∂

∂θ

(
sin θ

∂u

∂θ

)
+

∂

∂φ

(
1

sin θ

∂u

∂φ

)]
. (1.346)

Finally we consider the curl operator ∇×. For a surface element S at
{q1, q2, q3} facing the e3 direction, by Stokes’ theorem we have

∮

L
F · dl =

∫

S
∇× F · da, (1.347)

where L represents the four line elements enclosing S. Let us use the sub-
scripts (1+) and (1−) to denote evaluating at {q1+dq1, q2, q3} and {q1, q2, q3}
respectively, and similarly for (2+), (2−). We have

dl(1+) = h2(1+)dq2e2,

dl(1−) = −h2(1−)dq2e2,

dl(2+) = −h1(2+)dq1e1,

dl(2−) = h1(2−)dq1e1,

and

dA3 = h1h2 dq1dq2.
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Therefore
∮

L
F · dl =

[
F(1+) · dl(1+) + F(1−) · dl(1−)

]

+
[
F(2+) · dl(2+) + F(2−) · dl(2−)

]

=
[
(h2F2)(1+) − (h2F2)(1−)

]
dq2

−
[
(h1F1)(2+) − (h1F1)(2−)

]
dq1

=

[
∂(h2F2)

∂q1

− ∂(h1F1)

∂q2

]
dq1dq2

=
1

h1h2

[
∂(h2F2)

∂q1

− ∂(h1F1)

∂q2

]
dA3.

Comparing with the surface integral on the right-hand side of Eq. (1.347),
we have

(∇× F) · e3 =
1

h1h2

[
∂(h1F1)

∂q2

− ∂(h2F2)

∂q1

]
,

and in general

∇× F =
1

h2h3

[
∂(h3F3)

∂q2

− ∂(h2F2)

∂q3

]
e1

+
1

h1h3

[
∂(h1F1)

∂q3

− ∂(h3F3)

∂q1

]
e2

+
1

h1h2

[
∂(h2F2)

∂q1

− ∂(h1F1)

∂q2

]
e3. (1.348)

In the cylindrical coordinate system, q1 = r, q2 = θ, q3 = z, h1 = 1, h2 = r,
h3 = 1, hence

∇× F =
1

r

[
∂Fz

∂θ
− ∂(rFθ)

∂z

]
r̂ +

[
∂Fr

∂z
− ∂Fz

∂r

]
θ̂

+
1

r

[
∂(rFθ)

∂r
− ∂Fr

∂θ

]
ẑ (1.349)

In the spherical coordinate system, q1 = r, q2 = θ, q3 = φ, h1 = 1, h2 = r,
h3 = r sin θ, hence

∇× F =
1

r2 sin θ

[
∂(r sin θFφ)

∂θ
− ∂(rFθ)

∂φ

]
r̂ +

1

r sin θ

[
∂Fr

∂φ
− ∂(r sin θFφ)

∂r

]
θ̂

+
1

r

[
∂(rFθ)

∂r
− ∂Fr

∂θ

]
φ̂. (1.350)
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1.11 Vector Formulas

The following list is a collection of formulas commonly used in vector analysis.
It is straightforward to verify these formulas, and they are useful enough that
it helps to memorize each of them. If you hate memorizing, it is possible to
prove them on the fly by using the following tensor notation

a · b = aibi, (1.351)

a× b = εijkajbk, (1.352)

where the repeated indices are summed over, and

εijk =





1 for even permutations of i, j, k
starting from (i, j, k) = (1, 2, 3)

0 if any two indices are equal

−1 for odd permutations of i, j, k
starting from (i, j, k) = (1, 2, 3).

(1.353)

We will also use the notation

δij =

{
1 if i = j
0 if i 6= j

(1.354)

and the identity

εijkεlmk = δilδjm − δimδjl (1.355)

in the following derivations. To prove the above identity, we note that εijkεlmk

is nonzero only when i 6= j 6= k and l 6= m 6= k. This leaves only two
possibilities: i = l, j = m or i = m, j = l. In the former case the signs
of εijk and εlmk are the same, whereas in the latter case they are opposite.
δilδjm − δimδjl is just the mathematical expression for these two cases.

a · (b× c) = b · (c× a) = c · (a× b).

aiεijkbjck = bjεjkickai = ckεkijaibj. (1.356)

a× (b× c) = (a · c)b− (a · b)c.

εijkajεklmblcm = εijkajεlmkblcm

= δilδjmajblcm − δimδljajblcm

= ajcjbi − ajbjci. (1.357)
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(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
εijkajbkεilmcldm = δjlδkmajbkcldm − δjmδklajbkcldm

= ajcjbkdk − ajdjbkck. (1.358)

∇× (∇ψ) = 0.

εijk
∂

∂xj

∂ψ

∂xk

=
εijk + εikj

2

∂

∂xj

∂ψ

∂xk

= 0. (1.359)

∇ · (∇× a) = 0.

εijk
∂

∂xi

∂ak

∂xj

=
εijk + εjik

2

∂

∂xi

∂ak

∂xj

= 0. (1.360)

∇× (ψa) = ∇ψ × a + ψ∇× a.

εijk
∂(ψak)

∂xj

= εijk
∂ψ

∂xj

ak + ψεijk
∂ak

∂xj

. (1.361)

∇× (∇× a) = ∇(∇ · a)−∇2a.

εijk
∂

∂xj

εklm
∂

∂xl

am = εijk
∂

∂xj

εlmk
∂

∂xl

am

=
∂

∂xi

∂

∂xj

aj − ∂

∂xj

∂

∂xj

ai. (1.362)

∇ · (ψa) = (a · ∇)ψ + ψ∇ · a.

∂(ψak)

∂xk

=
∂ψ

∂xk

ak + ψ
∂ak

∂xk

. (1.363)

Using the tensor notation to prove the following three equations is left as an
exercise.

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b× (∇× a). (1.364)

∇ · (a× b) = b · (∇× a)− a · (∇× b). (1.365)

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b. (1.366)
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1.12 Multivariable Taylor Expansion

Let C∞ be the space spanned by all the functions whose derivatives of any
order are continuous. A translation operator T̂ (a) is defined by the following
relation

f(x + a) = T̂ (a)f(x), (1.367)

where f(x) is any function in C∞. From the definition we have

f(x + a + b) = T̂ (a + b)f(x) = T̂ (a)T̂ (b)f(x) = T̂ (b)T̂ (a)f(x). (1.368)

Differentiate with respect to a, we obtain

T̂ ′(a + b)f(x) = T̂ ′(a)T̂ (b)f(x). (1.369)

Let a = 0, we have

T̂ ′(b)f(x) = T̂ ′(0)T̂ (b)f(x). (1.370)

Therefore T̂ (b) satisfies the differential equation

T̂ ′(b) = T̂ ′(0)T̂ (b) (1.371)

with the initial condition T̂ (0) = 1. The solution is

T̂ (b) = eT̂ ′(0)b. (1.372)

By definition,

T̂ ′(0)f(x) = lim
ε→0

[
T̂ (ε)− 1

ε

]
f(x)

= lim
ε→0

[
f(x + ε)− f(x)

ε

]
=

(
d

dx

)
f(x), (1.373)

hence

T̂ ′(0) =
d

dx
(1.374)

and we obtain

f(x + a) = T̂ (a)f(x) = e(a d
dx)f(x) =

∞∑

n=0

an

n!

(
d

dx

)n

f(x). (1.375)
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This is just the Taylor expansion for f(x).

Now we are ready to derive the multivariable Taylor expansion. The
translation operator T̂ (a) is defined by

f(x + a) = T̂ (a)f(x), (1.376)

and we have

T̂ (a + b)f(x) = T̂ (a)T̂ (b)f(x). (1.377)

Take the gradient with respect to a and then let a = 0, we have

∇T̂ (b) = ∇T̂ (0)T̂ (b) (1.378)

with the initial condition T̂ (0) = 1. The solution is

T̂ (b) = e∇T̂ (0)·b. (1.379)

By definition,
[
∇T̂ (0) · ε

]
f(x) = lim

ε→0

[
T̂ (ε)− 1

]
f(x)

= lim
ε→0

f(x + ε)− f(x) = (ε · ∇)f(x). (1.380)

Hence

∇T̂ (0) = ∇ (1.381)

and we obtain

f(x + a) = T̂ (a)f(x) = e(a·∇)f(x) =
∞∑

n=0

(a · ∇)n

n!
f(x). (1.382)

This is the multivariable Taylor expansion for f(x).

1.13 Finding Extrema under Constraints

Consider the problem of finding the extrema of a function φ(x) under the m
constraints Ck(x) = 0, k = 1, 2, · · · ,m, where x is an array of n variables
and m < n. We cannot use the usual criteria

∂φ

∂xj

= 0 (1.383)
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for j = 1, 2, · · · , n because under the constraints xj are no longer independent
variables. Eq. (1.383) together with the constraints form n + m equations
for the n variables x, which cannot be satisfied at the same time. To walk
around this problem, let us temporarily turn off the constraints and define a
new function

Φ(x) = φ(x) +
m∑

k=1

λkCk(x). (1.384)

The extrema of Φ(x) are determined by

∂φ

∂xj

+
m∑

k=1

λk
∂Ck

∂xj

= 0 (1.385)

for j = 1, 2, · · · , n, where λk is a set of arbitrary parameters whose values
will be determined later. Now let us set Ck(x) = 0. Then the extrema
of Φ(x) is the same as that of φ(x). Again Eq. (1.385) together with the
constraints form n + m equations. But this time we have n + m variables,
namely the n variables x and the m variables λk, therefore x can be solved.
This is known as the method of Lagrange multipliers where λk are the
Lagrange multipliers.

We may understand Eq. (1.385) from a geometric point of view. Let us
denote S the surface defined by the intersection of the k constraints Ck(x) =
0. Assume x0 is an extremum on S, then for any infinitesimal displacement
dr on S from x0, we have φ(x0) = φ(x0+dr). In other words, ∇φ(x0)·dr = 0.
Hence ∇φ(x0) must be perpendicular to the surface S at x0. Because the
dimensionality of S is n−m, we know ∇φ(x0) is a m-dimensional vector. On
the other hand, all the vectors ∇Ck(x0) are also perpendicular to S because
Ck(x0) = Ck(x0 + dr). Assume all the ∇Ck(x0) are linearly independent,
then we may write ∇φ(x0) as a linear combination of ∇Ck(x0). Namely, we
have Eq. (1.385).

1.14 More to Know about n!

Consider the gamma function defined by

Γ(n + 1) =
∫ ∞

0
xne−x dx (1.386)

for n > −1. Integrating by parts leads to

Γ(n + 1) =
∫ ∞

0
nxn−1e−x dx = nΓ(n), (1.387)
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and Γ(1) = 1. Therefore if n is a positive integer or zero, Γ(n + 1) = n! . By
changing variables x = αy2, we have

Γ(n) = 2αn
∫ ∞

0
y2n−1e−αy2

dy = (n− 1)! . (1.388)

Now consider the possibility that n = m + 1
2

where m is a positive integer or
zero. We have

Γ
(
m +

1

2

)
= 2αm+ 1

2

∫ ∞

0
y2me−αy2

dy

=
(
m− 1

2

) (
m− 3

2

)
· · ·

(
3

2

) (
1

2

)
Γ

(
1

2

)

=
(2n)!

n!22n

√
π, (1.389)

where

Γ
(

1

2

)
=

∫ ∞

−∞
e−y2

dy =
√

π (1.390)

is the result of Eq. (1.243).

Let us consider the asymptotic expression of

n! =
∫ ∞

0
xne−x dx (1.391)

when n À 1. Since the maximum of xne−x is at x = n, we may expand
ln(xne−x) around n in Taylor series.

ln(xne−x) ≈ (−n + n ln n)− 1

2n
(x− n)2. (1.392)

Changing variables to u = x − n, Eqs. (1.391) and (1.392) can be written
together as

n! ≈ nne−n
∫ ∞

−n
exp

(
−u2

2n

)
du. (1.393)

Since n À 1, we may extend the lower integration bound from −n to −∞.
Then we have

n! ≈
√

2πn(nne−n). (1.394)

This is known as the Stirling formula.
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The gamma function has many useful and interesting applications. Let us
use it to calculate the volume Vn(R) of a sphere of radius R in n-dimension.
Instead of calculating the volume directly, we first evaluate the surface area
Sn(R) of the sphere. Since Sn(R) is proportional to Rn−1, we may write
Sn(R) = cnRn−1. Let us consider the integral

In =
∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

(
−

n∑

i=1

x2
i

)
n∏

i=1

dxi

=
∫ ∞

0
e−r2

cnrn−1 dr

= cn

Γ(n
2
)

2
. (1.395)

On the other hand,

In =
n∏

i=1

∫ ∞

−∞
e−x2

i dxi = (
√

π)n. (1.396)

Hence we have

cn =
2π

n
2

Γ(n
2
)
, (1.397)

and

Vn =
∫ R

0
cnrn−1 dr =

cn

n
Rn. (1.398)
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1.15 Exercises

Exercise 1.1. Calculate the derivatives of the following functions.

x sin x

e−x2

tan x

xn cos nx
x

x2 + 1√
x2 + 4

sec x

ln(
√

x2 + 1)

tan−1 x

Exercise 1.2. Which function satisfies f ′′(x) = −f(x)? Hint: sin x does. Is
there another one?

Exercise 1.3. Which function satisfies f ′′(x) = f(x)? Hint: ex does. Is
there another one?

Exercise 1.4. Which function satisfies f ′′(x) = −k2f(x)? Hint: Use chain
rule on the answer of Exercise 1.2.

Exercise 1.5. Which function satisfies f ′′(x) = k2f(x)? Hint: Use chain
rule on the answer of Exercise 1.3.)

Exercise 1.6. Whose derivative is ln x? Hint: Calculate the derivative of
x ln x.

Exercise 1.7. Whose derivative is
√

x? Hint: Can it be written as a constant
times qxq−1?

Exercise 1.8. Whose derivative is x/(x2 + 1)? Hint: Can it be written as a
constant times f ′(g(x))g′(x)?

Exercise 1.9. Whose derivative is x sin x? Hint: Check the derivative of
−x cos x.
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Exercise 1.10. Whose derivative is 1/(x2 − 1)? Hint: How about changing
it to 1/(x-1)-1/(x+1)?

Exercise 1.11. Integrate
∫

tan x dx. Hint: Substitute u = cos x.

Exercise 1.12. Integrate
∫

ex sin x dx. Hint: Let u = ex, dv = sin x dx. You
have to use a similar substitution once more.

Exercise 1.13. Integrate ∫ dx

1 + ex
.

Hint: Try the following.

∫ e−x dx

1 + e−x
or

∫ (
1− ex

1 + ex

)
dx

Exercise 1.14. Integrate

∫ 2x + 3

x2 + x + 1
dx.

Hint: Consider the following.

∫ 2x + 3

x2 + x + 1
dx =

∫ 2x + 1

x2 + x + 1
dx +

∫ 2

x2 + x + 1
dx

∫ 2

x2 + x + 1
dx = 2

∫ dx
(
x + 1

2

)2
+ 3

4

Exercise 1.15. Integrate

∫ 3x2 + 2x− 2

x3 − 1
dx.

Hint: Consider the following.

∫ 3x2 + 2x− 2

x3 − 1
dx =

∫ dx

x− 1
+

∫ 2x + 3

x2 + x + 1
dx

Exercise 1.16. Prove
∫ y

0

1

1 + x2
dx = tan−1 y
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not by substituting x = tan θ, but by using

1

1 + x2
=

1

2i

(
1

x− i
− 1

x + i

)
.

Exercise 1.17. It is well known that

1 + 2 + 3 + 4 . . . + n =
n(n + 1)

2
,

12 + 22 + 32 + 42 . . . + n2 =
n(n + 1)(2n + 1)

6
.

You can prove these relations by mathematical induction, but how do you
know the closed-form expressions on the right-hand side in the first place?
Hint: Let

fk(n) =
n∑

i=1

ik,

derive f3(n) by using the identity Cn+1
k − Cn

k = Cn
k−1.

Exercise 1.18. The number ii looks like a very complex complex number.
But in fact it is a real number. What is it?

Exercise 1.19. e = e1+2πi = e1−2πi, therefore e = (e1+2πi)1−2πi = e1+4π2
.

What goes wrong? Hint: uz is defined by ez ln u. Let u = e1+2πi and z =
1− 2πi. Is ln u equal to 1 + 2πi?

Exercise 1.20. Evaluate the following limits by using the Taylor expansion.

lim
x→0

1− cos x

x2

lim
x→0

1− e−x2

x2

lim
x→0

ln(cos ax)

ln(cos bx)

Exercise 1.21. Show that limn→∞
(
1 + x

n

)n
= ex.

Exercise 1.22. For positive x, evaluate limx→0 xx.

Exercise 1.23. The volume of an n-dimensional cube of side-length L is
Ln. What is the volume of a pyramid in n-dimensional space? What is the
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volume Vn of a sphere in n-dimensional space? Hint: Assume Vn = f(n)rn,
where r is the radius. Use mathematical induction to find out f(n).

Exercise 1.24. In the movie The Da Vinci Code, the Fibonacci series is used
to transmit secret messages. The Fibonacci series fn satisfies the equation
fn+2 = fn+1 + fn. Let us assume fn = rn, find the two solutions of r.
Let the two solutions be r1 and r2. Show that the general solution of fn is
fn = arn

1 + brn
2 , where the constants a and b are determined by f0 and f1.

Exercise 1.25. Consider a series an satisfying the equation an+2 = 4an+1 −
4an. If a0 = 1, a1 = 2, it is not difficult to find the solution an = 2n. But
what if a0 = 1, a1 = 3? Can you find a solution too?

Exercise 1.26. Let x, y, z be three physical quantities satisfying a functional
relation f(x, y, z) = 0. Let w be a function of any two of x, y, z. Show that

(
∂x

∂y

)

w

(
∂y

∂z

)

w

=

(
∂x

∂z

)

w

, (1.399)

(
∂x

∂y

)

z

(
∂y

∂x

)

z

= 1, (1.400)

(
∂x

∂y

)

z

(
∂y

∂z

)

x

(
∂z

∂x

)

y

= −1. (1.401)

Hint:

dz =

(
∂z

∂x

)

y

dx +

(
∂z

∂y

)

x

dy. (1.402)

dy =

(
∂y

∂x

)

z

dx +

(
∂y

∂z

)

x

dz. (1.403)

Combining Eqs. (1.402) and (1.403) we have

dz =




(
∂z

∂x

)

y

+

(
∂z

∂y

)

x

(
∂y

∂x

)

z


 dx +

(
∂z

∂y

)

x

(
∂y

∂z

)

x

dz. (1.404)

Since dz and dx are independent, the coefficient in front of of dz must be
one, and the coefficient in front of dx must be zero. This gives Eqs. (1.400)
and Eqs. (1.401). Eq. (1.399) can be proved in a similar way.
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Exercise 1.27. Prove Eqs. (1.364)–(1.366) by using Eqs. (1.352)–(1.354).

Exercise 1.28. Show that

∇
(

1

r

)
= − r

r3
.
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Chapter 2

Motion of Particles

2.1 Space-Time Coordinates and Physical Laws

Physics is an empirical science, which means we build up the knowledge of
physics from our experience. We describe the space around us by building
a coordinate grid with a standard ruler. We measure the rate of change of
physical quantities with a standard clock. But why do we have so much faith
on our standard ruler and standard clock? How do we know the ruler will
not shrink and the clock will not slow down tomorrow? How do we know
the standard ruler measures the same length when it is moved from Taipei
to Kaohsiung? How do we know the standard clock runs at the same rate
when it is moved from the Earth to the Moon? The answer is we don’t, but
we assume they do not change until we are forced by experimental data to
abandon that assumption.

Take the law of gravitation for example. Empirically we find that the
gravitational force F between two objects are described by the following law.

F = G
mM

r2
, (2.1)

where m, M are the masses of the two objects, r is the distance between them,
and G is a universal constant. Since r is measured by a standard ruler, if the
ruler changes with space and time, we will need to make G change with space
and time too. This will result in a very complicated and possibly useless law
of gravitation. Similarly, if we believe the standard clock is slowing down, we

69
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will have to believe that our heart beat and the motion of the Earth around
the Sun are also slowing down with the same proportion. This will make
the physics very complicated. The fact that a simple equation like Eq. (2.1)
can explain all the experimental data actually enhances our faith on the
simplicity of the space-time structure around us and the comprehensibility
of the laws of physics. We describe the falling of an apple and the orbit of
the Moon by the same simple equation. What a triumph it represents!

Even though there can be many different ways of describing the same
thing, we tend to think the simplest is the best. It is possible to invent a
theory in which the motion of the Moon is pushed by a genie. However, the
physics of a genie is obviously more complicated than Eq. (2.1). If Eq. (2.1)
serves well the purpose of predicting how an object moves, why do we need
the genie?

But we must also admit that our experience has its own limit. Take the
Pythagorean theorem for example. It can be easily proved by looking at
Fig. 2.1. The figure is part of our common experience. However, if you are
careful you will find that this proof has a hidden assumption. It assumes that
the figure lies on a flat surface. You will not be able to prove the theorem if
you draw the figure on the surface of a basket ball. If all the space we can
reach is the 100 meter square around us, the Pythagorean theorem has no
problem. But surely a cross-continent aviator will not use the Pythagorean
theorem to calculate the distance between two points. Given that we can
only derive and verify the laws of physics from experience, there can be no
law of physics that is proved to be absolutely right. There are only laws that
are good enough.

2.2 Inertial Frames

Newton’s first law states that in an inertial reference frame an object will
maintain its velocity if no force acts on it. There are two points needed to be
clarified in this statement: First, what is the definition of reference frame?
How do we determine if a reference frame is inertial? Second, what is the
definition of force? How do we measure it? The second question also arises
in Newton’s second law F = ma.

In order to be precise, in physics we only speak of terms that can be
measured, at least in principle, directly or indirectly by some procedure of
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Fig. 2.1: The Pythagorean theorem is proved by (a + b)2 − 4× ab
2

= c2.

operation. We speak of time, and time can be measured by a standard
clock. We speak of length, and length can be measured by a standard ruler.
We are not afraid of talking about specific heat, because specific heat can
be measured by some well-defined procedure of operation. We do not talk
about the weight of soul, because no one has found a well-defined procedure
of operation to measure it. We may say a physical term is defined only
by a procedure of operation through which it can be measured, otherwise
it does not have a precise meaning. This is the viewpoint of operational
definition commonly accepted by physicists. If we agree that operational
definition is the only way to define a physical term without ambiguity, then
we must define a procedure to determine whether a reference frame is inertial.
Unfortunately, no operational definition of inertial frame is known. People in
a free falling elevator will not feel the force of gravity. Without knowing how
things move outside, they will not know they are in fact in an accelerating
frame instead of an inertial one. This equivalence is the spirit of Einstein’s
general relativity theory, in which there is no fundamental difference between
inertial and accelerating frames. One may argue that by putting a particle
which is not under the influence of any force in a reference frame, if the
acceleration of the particle is zero, the reference frame is inertial. This is
cyclic logic, because it turns the first law into the definition of inertial frame.
Even if we agree to do that, in such a test if we do detect acceleration of the
particle, how can we know in the first place that there is no force acting on
the particle?

Similarly, what is the operational definition of force? Again, people in a
free falling elevator will not feel the force of gravity. Without knowing how
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things move outside, they will not know the gravitational force is acting on
them. Therefore the only way we know the existence of a force is by the
acceleration it causes in a inertial frame. In other words, F = ma is the
operational definition of force rather than a physical law.

The definition of force again involves the concept of inertial frame. But
if there is not a reliable procedure to determine whether a reference frame
is inertial, how can the concept of inertial frame and the concept of force
be useful? Empirically, around us it is easy to find reference frames which
seem to be inertial, namely reference frames in which objects maintain their
velocity when there appears no force acting on them. In these frames physics
is much simpler. That is why the concept of inertial frame is empirically
useful. But what is the origin of such an empirical distinction?

In the discussion of inertial frames and force, we have repeatedly men-
tioned “Without knowing how things move outside . . . ”. How would “know-
ing how things move outside” changes the picture? Imagining some intelligent
beings living near the north pole of some rapidly rotating planet, and imag-
ining that the atmosphere of that planet is not transparent enough for them
to see the stars in the universe. These intelligent beings would probably not
come up with the idea of inertial frame because they will constantly expe-
rience the centrifugal force. They will have to tie themselves to the north
pole by some means to prevent from flying away. If they are allowed to see
that all other stars are rotating around them in a uniform angular velocity,
it would be much easier for them to explain their local experience. So it does
help to look out in a rotating frame. In contrast, in a linearly accelerating
frame such as a non-rotating free-falling elevator, looking out does not help
that much because there is no need to explain the local experience by looking
out. According to general relativity the local frame of a free-falling elevator
is equivalent to an inertial frame.

Ernst Mach postulated that if a reference frame moves at a constant
velocity relative to the center of mass of the universe and does not rotate with
respect to the mass distribution of the universe, it is an inertial frame, and
this is what distinguishes an inertial frame from non-inertial ones. Looking
into the night sky, we see stars rotating around the polar axis slowly, so slow
that the centrifugal force at the equator accounts for only 0.3% change of
our weight. This tells us that we are approximately in a non-rotating frame.
Gazing at the stars does not tell whether we are falling in some direction in
a linearly accelerating frame, because the reference points are too far away.
We cannot tell the difference just like a person in an accelerating elevator.



2.3. The Cluster Decomposition Postulate 73

In summary, we have shown that Newton’s first and second laws are not
really physical laws. Even if Mach’s postulate is true, whether a frame is
inertial cannot be determined locally, and because one can only measure
acceleration to know the existence of force, F = ma is merely an operational
definition of force. However, the concept of inertial frame and F = ma is
still useful in classical mechanics simply because we are fortunate to be in a
frame which is approximately inertial.

2.3 The Cluster Decomposition Postulate

The fact that from physical laws one can predict experimental outcome with
locally controlled experimental parameters means that things far away from
us have no effect on our experiments. If the fall of a rock in some planet of
some other galaxy can change the outcome of our experiment on the Earth,
we will not be able to predict the experimental outcome at all, because it
will be too hard to take into account of all such unknown remote events.
Such empirical observation lead us to believe that the interaction between
remote systems is not affected by the fine detail of the interaction between
the constituents within each system. This is the Cluster Decomposition
Postulate.

Let us imagine a system formed by two interacting particles of masses m1

and m2 and positions r1 and r2. To a remote observer the system behaves
like a single particle of mass m = m1 + m2 at a center-of-mass position
r = (m1r1 + m2r2)/(m1 + m2). If the system does not interact with other
systems, then to the remote observer mr̈ = 0, which means m1r̈1 = −m2r̈2.
In other words, the force acting on particle 1 is the opposite of that acting
on particle 2. This is Newton’s third law. What we have shown is one
can derive the third law from the first or the second law using the Cluster
Decomposition Postulate. Since the first and the second laws are not real
laws, the third law is not a law either. Nevertheless, just as the first and
second laws are empirically correct in the approximately inertial frame we
live, so is the third law.

For two particles the Cluster Decomposition Postulate leads to Newton’s
third law. For many particles we have

∑

i

mir̈i = 0. (2.2)

This is just the momentum conservation law, which is more useful than
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Newton’s third law. For example, if we collide two pieces of dough and
after the collision the two pieces stick together, then it is hard to tell which
acts what force on the other because they have been combined into one piece.
Yet, from the momentum conservation law one can still derive the velocity
of the combined piece of dough without bothering with Newton’s third law.

2.4 Equation of Motion

In section 2.2 we discussed the operational definition of force. If F = ma is
merely an operational definition, how can it be so useful in predicting how
things move? If we define G = mv or H = mȧ, will they be useful too?
Surely, mathematically G = mv is equivalent to F = ma if we let F = Ġ.
So the real question is which quantity conceptualizes the real world in the
simplest way. F = ma is extremely useful because in nature many sources of
force can be expressed as a function of position, velocity, and time. In other
words, we have

F(r, ṙ, t) = mr̈. (2.3)

This is a second-order differential equation that describes the motion of an
object. When it is solved we will know the trajectory of the object. With-
out knowing the form of F(r, ṙ, t), F is useless. The form of F is deter-
mined by other physical laws in deeper levels. For instance, for gravity
F = −GMmr̂/r2 where r̂ = r/r, for friction F ≈ −µv, and for elasticity
F ≈ −kr. Some of these deeper physical laws are more fundamental and more
exact, such as gravity, and some are only approximately true, such as friction
and elasticity. But even F = −GMmr̂/r2 is not completely exact, because
force cannot propagate faster than the speed of light. In F = −GMmr̂/r2

the gravitational force propagates with infinite speed.

We can go deeper to find out the origin of friction and elasticity, for in-
stance, in terms of the force between atoms and molecules. The macroscopic
force laws such as F ≈ −µv and F ≈ −kr are the results of collective or
average motion and interaction of the underlying microscopic world. At cer-
tain level, F = ma runs out of gas. For instance, in quantum mechanics it is
not possible to specify position and velocity simultaneously. Then we have
to replace F = ma by other physical laws that govern the microscopic world.

At the level of classical mechanics, F = ma is useful simply because most
physical laws at this level can be expressed by a second-order differential



2.5. Inertial Mass and Gravitational Mass 75

equation

F(r, ṙ, t) = mr̈, (2.4)

not a third-order

H(r, ṙ, r̈, t) = m
d3r

dt3
, (2.5)

neither a first-order

G(r, t) = mṙ. (2.6)

Therefore even though F = ma is only the definition of F, when F can
be written as a function of r, ṙ, and t, F = ma becomes an effective law
of physics in the form of a second-order ordinary differential equation. By
solving the differential equation F(r, ṙ, t) = mä, one obtains the trajectory
of the particle under the influence of F.

2.5 Inertial Mass and Gravitational Mass

Under a fixed force, such as the force produced by a spring stretched to a fixed
length, F = ma can be used to define the inertial mass of a particle. One
can load the standard mass ms to the spring and measure its acceleration as,
then load the unknown mass mu and do the same measurement to determine
its mass.

mu

ms

=
as

au

. (2.7)

Alternatively, one can measure the gravitational mass with a balance and a
set of standard weights. It can be shown that these two measurements agree
completely with each other, which means for any test particle the acceleration
produced by the gravitational force is the same regardless of its mass.

r̈ = −G
M r̂

r2
, (2.8)

where G is the gravitational constant, M is the mass of the object producing
the gravitational force, and r is the distance between the test particle and the
object. If there is more than one object producing the gravitational force,
we may write

r̈ = −G
∑

i

Mi(r− ri)

|r− ri|3 , (2.9)
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where r is the position vector of the test particle and ri is the position vector
of the ith object. Eq. (2.9) is a differential equation of r independent of the
mass of the test particle, therefore its solution which represents the trajectory
of the test particle is also independent of its mass.

If the gravitational mass m(g) were different from the inertial mass m(i), it
would be possible to use this effect to detect whether one is in an accelerating
elevator or in a gravitation field. In an accelerating elevator with acceleration
a, an object would have an apparent weight m(i)a. Therefore two objects of
the same weight m(g)g in a gravitation field would have different apparent
weights in the elevator. For the same reason, two objects of the same m(i)

would have different weights in a gravitational field. In a space station or-
biting around the Earth, the centrifugal force is balanced by the gravity. If
m(g) 6= m(i), the balance condition will be

v2

r
= G

M

r2

[
m(g)

m(i)

]
, (2.10)

which means different objects will move in different trajectories, and they
will not maintain their relative positions. This will lead the astronauts to
know that they are not in an inertial frame. On the surface of the Earth, a
pendulum of length l will swing at a period

T = 2π

√√√√ m(i)l

m(g)g
. (2.11)

If m(g) 6= m(i), the period will depend on m(i). Experimental investigations
have been carried out in this line of thought with great accuracy, and no
measurable difference between m(g) and m(i) was found.

The fact that m(g) = m(i) can be easily explained by the Cluster Decom-
position Postulate. Let us conduct two free-fall experiments with two objects
of the same inertial mass m. In the first experiment, we take the two objects
to a height h and let them fall at the same time. The two objects will fall in-
dependently to the ground after the same time tm. In the second experiment
we also take the two objects to a height h and let them fall. However, this
time we bind the two object together with a string of negligible mass, so that
the mass of the combined object is 2m. The time it takes for the combined
object to fall to the ground is t2m. If t2m 6= tm, we have m(g) 6= m(i). If
that does happen, we can weaken and weaken the strength of the string and
do the experiments again and again, until the binding effect of the string
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becomes negligible. Then we must have t2m = tm in this limiting case be-
cause it is practically the same as letting the two objects fall independently.
To a distant observer, this experimental result means the acceleration of the
combined object depends on their internal interaction, namely how strongly
they are bound together. This is at odds with the Cluster Decomposition
Postulate.

2.6 Work and Potential Energy

Let us denote the kinetic energy of a particle by T (t) = mv(t) · v(t)/2, and
investigate how it changes with time under the influence of an external force
F. Let the process starts at ti and ends at tf . We have

mvf
2

2
− mvi

2

2
= T (tf )− T (ti)

=
∫ t2

t1
T ′(t) dt

=
∫ tf

ti
mv(t) · a(t) dt

=
∫ tf

ti
F(t) · v(t) dt

=
∫ rf

ri

F(r) · dr, (2.12)

where in the last step we have changed the variable of integration from t to
r. The integral

∫ rf
ri

F(r) · dr is called the work done by the external force on
the particle. Therefore we say the increase of the kinetic energy of a particle
is equal to the work done on it. Note that the work may depend on the path.
For example, under the influence of frictional force,

∫ rf

ri

F(r) · dr (along a long path)

6=
∫ rf

ri

F(r) · dr (along a short path). (2.13)

A conservative force is one that can be derived from a potential function
V (r) by

F(r) = −∇V (r). (2.14)
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Examples of conservative force are the gravitational force

−G
Mm

r2
r̂ = −∇

(
−G

Mm

r

)
, (2.15)

and the force produced by a spring

−kr = −∇kr2

2
. (2.16)

Multiplying the equation of motion by the integrating factor v,

mv̇ · v = −∇V (r) · v, (2.17)

and integrating both sides with respect to t, we have

mvf
2

2
− mvi

2

2
= −

∫ rf

ri

∇V (r) · dr. (2.18)

From Stokes theorem, the integration on the right-hand side is independent
of path. Therefore

mvf
2

2
− mvi

2

2
= V (ri)− V (rf ). (2.19)

In Eq. (2.19) V (r) represents the potential energy at position r. It is seen
that if the motion is driven by conservative forces, the kinetic energy plus
the potential energy is conserved.

If we apply an external force F to a particle which is already under the
influence of a conservative force, the equation of motion becomes

mv̇ = −∇V (r) + F(r). (2.20)

Multiplying both sides with v and integrating with respect to t, we have

mvf
2

2
− mvi

2

2
= V (ri)− V (rf ) +

∫ rf

ri

F(r) · dr. (2.21)

Which means the change of the kinetic energy plus the change of the potential
energy is equal to the work done by the external force.
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2.7 Separating out Internal Motion

If we watch an object move in a distance, the object moves like a point par-
ticle. The constituents of the object may interact with each other and make
relative movements, but according to the Cluster Decomposition Postulate
the velocity of the center of mass does not change. Therefore it will make
the physics more clear if one can separate the motion of the center of mass
from the motion of the constituents relative to it. Indeed, this can be done
as shown below.

Let ri = r′i +r, vi = v′i +v, where r is the center-of-mass position defined
by

r =

∑
i miri∑
i mi

=

∑
i miri

M
, (2.22)

and v = ṙ. The separation of linear momentum is trivial, since

∑

i

mivi =
∑

i

mi(v + v′i) = Mv +
∑

i

miv
′
i = Mv. (2.23)

The total force experienced by all the particles is

F =
∑

i

Fi =
∑

i

miv̇i = M v̇, (2.24)

which is the total mass times the acceleration of the center of mass.

Next we consider the angular momentum of the system

L =
∑

i

ri × pi =
∑

i

ri ×mivi, (2.25)

where ri is the position vector and mivi is momentum of the ith particle.

L =
∑

i

r×miv +
∑

i

r′i ×miv
′
i +

(∑

i

mir
′
i

)
× v + r×∑

i

miv
′
i. (2.26)

The last two terms are zero, because
∑

i mir
′
i = 0. Therefore

L =
∑

i

r×miv +
∑

i

r′i ×miv
′
i. (2.27)

The total angular momentum is the angular momentum of the object as
a whole at the center of mass plus the angular momentum of the internal
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motion relative to the center of mass. Similarly, the total torque experienced
by all the particles is

τ =
∑

i

ri ×miv̇i =
∑

i

r×miv̇ +
∑

i

r′i ×miv̇
′
i, (2.28)

which is the torque applied to the center of mass plus the internal torques
with respect to the center of mass.

Finally we consider the kinetic energy. The total kinetic energy is

T =
1

2

∑

i

mi(v + v′i) · (v + v′i)

=
1

2

∑

i

miv
2 +

1

2

∑

i

miv
′2
i + v ·

(∑

i

miv
′
i

)
. (2.29)

The last term is zero, therefore

T =
1

2
Mv2 +

1

2

∑

i

miv
′2
i . (2.30)

Again, the total kinetic energy is the kinetic energy of the object as a whole
at the center of mass plus the kinetic energy of the internal motion relative
to the center of mass.

2.8 The Angular Velocity Pseudovector

Angular velocity is an important concept in rotational motion. Consider the
transformation of a vector under rotation about the x-, y-, and z-axes with
angles ξ, φ, and ψ respectively. The transformation matrices are

T1(ξ) =




1 0 0
0 cos ξ − sin ξ
0 sin ξ cos ξ


 ,

T2(φ) =




cos φ 0 sin φ
0 1 0

− sin φ 0 cos φ


 ,

T3(ψ) =




cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1


 . (2.31)
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For finite ξ, φ, and ψ these three matrices do not commute, therefore the
orientation of the transformed vector depends on the order of T1(ξ), T2(φ),
and T3(ψ). However, T1(ξ), T2(φ), and T3(ψ) commute with each other
as ξ, φ, and ψ approach zero. This means for infinitesimal rotations dξ
along the x-axis, dφ along the y-axis, and dψ along the z-axis, the order of
rotation around different axes does not matter. To see this, we note that for
infinitesimal rotations we have

T1(dξ) = I + dξ




0 0 0
0 0 −1
0 1 0


 ≡ I + dξM1,

T2(dφ) = I + dφ




0 0 1
0 0 0
−1 0 0


 ≡ I + dφM2,

T3(dψ) = I + dψ




0 −1 0
1 0 0
0 0 0


 ≡ I + dψM3. (2.32)

Therefore to the first order of dξ, dφ, and dψ,

T1(dξ)T2(dφ)T3(dψ) = I + dξM1 + dφM2 + dψM3, (2.33)

which is independent of the order of rotation. For a vector A = (A1, A2, A3)
under infinitesimal rotation we have




A1

A2

A3




′

=




1 −dψ dφ
dψ 1 −dξ
−dφ dξ 1







A1

A2

A3


 , (2.34)

where ′ denotes the vector after rotation. Let e1 = (1, 0, 0), e2 = (0, 1, 0),
and e3 = (0, 0, 1) be the unit vectors in the x-, y-, and z-axes. Substituting
them into Eq. (2.34), it can be seen that they transform according to:

e′1 = e1 + dψe2 − dφe3,

e′2 = −dψe1 + e2 + dξe3,

e′3 = dφe1 − dξe2 + e3. (2.35)

Let us consider the time derivative of a vector A attached to a rotating
frame. Because the unit vectors in the rotating frame are also rotating, we
must take into account the time derivatives of the unit vectors.

dA

dt
=

dA1

dt
e1 +

dA2

dt
e2 +

dA3

dt
e3 + A1

de1

dt
+ A2

de2

dt
+ A3

de3

dt
. (2.36)
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Using Eq. (2.35), we have

de1

dt
=

e′1 − e1

dt
=

dψ

dt
e2 − dφ

dt
e3,

de2

dt
=

e′2 − e2

dt
=
−dψ

dt
e1 +

dξ

dt
e3,

de3

dt
=

e′3 − e3

dt
=

dφ

dt
e1 − dξ

dt
e2. (2.37)

Hence

dA

dt
=

dA1

dt
e1 +

dA2

dt
e2 +

dA3

dt
e3

+ A1

(
dψ

dt
e2 − dφ

dt
e3

)

+ A2

(−dψ

dt
e1 +

dξ

dt
e3

)

+ A3

(
dφ

dt
e1 − dξ

dt
e2

)
. (2.38)

Let us define an infinitesimal pseudovector dθ ≡ (dξ, dφ, dψ) and the angular
velocity pseudovector ω ≡ dθ/dt. Both dθ and ω are pseudovectors because
unlike real vectors, they do not reverse their directions when the x-, y-, and
z-axes are inverted. In terms of ω, Eq. (2.38) can be written as

dA

dt
=

(
dA

dt

)

r

+
dθ

dt
×A

=

(
dA

dt

)

r

+ ω ×A, (2.39)

where (
dA

dt

)

r

≡ dA1

dt
e1 +

dA2

dt
e2 +

dA3

dt
e3 (2.40)

represents the time derivative of A seen by an observer in the rotating frame
because it has not taken into account the rotation of the unit vectors.

2.9 Motion in a Rotating Frame

In a rotating frame of constant angular velocity ω, how is the appearance of
F = ma changed? Setting A = r in Eq. (2.39), we have

vf = vr + ω × r, (2.41)
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Fig. 2.2: Coordinate axes for the analysis of the Foucault pendulum.

where vf is the velocity seen by an observer in the fixed frame, and vr is the
velocity seen by an observer in the rotating frame. Applying Eq. (2.39) to
vf in Eq. (2.41), we have

(
dvf

dt

)

f

=

(
dvf

dt

)

r

+ ω × vf

= (v̇r + ω × ṙ)r + ω × (vr + ω × r)

= v̇r + 2ω × vr + ω × (ω × r). (2.42)

The first term on the right-hand side is the acceleration seen in the rotating
frame, the second term is the Coriolis acceleration, and the third term is the
centrifugal acceleration.

2.10 Foucault Pendulum

A Foucault pendulum is simply a two dimensional pendulum set at latitude
θ. The pendulum is allowed to swing in a plane parallel to the surface of the
Earth, and the slow rotation of its swing direction provides a proof that the
Earth is rotating. If we set the x-axis pointing to the east and the y-axis
pointing to the north, as shown in Fig. 2.2, than the angular velocity Ω of
the rotating Earth can be written as (0, Ω cos θ, Ω sin θ). Let r = (x, y, 0)
be the small displacement of the pendulum from its equilibrium point, the
equation of motion for the pendulum in the rotating frame is

r̈ = −g

l
r− 2Ω× ṙ−Ω× (Ω× r). (2.43)
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Let ω2 = g/l. Since |ṙ| is approximately ω|r| and ω À Ω, we have
∣∣∣∣
g

l
r
∣∣∣∣ À |2Ω× ṙ| À |Ω× (Ω× r)|. (2.44)

Therefore we can ignore the last term on the right-hand side of Eq. (2.43),
and the equation becomes

ẍ = −g

l
x + 2ẏΩ sin θ,

ÿ = −g

l
y − 2ẋΩ sin θ. (2.45)

We look for an approximate solution of the following form.

x = A(t) cos ωt,

y = B(t) cos ωt, (2.46)

where A(t), B(t) are slowly varying functions. Substituting into Eq. (2.45),
we have

Ä cos ωt− 2ωȦ sin ωt = 2η(Ḃ cos ωt−Bω sin ωt),

B̈ cos ωt− 2ωḂ sin ωt = −2η(Ȧ cos ωt− Aω sin ωt), (2.47)

where η = Ω sin θ. Assume Ä is of the order η2A, Ȧ is of the order ηA, and
similarly for B. Since η ¿ ω, we may drop the first terms on both sides of
the equations. Compare the coefficients of sin ωt, we have

Ȧ = ηB,

Ḃ = −ηA. (2.48)

The solution is A(t) = C sin(ηt + φ) and B(t) = C cos(ηt + φ), namely the
pendulum rotates at an angular velocity −η. This is a way we know the spin
angular velocity of the Earth without referring to the stars in the sky.

2.11 Moment of Inertia

To discuss the rotational motion of a rigid body, it is more convenient to
use the angular velocity than the velocity as the dynamic variable, because
at different distant from the rotation axis, the velocity is different. Let us
express the angular momentum in terms the angular velocity.

L =
∑

i

miri × vi

=
∑

i

miri × (ω × ri). (2.49)
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Using the formula a× (b× c) = b(a · c)− c(a · b), we have

L =
∑

i

mi[ωr2
i − ri(ri · ω)]. (2.50)

The x-component is

Lx =
∑

i

ωxmi(r
2
i − x2

i )− ωymixiyi − ωzmixizi, (2.51)

and similarly for other components. Therefore we can write

L = I · ω, (2.52)

where I is a rank-2 tensor (which looks like a 3× 3 matrix) with components

Ixx =
∑

i

mi(r
2
i − x2

i ),

Ixy =
∑

i

−mixiyi,

Ixz =
∑

i

−mixizi, (2.53)

and similarly for other components. In tensor notation, repeated indices
are summed over automatically to save space. For examples, riri means∑

i r
2
i = r2

1 + r2
2 + r2

3 and aijrj means
∑

j aijrj = ai1r1 + ai2r2 + ai3r3. In this
notation the moment of inertia can be written as

Iij =
∑
α

mα

[
δijr

(α)
k r

(α)
k − r

(α)
i r

(α)
j

]
, (2.54)

where α is the particle label, r
(α)
i is the ith component of the position vector

of the particle labeled by α, the repeated index k are summed over from 1
to 3, and δij is defined by

δij =

{
1 if i = j
0 if i 6= j.

(2.55)

In tensor notation Eq. (2.52) can be written as

Li = Iijωj. (2.56)

By choosing suitable axes of the coordinate frame, it is possible to simplify
Iij such that it becomes diagonal.

Iij =




Ixx 0 0
0 Iyy 0
0 0 Izz


 . (2.57)
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For example, by choosing the symmetry axes as the coordinate axes, it can
be seen readily that Ixy = Iyz = Izx = 0, because they are odd functions of x,
y, and z respectively when the other two components are held fix. The axes
that diagonalize Iij are called the principal axes. In the frame of principal
axes

Lx = Ixxωx,

Ly = Iyyωy,

Lz = Izzωz. (2.58)

One may wonder if angular momentum is conserved, how a falling cat can
always land on its feet, or how a diver can adjust the body angle of entering
the water. The secret is that a diver is not a rigid body. He can change his
body shape to alter Iij. By doing that, even with a fixed angular momentum
he can change the angular velocity. With good timing it is possible to control
the posture as long as the initial angular momentum is not zero. In the case
of a falling cat, even if the initial angular momentum is zero the cat can
still adjust its posture by rotating the front part and the rear part of the
body separately, since it has an extremely flexible body. By changing the
front-part Iij and the rear-part Iij separately, it can flip its body by 180◦

while maintaining zero angular momentum in the whole process, as shown
in Fig. 2.3.

Now we shall express the kinetic energy in terms of ω.

T =
1

2

∑

i

mivi · (ω × ri)

=
1

2

∑

i

miω · (ri × vi)

=
1

2
ω · L

=
1

2
Iijωiωj. (2.59)

In the coordinate system spanned by the principal axes,

T =
1

2
(Ixxω

2
x + Iyyω

2
y + Izzω

2
z). (2.60)

The moment-of-inertia tensor can be written in the vector form as

Iij =
∑
α

mα[δij|rα|2 − (rα · ei)(rα · ej)], (2.61)
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Fig. 2.3: A cat rotates itself in the midair. Figures on the left are the side
views, and figures on the right are the front views. The cat first retracts its
front feet to reduce the moment of inertia of the front body. Then it rotates
the front body clockwise with a large angle. Because the rear body has a
much larger moment of inertia, it rotates counter-clockwise correspondingly
with a small angle. Next the cat extends its front feet and retracts its rear
feet. Then it rotates the front body counter-clockwise with a small angle.
Because now the rear body has a much smaller moment of inertia, it rotates
clockwise correspondingly with a large angle. The result is a 90◦ rotation of
the whole body.
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where α is the particle label. If the center of mass is located at b, the position
vector with respect to the center of mass is

r′ = r− b. (2.62)

With respect to the center of mass, the moment-of-inertia tensor is

I ′ij =
∑
α

mα{δij|rα − b|2 − [(rα − b) · ei][(rα − b) · ej]}

=
∑
α

mα[δijr
2
α − (rα · ei)(rα · ej)]

+
∑
α

mα[−δij2rα · b + (rα · ei)(b · ej) + (b · ei)(rα · ej)]

+
∑
α

mα[δijb
2 − (b · ei)(b · ej)]. (2.63)

Because
∑
α

mαrα = Mb, (2.64)

where M =
∑

α mα, the second term on the right-hand side of Eq. (2.63) is
simply −2 times the third term. Hence we have

I ′ij = Iij −M [δijb
2 − (b · ei)(b · ej)]. (2.65)

The second term on the right-hand-side is simply the moment of inertia of a
particle of mass M at location b. Eq. (2.65) is known as the parallel axis
theorem for moment of inertia.

In Eq. (2.31) we have already shown how a vector transforms under rota-
tion. If we rotate the coordinate frame instead of the vector itself, the vector
transforms the same way as in Eq. (2.31), except that we reverse the angles
ξ, φ, and ψ. The transformation matrix S = T1(−ξ)T2(−ψ)T3(−ψ) satisfies
the unitary condition S† = S−1. Let us investigate how Iij transforms under
the rotation of the coordinate frame. By Eq. (2.54), in the new coordinate
frame we have

I ′ij =
∑
α

mα

[
δijr

′(α)
k r

′(α)
k − r

′(α)
i r

′(α)
j

]
. (2.66)

Substituting r
′(α)
i = Sijr

(α)
j into Eq. (2.66), we have

I ′ij =
∑
α

mα

[
δijSklr

(α)
l Skmr(α)

m − Sjmr(α)
m Sikr

(α)
k

]

=
∑
α

mα

[
δijr

(α)
l S†lkSkmr(α)

m − Sikr
(α)
k r(α)

m S†mj

]
. (2.67)
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Fig. 2.4: Calculating the gravitational potential from a mass sphere.

Since S†lkSkm = δlm,

I ′ij =
∑
α

mα

[
δijr

(α)
l δlmr(α)

m − Sikr
(α)
k r(α)

m S†mj

]

= δij

(∑
α

mαr(α)
m r(α)

m

)
− Sik

(∑
α

mαr
(α)
k r(α)

m

)
S†mj. (2.68)

The first term is already diagonalized, and in Section 1.8 we show that the
second term can also be diagonalized if we choose the column vectors of S†

to be the eigenvectors of the matrix Mkm =
∑

α mαr
(α)
k r(α)

m . In other words,
Iij can always be written as Eq. (2.57) in some coordinate frame.

2.12 The Shell Theorem of Gravity

Consider the gravitational potential field produced by a spherical uniform
mass shell of radius R. We shall calculate the potential field at a position r
from the center of the shell. Let us choose r to be the θ = 0 direction, such
that the shell can be divided into surface elements 2πR2 sin θdθ as shown
in Fig. 2.4. The distances from the surface elements to the position r are√

r2 + R2 − 2rR cos θ. The potential field is

φ(r) = −G
∫ π

0

ρ2πR2 sin θ dθ√
r2 + R2 − 2rR cos θ

, (2.69)

where ρ is the surface mass density. Let us define y = cos θ and x = r/R.
We have

φ(r) = 2πGρR
∫ −1

1

dy√
x2 + 1− 2xy
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=
2πGρR

−x

√
x2 + 1− 2xy

∣∣∣∣
y=−1

y=1
. (2.70)

If x > 1, the position r is outside of the shell. We have

φ(r) =
2πGρR

−x
[x + 1− (x− 1)] = −4πGρR

x
= −GM

r
, (2.71)

where M = 4πρR2 is the total mass of the shell. The potential field is the
same as that produced by a point of mass M at the center of the shell. If
x < 1, the position r is inside of the shell. We have

φ(r) =
2πGρR

−x
[x + 1− (1− x)] = −4πGρR = −GM

R
. (2.72)

In this case the potential is a constant. Therefore there is no gravitational
force in the shell.

2.13 The Kepler Problem

Let us now discuss the Kepler’s laws in terms of Newton’s law of universal
gravitation. In the 17th century, Kepler wrote down three empirical laws
based on his analysis of observational data on the motion of planets. The
laws are:

1. Planets move in elliptical obits, with the Sun at one of the foci.

2. A line connecting a planet and the Sun sweeps out an area at a constant
rate.

3. The square of the obit period is proportional to the third power of the
planet’s average distance from the Sun.

The great success of Newton’s law of universal gravitation is that Kepler’s
laws can be derived completely from it.

Let us consider a general central force f(r). The equation of motion is

ṗ = f(r)
r

r
, (2.73)
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where in our notation r = |r|. The angular momentum follows the following
equation

L̇ =
d

dt
(r× p) = ṙ× p + r× ṗ

= ṙ×mṙ + r× f(r)
r

r
= 0, (2.74)

hence is a constant vector. The cross product of ṗ with the constant angular
momentum L can be expanded as

ṗ× L = f(r)
r

r
×m(r× ṙ) =

mf(r)

r
[r× (r× ṙ)]

=
mf(r)

r
[r(r · ṙ)− r2ṙ]. (2.75)

Since

r · ṙ =
1

2

d

dt
(r · r) = rṙ, (2.76)

we may replace r · ṙ in Eq. (2.75) by rṙ to obtain

d

dt
(p× L) = −mf(r)r2

(
ṙ

r
− rṙ

r2

)
(2.77)

= −mf(r)r2 d

dt

(
r

r

)
. (2.78)

Substituting in the force of gravity f(r) = −k/r2, we can define

A ≡ p× L−mk
r

r
, (2.79)

and immediately we see Ȧ = 0, namely A is a conserved vector like the
angular momentum. It is known as the Laplace-Runge-Lenz vector. The
magnitude of A can be derived from

A ·A =
(
p× L−mk

r

r

)
·
(
p× L−mk

r

r

)

= (p× L) · (p× L)− 2mk

r
r · (p× L) + m2k2. (2.80)

Using the formula (a×b) · (c×d) = (a · c)(b ·d)− (a ·d)(b · c), and noting
that

r · (p× L) = L · (r× p) = L2, (2.81)
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Eq. (2.80) can be reduced to

A ·A = p2L2 − 2mk

r
L · (r× p) + m2k2

= 2mL2

(
p2

2m
− k

r

)
+ m2k2

= 2mL2E + m2k2, (2.82)

where E is the total energy of the system.

From the definition of A, it is clear that

A · L = 0, (2.83)

Therefore A must be a fixed vector lying in the plane of planet motion. Let
the direction of A be the θ = 0 axis in the polar coordinate system. We have

r ·A = Ar cos θ = r · (p× L)−mkr. (2.84)

From Eq. (2.81), Eq. (2.84) is

Ar cos θ = L2 −mkr. (2.85)

Writing Eq. (2.85) in rectangular coordinates, we have

x2 + y2 =

(
L2 − Ax

mk

)2

, (2.86)

or
(

1− A2

m2k2

) [
x +

L2A/(m2k2)

1− A2/(m2k2)

]2

+ y2 =
L4/(m2k2)

1− A2/(m2k2)
. (2.87)

Set

a2 =
L4/(m2k2)

[1− A2/(m2k2)]2
=

k2

4E2
, (2.88)

b2 =
L4/(m2k2)

1− A2/(m2k2)
=

L2

−2mE
, (2.89)

c =
L2A/(m2k2)

1− A2/(m2k2)
=

A

−2mE
, (2.90)

then

(x + c)2

a2
+

y2

b2
= 1. (2.91)
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From Eq. (2.82) and Eqs.(2.88)–(2.90), it can be seen that a2 − b2 = c2,
therefore the origin (0, 0) is one of the foci. If E < 0, the planet is bounded
by the gravity. In this case both a2 and b2 are positive and Eq. (2.91) is the
equation for an ellipse, which gives Kepler’s first law. For the unbound case
we have E > 0, then a2 is still positive but b2 becomes negative, and the
trajectory is a hyperbola. Eqs. (2.82) and (2.91) yield

(
4E

k2

)
x2 −

(
4A

mk2

)
x−

(
2m

L2

)
y2 = −

(
2L2

mk2

)
. (2.92)

If E → 0, we have the critically bounded case in which Eq. (2.92) reduces to

(
4

k

)
x +

(
2m

L2

)
y2 =

(
2L2

mk2

)
, (2.93)

or

y2 = −2L2

mk

(
x− L2

2mk

)
. (2.94)

This is a parabola with the focus at the origin.

Conservation of the angular momentum means

m

∣∣∣∣∣r×
dr

dt

∣∣∣∣∣ = L = constant. (2.95)

Because |r× dr| is the area spanned by r and dr, we see the vector r sweeps
an area with a constant rate. This is Kepler’s second law. Let us integrate
the area S(t) swept by the vector r for one period T .

S(T ) =
∫ T

0

1

2

∣∣∣∣∣r×
dr

dt

∣∣∣∣∣ dt (2.96)

=
LT

2m
= πab. (2.97)

Substituting in the expressions for a and b in Eqs. (2.88) and (2.89), we have

T =
2mπab

L
=

2πL3/(mk2)

[1− A2/(m2k2)]3/2
= 2π

√
m

k
a3/2

=
2π√
GM

a3/2. (2.98)

Since in an ellipse the sum of the distances to the two foci is 2a, the average
distance to one of the focus is a. Eq. (2.98) gives Kepler’s third law.
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Fig. 2.5: A rod hanging on a wall.

2.14 Exercises

Exercise 2.1. A fish can swim at a speed of 3 m/s on still water. It wants
to cross a river while spending the shortest possible time. In what direction
should it go with respect to the bank if the speed of water is (1) 2 m/s, (2)
4 m/s? Assume that the speed of the water is the same everywhere.

Exercise 2.2. A fish can swim at a speed of 3 m/s on still water. It wants to
cross a river while traveling the shortest possible distance. In what direction
should it go with respect to the bank if the speed of water is (1) 2 m/s, (2)
4 m/s? Assume that the speed of the water is the same everywhere.

Exercise 2.3. A rod of mass m is hanging on the wall as shown in Fig. 2.5.
One end of the rod is pulled by a string fixed to the wall at point A, and
the other end is pushed against the wall at point B by gravity. The distance
between A and B is equal to the length of the rod, and the angle between
the rod and the wall is θ. If the force exerted by the wall to the rod at point
B is F, what is |F| as a function of θ?

Exercise 2.4. A spring with a uniform mass density ρ has a spring constant
k. When the spring is placed horizontally on a table without being stretched,
its length is L. What is its length when it is hung vertically and stretched
by the gravitational force? Note that when the spring is hung vertically, its
mass density is no longer uniform, because the upper part is stretched more
than the lower part.

Exercise 2.5. A fishing boat had lost its direction on a foggy sea. The
captain decided to sail in a fixed direction at a constant speed vt in the
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hope that the boat would eventually reach the shore. At the same time,
he reported to the police through radio the position of the boat and the
speed and direction of sailing. However, the radio broke down during the
transmission, so that the police only knew the position and the speed, not the
direction. Nevertheless, a speedboat capable of sailing at vp was dispatched
to search for this fishing boat. When the speedboat arrived at the reported
position, a time ∆t had passed. Because the police did not know in what
direction the fishing boat went, it seemed that there was no way to continue.
However, because the captain of the speedboat learned calculus well, he
figured out a reliable plan to catch the fishing boat. If you were the captain,
what would be your plan? How long would it take? What was the distance
the speedboat traveled before catching the fishing boat? Note that since you
do not know the moving direction of the fishing boat, there may be some
parameters of random choice in your plan. The answer will of course depend
on these parameters, instead of being a fixed number.

Exercise 2.6. There are four ants in the four corners of a square room of
length l. Ant A is at the south-east corner, ant B is at the north-east corner,
ant C is at the north-west corner, and ant D is at the south-west corner.
Starting at t = 0, ant A moves toward its target ant B, ant B moves toward
its target ant C, ant C moves toward its target ant D, and ant D moves
toward its target ant A. All the ants move at a fixed speed v in the direction
pointing to their respective targets. Eventually, the four ants collide in the
center of the room. How far has each ant traveled? How long does it take?
What are the coordinates of ant A as functions of time? (Hint: If you use the
real time t as the variable for the equation of motion, the equation becomes
highly nonlinear. Choose a suitable variable s, which is a function of t, to
reduce the equation of motion to a linear form. You do not need to know
s(t) explicitly to begin with; you only need to define s through a relation
between ds and dt, namely ds/dt = f(t). Neither do you need to know what
is f(t) in the beginning. After the problem is solved in the variable s, f(t)
will become obvious.)

Exercise 2.7. Landslide can occur if the coefficient of static friction µs

between soil is reduced by heavy rain. For a 45◦ slope, what is the minimum
value of µs before landslide occurs?

Exercise 2.8. Two identical balls A and B are in contact with each other.
Their centers are on the y-axis and the contact point is at the origin. A
third identical ball C moving at a speed of 10 m/s along the x-axis collides
elastically with A and B. Find the velocities of all three balls after collision.
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Fig. 2.6: A shifted stack of blocks.

Exercise 2.9. Consider how to stack N blocks of unit length to make the top
block extend farthest out without falling, as shown in Fig. 2.6. The (n+1)th
block is shifted relative to the nth block beneath it by a distance dn. What
is the formula for dn?

Exercise 2.10. Consider a small projectile fired by a gun with a 45◦ angle of
elevation at earth surface. The initial velocity is v0. Assume the density of
air is small enough such that the drag force Fd is proportional to the velocity
of the projectile, namely Fd = −βv. Calculate the position of the projectile
as a function of time before it falls back to the ground.

Exercise 2.11. A car of mass m climbs up and down a small hill with a
constant speed v. The shape of the hill is described by

z = he−ax2

,

where z is the vertical coordinate, x is the horizontal coordinate, and h is
the height of the hill. If v is too large, at the peak of the hill the wheels of
the car may loose contact with the road. This is of course dangerous. What
is the speed limit if such risk is to be avoided?

Exercise 2.12. A vertically free falling ball is slowed down by a drag force
from the air. The initial velocity of the ball is zero. Assuming the drag force
is proportional to the square of the velocity, the equation of motion for the
ball becomes

m
dv

dt
= mg − γv2.

Solve this equation of motion.

Exercise 2.13. A thin rope of mass m and length L is put on a table as
shown in Fig. 2.7. Half of the rope lies flat on the table, and the other half
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Fig. 2.7: A rope falling from a table.

hangs vertically through a hole near the edge. As gravity pulls the rope
down, what is the position of the center of the rope relative to the table as
a function of time? Assume there is no friction between the rope and the
table.

Exercise 2.14. A bicycle is constructed in such a way that the radius of
the wheels is 30 cm and the distance between the axes of the wheels is 1 m.
When a 60-kg rider is riding the bicycle on flat ground, the center of mass
for the rider and the bicycle as a whole is at equal distance from the axes of
the wheels and at a height of 60 cm from the ground. After a while the rider
encounters a 30◦ down slope. As the bicycle goes down the slope it picks
up a speed of 40 km/hr. At this moment the rider decides to pull the front
break. This is of course dangerous, because the bicycle may turn over. At
what deceleration, the rear wheel starts to loose contact with the ground?

Exercise 2.15. An observer on the Earth finds a motionless uniform rope
hanging vertically from the sky. One end of the rope is just above the ground,
and the other end extends high up into the sky beyond the visual range. If he
had not learned physics, he might think the rope is hanging from a spaceship
sent by extra-terrestrial beings. However, it is possible for a bare rope to hang
from the space just like the Moon hangs on the sky. How long should the
rope be? In this exercise we assume the Earth does not have an atmosphere.

Exercise 2.16. A transparent vacuum tunnel was built to test a magnetic-
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levitated prototype train powered by hydrogen fuel cells. Peter, who was
standing by the tunnel, observed that at the first stage the train used x liters
of fuel to accelerate from 0 to 100 km/hr, and at the second stage the train
used 3x liters more of fuel to accelerate from 100 to 200 km/hr. Because the
motion of the train has almost no friction, Peter figured that all the energy
of the fuel was converted to the kinetic energy of the train. That is why in
the first stage the fuel consumption was x liters while in the second stage
the fuel consumption was 3x liters. Another observer Paul, who was on an
ordinary train moving at a speed of 100 km/hr in the opposite direction, also
witnessed the event. From his point of view, in the first stage the speed of the
prototype train increased from 100 to 200 km/hr, while in the second stage
the speed increased from 200 to 300 km/hr. Therefore Paul figured in the
second stage the fuel consumption should be (32 − 22)/(22 − 12)x = (5/3)x
liters. Who is right, Peter or Paul? If one is right, the other must have made
a mistake in his calculation. Do the correct calculation for the wrong one.

Exercise 2.17. A sniper at a latitude of 30◦ north is aiming at a small target
1 km away in the north. The speed of the bullet is 800 m/s. If the sniper
does not take into account the rotation of the Earth, by how far to the east
or the west will the bullet miss the target? In this exercise we assume the
Earth does not have an atmosphere.

Exercise 2.18. A powerful rail gun located at the Equator is aimed at the
horizontal direction toward east. With the aid from the spin of the Earth,
the gun is capable of launching a projectile to the escape velocity of the
Earth, so that the projectile has just enough energy to break loose from
the gravitational pull of the Earth and travel to a place that is infinitely
far away. Because the spin of the Earth adds velocity to the projectile,
when the gun is placed at the Equator and aimed at the horizontal direction
toward east minimum energy from the power supply of the gun is required.
However, because of a mistake in the calculation, the energy stored into the
power supply of the gun is only 95% of this minimum energy. Assuming
all the energy stored into the power supply of the gun is converted to the
kinetic energy of the projectile, how long after the launch will the projectile
return to the Earth? In this exercise we assume the Earth does not have an
atmosphere. We also ignore the influence from the Moon, the Sun, and other
planets.

Exercise 2.19. A dumb-bell sits on a horizontal frictionless table, not mov-
ing or rotating, as shown in Fig. 2.8. The dumb-bell can be considered as
two point masses M joined by a massless rod of length L. A ball of mass
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Fig. 2.8: A dumb-bell hit by a ball.

Fig. 2.9: Falling into a mine.

m < M moving in the −x direction with velocity v makes a head-on elastic
collision with one of the mass point of the dumb-bell and bounces back in
the x-direction. After the collision, what is the center-of-mass motion and
the rotational motion of the dumb-bell? What is the velocity of the ball after
the collision?

Exercise 2.20. A crazy mining company has dug up a tunnel from the
surface of the Earth all the way down to the center of the Earth. At the
midpoint of the tunnel it has dug up a spherical cavity of radius R/4, where
R is the radius of the Earth, as shown in Fig. 2.9. An unfortunate worker
falls into the tunnel. What is the impact velocity when the worker hits the
end of the tunnel? In this exercise we assume the Earth does not have an
atmosphere.

Exercise 2.21. The mass of Jupiter is 1.9× 1027 kg and its speed relative to
the Sun is 13 km/s. A spacecraft of 3000 kg approaches Jupiter with a speed
of 3 km/s relative to the Sun. The trajectory of the spacecraft is bent by
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the gravitational force from Jupiter such that in a reference frame fixed to
Jupiter the spacecraft comes in with a velocity v and leaves with a velocity u.
The angle between v and u is θ. Show that the final speed of the spacecraft
relative to the Sun after this soft encounter can be much larger than its initial
velocity 3 km/s. Find the final speed of the spacecraft as a function of θ.

Exercise 2.22. On the line connecting the Earth and the Sun there is a point
rotating with the same angular velocity as that of the Earth around the Sun,
where the gravitational forces from the Earth and the Sun and the centrifugal
force cancel each other. This is called the first Lagrange point. How far is
this point from the center of the Earth? Give a numerical answer. Consider
the shape of the effective potential function at this point in a rotating frame
in which the origin is at the center of the Sun and the position vector of the
Earth is r. The frame rotates with the same angular velocity as that of the
Earth around the Sun. Does the potential function has a minimum in the
r̂-direction? Does the potential function has a minimum in the θ̂-direction
(the direction perpendicular to r)? Hint: Define α ≡ m/M ¿ 1, where m is
the mass of the Earth and M the mass of the Sun, and β ≡ l/L, where l is
the distance from the Earth to the first Lagrange point and L the distance
from the Earth to the Sun. Write the equilibrium condition in terms of α and
β. Assuming β ¿ 1 for the time being, one can throw away high-order terms
of both α and β to simplify the equation. After solving the equation, verify
β ¿ 1 for consistency. How many terms to throw away is your own choice.
Here we only ask for a numerical answer that is accurate to the second digit.

Exercise 2.23. Consider a base-ball bat shown in Fig. 2.10. Point c is the
center of mass. Point a is the position to hold the bat when striking. If the
bat is pivoted about a horizontal frictionless axis through a to form a physical
pendulum, its frequency of small oscillation is ω. Point b is chosen such that
if the bat is pivoted about a horizontal frictionless axis through b to form a
physical pendulum, its frequency of small oscillation is also ω. Show that,
if the hitter strikes the base ball at b with the velocity of the incoming ball
perpendicular to the axis of the bat, his hands at a do not feel the reaction
force. In this problem we assume the surface of the bat around point b is
cylindrical and it is parallel to the axis of the bat. Hint: If the strike point is
at c, then the bat will recoil back without rotation. In contrast, if the strike
point is at the opposite end of a from c, the bat tends to rotate in addition to
recoiling back. If the strike point is far enough from c, the rotation can make
point a move in the opposite direction of the incoming base ball. Hence in
between there is an ideal strike point for which a does not move.
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Fig. 2.10: The best point to strike a base ball.

Fig. 2.11: Tilting a rotating ball.

Exercise 2.24. A solid ball of mass m and radius r is rotating around a
horizontal shaft parallel to the x-axis. The angular velocity is ωx̂ where
ω > 0. The shaft is supported by two vertical poles that are parallel to the
z-axis and separated by a distance d. The ball is at an equal distance d/2
from the poles. If the shaft is tilted by a small angle θ ¿ 1 as shown in
Fig. 2.11, what is the impulse acted on each pole? Note that impulse is an
vector, so you should include the direction of the impulse in your answer.

Exercise 2.25. Consider a particle moving in the x-y plane under the grav-
itational force from a massive thin wire in the z-axis. The wire extends from
z = −∞ to z = ∞. The mass per unit length is ρ. Show that for any initial
position and initial velocity, it is not possible to escape from this gravitational
system. As usual, here “escape” means to go as far as one wants.

Exercise 2.26. In the outer space there is a uniform massive thin shell of
radius R with a small round opening of radius r ¿ R on the top. The mass
per unit area of the shell is ρ. A particle is released at the center of the
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shell with zero initial velocity. What is the final velocity of the particle as it
collides with the shell?

Exercise 2.27. Oil companies search underground pocket of oil by detecting
the minute change of gravitational force at the Earth surface. Assume the
detector is right above an underground spherical pocket of oil. The radius of
the pocket is r and the center of the pocket is at a depth d. If the change of
gravitational acceleration can be written as

∆g = g − g0 = a− bx2,

where g0 = 9.8 m/s2 and x is a small horizontal displacement of the detector
from the position right above the pocket at the Earth surface, what is r and
d in terms of a and b? In this problem we assume the Earth is a uniform
solid sphere of density ρe without spin and the oil has a uniform density ρo.
Note that we assume x ¿ r < d and d ¿ R, where R is the radius of the
Earth.

Exercise 2.28. A 10-g marble is launched vertically by a sling-shot with an
initial velocity of 20 m/s. Assume the drag force F from the air is given by
F = γv2, where v is the velocity of marble and γ = 8 × 10−5 kg/m. How
long does it take for the marble to reach the maximum height? What is the
maximum height? In this problem we assume the Earth has no spin.

Exercise 2.29. A roller coaster runs with a constant speed v along a track
described by h(x) = h0(tanh x+1), where h is the height of the track, x is the
horizontal coordinate, and h0 is a constant. During a run from x = −100 to
x = 100, the maximum acceleration experienced by the roller coaster is amax.
If in the next run the speed is changed to 2v, what will be the maximum
acceleration?

Exercise 2.30. A top is made of a solid ball attached to a pin of negligible
mass. The mass of the ball is 0.25 kg and the radius is 2 cm. The top
is spinning at a rate of 1200 rpm. The the distance between center of the
sphere and the end of the pin, where the top is supported, is 4 cm. The angle
between the top’s rotation axis and the vertical axis is 15◦. Due to the torque
produced by the gravitational force, the angular momentum rotates slowly
around the vertical axis, as shown in Fig. 2.12. This rotation is known as the
gyroscopic precession. What is the rate of precession? In your calculation
does the precession change the angle between the angular momentum and
the vertical axis? If not, how can a top fall eventually as it slows down?

Exercise 2.31. A short section of round pipe made of honeycomb composite
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Fig. 2.12: Gyroscopic precession of a top.

Fig. 2.13: A rolling pipe.

material is rolling on a flat surface without slipping, driven by a boy of mass
30 kg running inside of it, as shown in Fig. 2.13. The inner radius of the
pipe is 1.5 m and the outer radius is 1.7 m. The mass density of the pipe is
100 kg/m3 and the length is 1 m. The boy maintains his angular position at
30◦ from the vertical axis by running on the slope of the pipe. What is the
acceleration of the pipe?

Exercise 2.32. A way to launch a satellite without using a rocket is by
releasing it from a high tower at the equator. If the tower is not high enough,
the satellite will crash into the Earth. Show that the minimum height of the
tower h satisfies an equation of the following form.

(h + R)4 + a3(h + R)3 + a2(h + R)2 + a1(h + R) + a0 = 0,

where R is the radius of the Earth. What are the four coefficients a0, a1, a2,
and a3? In this problem we assume the Earth is a perfect sphere with no
atmosphere and the tower has no mass.

Exercise 2.33. In 1909 Ernest Rutherford’s research team discovered that
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the scattering angle of an alpha particle by gold foil can be unexpectedly
large. This led to the postulate that atoms have a highly concentrated nucleus
that contains all the positive charges. Considering an alpha particle flying
toward a gold nucleus with a velocity of 1.8×107 m/s. The Coulomb repulsive
force will bend the trajectory, such that the alpha particle will leave the gold
nucleus at an angle θ with respect to the incoming direction. Let d be the
smallest distance between the alpha particle and the gold nucleus during the
encounter. As one can imagine, a smaller d yields a larger θ. If θ = 90◦,
how small is d? In this problem we assume the mass ratio between the alpha
particle and the gold nucleus is zero, such that the gold nucleus does not
move. We also assume that the electrons around the gold nucleus have no
effect on the alpha particle because they are evenly distributed in a much
larger space. Note that the atomic number of gold is 79.



Chapter 3

Oscillators and Waves

3.1 Driven Harmonic Oscillators

An ideal simple harmonic oscillator can oscillate indefinitely. However, in
reality there is always some friction that damps the oscillation. Therefore
continuous oscillation must be driven by external forces. The equation of
motion for a driven harmonic oscillator with damping is

mẍ + µẋ + kx = F (t), (3.1)

where −µẋ represents the damping force, −kx the restoring force, and F (t)
the external driving force. It is more convenient to use the following form

ẍ + γẋ + ω2
0x = f(t), (3.2)

where γ = µ/m and f(t) = F (t)/m. First, let us consider the case in which
f(t) = 0. The solutions are

x(t) = a1e
λ+t + a2e

λ−t, (3.3)

where a1 and a2 are determined by the initial conditions, and

λ± =
−γ ±

√
γ2 − 4ω2

0

2
. (3.4)

If γ > 2ω0, the oscillator is called an overdamped oscillator. The solutions
are just exponentially decaying functions, and there is no oscillation at all.

105



106 Chapter 3. Oscillators and Waves

If γ < 2ω0, the oscillator is called an underdamped oscillator. It oscillates

at a frequency ω =
√

ω2
0 − γ2/4 with an exponentially decaying amplitude

e−γt/2. If we choose the coefficients in Eq. (3.3) to be a1 = a2 = b1/2 or
a1 = −a2 = b2/(2i), the two solutions for an underdamped oscillator can be
expressed as

x(t) = b1e
−γt/2 cos ωt (3.5)

or

x(t) = b2e
−γt/2 sin ωt. (3.6)

If γ = 2ω0, the oscillator is called a critically damped oscillator. In this case
the two independent solutions can be found by taking the limit of ω → 0 in
Eqs. (3.5) and (3.6) regardless of the constant coefficients in front of them,
which will be determined by the initial condition anyway. Hence the solutions
for a critically damped oscillator are e−ω0t and te−ω0t.

Next, let us assume f(t) is nonzero only between t = 0 and t = T . We
need to find a special solution to add to the solutions in Eq. (3.3). Let us
write x(t) and f(t) in terms of their Fourier transforms.

x(t) =
1√
2π

∫ ∞

−∞
x̃(ω)eiωtdω, (3.7)

f(t) =
1√
2π

∫ ∞

−∞
f̃(ω)eiωtdω. (3.8)

Both x(t) and f(t) can be thought of as a superposition of many frequency
components cos ωt and sin ωt, and x̃(ω) and f̃(ω) represent the amplitude of
the ω-component. Substituting Eqs. (3.7) and (3.8) into Eq. (3.2). We have

∫ ∞

−∞
(−ω2 + iγω + ω2

0)x̃(ω)eiωtdω =
∫ ∞

−∞
f̃(ω)eiωtdω. (3.9)

Comparing both sides, we obtain

x̃(ω) =
f̃(ω)

−ω2 + iγω + ω2
0

. (3.10)

Now that we know x̃(ω), we can calculate x(t) by the inverse Fourier trans-
form. Alternatively we may use the convolution theorem of Fourier transform
and Eq. (1.254) to obtain

x(t) =
1

β

∫ t

−∞
f(t′)e−γ(t−t′)/2 sin[β(t− t′)] dt′, (3.11)
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where

β =

√
ω2

0 −
γ2

4
. (3.12)

In Eq. (3.11), the displacement x(t) at time t can be interpreted as the linear
response to the external force f(t′) at time t′. Since the response is not
instantaneous, x(t) is a linear combination of all the f(t′) with coefficient
1
β
e−γ(t−t′)/2 sin[β(t− t′)]. The function g(t) that satisfies the equation

x(t) =
∫ ∞

−∞
f(t′)g(t− t′) dt (3.13)

is known as the Green’s function. By setting f(t′) = δ(t′) in Eq. (3.13), it
can be seen that the Green’s function g(t) is the solution of the equation

ẍ + γẋ + ω2
0x = δ(t). (3.14)

The solution in Eq. (3.11) shows that

g(t) =

{
1
β
e−γt/2 sin βt when t ≥ 0

0 when t < 0.
(3.15)

For the special case where

f(t) = A cos ωt

=
A

2
eiωt +

A

2
e−iωt, (3.16)

we may assume the solution has the following form:

x(t) = Beiωt + B∗e−iωt. (3.17)

Substituting into Eq. (3.2), we obtain

B =
A/2

−ω2 + iγω + ω2
0

. (3.18)

Set

1

−ω2 + iγω + ω2
0

= |χ|eiφ, (3.19)

where

|χ| =
1

| − ω2 + iγω + ω2
0|

,

eiφ =
| − ω2 + iγω + ω2

0|
−ω2 + iγω + ω2

0

, (3.20)
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one obtains

x(t) =
A

2

(
|χ|eiφeiωt + |χ|e−iφe−iωt

)

= A|χ| cos(ωt + φ). (3.21)

When the driving frequency ω is much smaller than the resonance frequency
ω0, we have φ → 0, which shows the oscillator is in phase with the driving
force. When the driving frequency ω is equal to the resonance frequency ω0,
we have φ = −π/2, which shows the oscillator is delayed by 90 degrees
with respect to the driving force. When the driving frequency ω is much
larger than the resonance frequency ω0, we have φ → −π, which shows the
oscillator is out of phase with the driving force.

If the oscillator is weakly damped, γ ¿ ω0. Then x̃(ω) has a resonance
peak at ω = ω0. Near the resonance peak, ω2

0 − ω2 ≈ 2ω(ω0 − ω), we have

x̃(ω) ≈ f̃(ω)/(2ω)

ω0 − ω + iγ/2
, (3.22)

and

|x̃(ω)|2 ≈ |f̃(ω)|2/(4ω2)

(ω0 − ω)2 + γ2/4
. (3.23)

If we define the width of the resonance peak to be the difference between the
two values of ω that reduce |x̃(ω)|2 by half, then the width is γ.

Let us go back to see what trick the Fourier transform does to the equa-
tion that allows us to get the solution without much effort. In the time
domain Eq. (3.2) is a differential equation. Fourier transform turns it into an
algebraic equation in the frequency domain, Eq. (3.10), which is much easier
to solve. This is why spectral analysis by Fourier transform is a powerful
tool for linear differential equations.

3.2 Harmonic Generation in Nonlinear Oscillators

Consider a particle in a potential well V (x). The equation of motion is

mẍ = −dV

dx
. (3.24)
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If we assume that V (x) = V (−x) and the minimum of V (x) is at x = 0, we
may expand V (x) in Taylor series.

V (x) = V (0) +
V ′′(0)

2
x2 +

V (4)(0)

24
x4 + · · · . (3.25)

For small oscillation, namely the motion of the particle is not far from x = 0,
the equation of motion is approximately

ẍ = −ω2
0x− αx3, (3.26)

where ω2
0 = k/m = V ′′(0)/m and α = V (4)(0)/(6m). If αx3 is omitted, we

get the simple harmonic oscillator. Therefore if the amplitude of oscillation is
small enough such that αx3 ¿ ω2

0x, we should obtain a solution that is only
slightly different from the solution of the simple harmonic oscillator. Now
let us see how αx3 changes the solution of the simple harmonic oscillator.
Assuming the initial conditions are x(0) 6= 0 and x′(0) = 0, let us try the
following function as the first-order guess.

x(t) = a1 cos(ωt) + a3 cos(3ωt). (3.27)

Because the solution should be close to the simple harmonic oscillator, we
assume a3 ¿ a1. Substituting it into Eq. (3.26), we obtain

(
−a1ω

2 + a1ω
2
0 +

3

4
αa3

1 +
3

4
αa2

1a3 +
3

2
αa1a

2
3

)
cos(ωt)

+
(
−a39ω

2 + a3ω
2
0 +

1

4
αa3

1 +
3

2
αa2

1a3 +
3

4
αa3

3

)
cos(3ωt)

+
(

3

4
αa2

1a3 +
3

4
αa1a

2
3

)
cos(5ωt)

+
3

4
αa1a

2
3 cos(7ωt) +

1

4
αa3

3 cos(9ωt) = 0. (3.28)

Since we assume a3 ¿ a1, the coefficient of cos(ωt) gives

ω2 ≈ ω2
0 +

3

4
αa2

1, (3.29)

and the coefficient of cos(3ωt) gives

a3 =
1
4
αa3

1

9ω2 − ω2
0 − 3

2
αa2

1

≈
1
4
αa3

1

8ω2
0 + 21

4
αa2

1

. (3.30)

Because for small oscillation αa2
1 ¿ ω2

0,

a3

a1

≈ αa2
1

32ω2
0

. (3.31)
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Here we see indeed a3 ¿ a1, which is consistent with our assumption in the
beginning. Note that a3 is proportional to the first order of α. If we keep
terms only up to the first order of α, we can ignore the cos(5ωt), cos(7ωt)
and cos(9ωt) terms. Therefore Eq. (3.27) is only an approximation up to
the first order of α. We can improve the approximation by adding a term
a5 cos(5ωt) to our guess solution, then we will be able to obtain solutions up
to the second order of α, only with more complicated calculation.

Eq. (3.29) tells us how the frequency of the nonlinear oscillator changes
with its amplitude, and Eq. (3.30) gives the amplitude of the third harmonic
generated from the nonlinear term. The oscillation speeds up for positive α
and vice versa as expected. The ratio of the third harmonic power to the
fundamental power is proportional to the square of the fundamental power,
namely

a2
3

a2
1

∝ a4
1. (3.32)

This means the fraction of harmonic distortion of the oscillator increases
quadratically with the fundamental power.

Let us look back at the process we employed to obtain the approximate
solution. The αx3 term in the equation of motion can be thought of as a
frequency mixer. Let x(t) = cos(ω1t) + cos(ω2t). The αx3 term will gener-
ate terms of frequencies 3ω1, 3ω2, 2ω2 ± ω1, and 2ω1 ± ω2 with amplitudes
proportional to α. If we start from the solution of the harmonic oscillator
x(t) = a1 cos(ωt), the αx3 term will generate a term αa3

1 cos(3ωt)/4. There-
fore we must add to the solution a term proportional to cos(3ωt) to cancel
it. Let the added term be a3 cos(3ωt). The linear response of the added term
gives a contribution of (9ω2 − ω2

0)a3 cos(3ωt). Therefore

a3 =
αa3

1/4

9ω2 − ω2
0

≈ αa3
1

32ω2
0

. (3.33)

Now that we have the cos(3ωt) term in the solution, mixing the cos(ωt) term
and the cos(3ωt) by αx3 leads to the cos(5ωt) term. Because the cos(3ωt)
term is proportional to α, the cos(5ωt) term is proportional to α2. Con-
tinuing this process, we find the solution contains an infinite sequence of
odd harmonics cos[(2n + 1)ωt] with decreasing amplitudes proportional to
αna2n+1

1 /ω2n
0 . In this process, ẍ = −ω2

0x is called the zeroth-order equation
and a1 cos(ωt) the zeroth-order solution. The term αx3 is called the per-
turbation term of the zeroth-order equation. We add a first-order solution
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a3 cos(3ωt) to cancel the terms generated from the zeroth-order solution by
the perturbation term of the equation of motion. But the first-order solution
together with the zeroth-order solution generate again new terms through
the perturbation term of the equation of motion. Therefore we have to add a
second-order term to cancel them. If the perturbation term is small enough,
correction for each order will be smaller than that for the previous order.
The process will converge, and we can have an approximate solution as close
to the real solution as we want. Such a procedure of finding approximate
solutions is known as the perturbation expansion.

Next we consider a weakly damped asymmetric nonlinear oscillator driven
by an external force mf(t) = mA cos(ωt). Any initial oscillation that is not
driven by the external force will be damped out in the long run, therefore
we look for the steady state solution in which the oscillation amplitude does
not change with time. Again, for small oscillation the equation of motion is
approximately

ẍ = −γẋ− ω2
0x− βx2 + A cos(ωt), (3.34)

where β = V ′′′(0)/(2m). Treating βx2 as the perturbation term, we shall use
the following trial solution.

x(t) = a0 + a1 cos(ωt) + b1 sin(ωt)

+a2 cos(2ωt) + b2 sin(2ωt)

+a3 cos(3ωt) + b3 sin(3ωt), (3.35)

where a2 cos(2ωt)+ b2 sin(2ωt) is the first-order correction, and a3 cos(3ωt)+
b3 sin(3ωt) is the second-order correction. Substituting into Eq. (3.34), one
has

a0ω
2
0 + β

(
a2

0 +
a2

1

2
+

b2
1

2
+

a2
2

2
+

b2
2

2
+

a2
3

2
+

b2
3

2

)

+
[
−a1ω

2 + γb1ω + a1ω
2
0 + β (2a0a1 + a1a2 + b1b2 + a2a3 + b2b3)− A

]
cos(ωt)

+
[
−b1ω

2 − γa1ω + b1ω
2
0 + β (2a0b1 + a1b2 − b1a2 + a2b3 − b2a3)

]
sin(ωt)

+

[
−4a2ω

2 + 2γb2ω + a2ω
2
0 + β

(
a2

1

2
− b2

1

2
+ 2a0a2 + a1a3 + b1b3

)]
cos(2ωt)

+
[
−4b2ω

2 − 2γa2ω + b2ω
2
0 + β (2a0b2 + a1b1 + a1b3 − b1a3)

]
sin(2ωt)

+
[
−9a3ω

2 + 3γb3ω + a3ω
2
0 + β (2a0a3 + a1a2 − b1b2)

]
cos(3ωt)

+
[
−9b3ω

2 − 3γa3ω + b3ω
2
0 + β (2a0b3 + a1b2 + b1a2)

]
sin(3ωt) = 0. (3.36)



112 Chapter 3. Oscillators and Waves

Let us assume a0 is of the same order as βa2
1, βb2

1 and an, bn are of the same
order as βn−1an

1 , β
n−1bn

1 . We shall justify these assumptions later. If β is
small we can include only terms of the lowest-order correction. That is

a0(ω
2
0 + βa0) + β

(
a2

1

2
+

b2
1

2

)
= 0, (3.37)

−a1ω
2 + γb1ω + a1ω

2
0 − A = 0, (3.38)

−b1ω
2 − γa1ω + b1ω

2
0 = 0, (3.39)

−4a2ω
2 + 2γb2ω + a2ω

2
0 + β

(
a2

1

2
− b2

1

2

)
= 0, (3.40)

−4b2ω
2 − 2γa2ω + b2ω

2
0 + βa1b1 = 0, (3.41)

−9a3ω
2 + 3γb3ω + a3ω

2
0 + β (a1a2 − b1b2) = 0, (3.42)

−9b3ω
2 − 3γa3ω + b3ω

2
0 + β (a1b2 + b1a2) = 0. (3.43)

Therefore

a0 = − β(a2
1 + b2

1)

2(ω2
0 + βa0)

, (3.44)

a1 =
−(ω2 − ω2

0)

γ2ω2 + (ω2 − ω2
0)

2
A, (3.45)

b1 =
γω

γ2ω2 + (ω2 − ω2
0)

2
A, (3.46)

a2 = β
2a1b1γω +

(
a2
1

2
− b21

2

)
(4ω2 − ω2

0)

4γ2ω2 + (4ω2 − ω2
0)

2
, (3.47)

b2 = β
a1b1(4ω

2 − ω2
0)− γω (a2

1 − b2
1)

4γ2ω2 + (4ω2 − ω2
0)

2
, (3.48)

a3 = β
3γω (a1b2 + b1a2) + (9ω2 − ω2

0) (a1a2 − b1b2)

9γ2ω2 + (9ω2 − ω2
0)

2
, (3.49)

b3 = β
(a1b2 + b1a2) (9ω2 − ω2

0)− 3γω (a1a2 − b1b2)

9γ2ω2 + (9ω2 − ω2
0)

2
. (3.50)

As we can see from the solutions of a0, a1, a2, a3 and b1, b2, b3, indeed our
assumptions that a0 is of the same order as βa2

1, βb2
1 and an, bn are of the same

order as βn−1an
1 , β

n−1bn
1 are satisfied. The process can be continued by adding

a next-order correction a4 cos(4ωt)+b4 sin(ωt) to the perturbation expansion
Eq. (3.34), then a more and more accurate solution can be obtained.
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Fig. 3.1: Two harmonic oscillators coupled by a spring.

3.3 Normal Modes of Coupled Oscillators

Consider the two harmonic oscillators shown in Fig. 3.1. The equations of
motion for the two harmonic oscillators are

mẍ1 = −kx1 − k′(x1 − x2),

mẍ2 = −kx2 − k′(x2 − x1). (3.51)

Clearly, x1 and x2 are not independent of each other, and the solutions are
not obvious. The equations can be much simplified by choosing another set
of variables.

u1 ≡ (x1 + x2),

u2 ≡ (x1 − x2). (3.52)

Then the equations become

mü1 = −ku1,

mü2 = −(k + 2k′)u2. (3.53)

The new set of variables changes the coupled equations into uncoupled ones.
Therefore x1+x2 and x1−x2 are the two independent modes of oscillation for
this system of oscillators. Such independent modes of oscillation are known
as normal modes.

3.4 Swinging a Swing

When you were a child, you probably had the experience of playing with a
swing. You might have noticed that by moving your body up and down in
synchronization with the swing, you could make the amplitude of the swing
grow by yourself, without someone else pushing the swing. In an ideal swing,
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no matter how you change the height of the center of mass of your body, you
can only exert a force in the radial direction, and the force is balanced by the
tension of the swing. How can you affect the rotational motion of the swing
without an external torque? In this section we shall analyze this problem.

Consider an ideal swing in which the player can move his/her center of
mass up and down by a small distance y = y0 cos(Ωt), as shown in Fig. 3.2.
The equation of motion is

m(l + y)2θ̈ = −2m(l + y)ẏθ̇ −mg(l + y)θ, (3.54)

where l is the length of the swing and m is the mass of the player. The
first term on the right-hand side is the Coriolis force. Dividing by m(l + y),
Eq. (3.54) becomes

(l + y)θ̈ = −2ẏθ̇ − gθ. (3.55)

Assume the solution we are looking for has the following form:

θ(t) = a(t) cos(ωt) + b(t) sin(ωt), (3.56)

where ω =
√

g/l is the resonance frequency of the swing, and a(t), b(t) are

the slow-varying amplitudes. Because a(t) and b(t) vary slowly, ȧ and ḃ are
first-order small quantities. Remember that we have also assumed y is a
first-order small quantity, therefore ä, b̈, ȧy, ȧẏ, ḃy, and ḃẏ are all second-
order small quantities. Ignoring all the second-order small quantities when
substituting the trial solution Eq. (3.56) into Eq. (3.55), we obtain

l
[
−2ȧω sin(ωt) + 2ḃω cos(ωt)− aω2 cos(ωt)− bω2 sin(ωt)

]

+y
[
−aω2 cos(ωt)− bω2 sin(ωt)

]

= −2ẏ [−aω sin(ωt) + bω cos(ωt)]− g[a cos(ωt) + b sin(ωt)]. (3.57)

Since lω2 = g, it is

l
[
−2ȧω sin(ωt) + 2ḃω cos(ωt)

]
+ y

[
−aω2 cos(ωt)− bω2 sin(ωt)

]

= −2ẏ [−aω sin(ωt) + bω cos(ωt)] . (3.58)

If the swing is driven resonantly, Ω must be an integer multiple of ω. When
Ω = 2ω, namely y = y0 cos(2ωt), we obtain

[
−2ȧωl +

1

2
bω2y0

]
sin(ωt) +

[
2ḃωl − 1

2
aω2y0

]
cos(ωt)

−1

2
bω2y0 sin(3ωt)− 1

2
aω2y0 cos(3ωt)

= 2bω2y0 sin(ωt)− 2aω2y0 cos(ωt)

+2bω2y0 sin(3ωt) + 2aω2y0 cos(3ωt). (3.59)
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Fig. 3.2: A model of an ideal swing.

Both sides of the equation contain the lowest power of cos(ωt) and sin(ωt).
Comparing coefficients, we have

ȧ =
−3ωy0

4l
b, (3.60)

ḃ =
−3ωy0

4l
a. (3.61)

But what about the coefficients of cos(3ωt) and sin(3ωt)? Just like what
we did in treating the nonlinear oscillators, they can be taken care of by
including higher-order terms such as a3(t) cos(3ωt) and b3(t) sin(3ωt) in the
trial solution Eq. (3.56). For simplicity, here we work out the lowest-order
solution first. Combining Eqs. (3.60) and (3.61), one has

ä =
(

3ωy0

4l

)2

a. (3.62)

Assume y0 > 0 and let λ = 3ωy0/(4l), the solution is then

a(t) = a+eλt + a−e−λt, (3.63)

and from Eq. (3.60)

b(t) = −a+eλt + a−e−λt. (3.64)

The decaying solution associated with a− can be ignored in the long run, and
the growing solution associated with a+ is what we are interested in. Namely

θ(t) = a+[cos(ωt)− sin(ωt)]eλt, (3.65)
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Fig. 3.3: A model of longitudinal mechanical waves.

From the solution we see that in order to make a swing swing, one must
have an initial oscillation first, and the player should raise and lower his/her
center of mass at twice of the resonant frequency of the swing. When the
swing is at an phase angle of π/4, the player should position his/her center
of mass at the lowest point and start to stand up, until the swing is at an
phase angle of 3π/4. At this point the player should have the highest center
of mass. Then the player should start to lower down again, until the swing
reverse to an phase angle of 5π/4, which is equivalent to π/4 in the reverse
direction.

We may now add a correction term a3 cos(3ωt) + b3 sin(3ωt) to θ(t) so
that Eq. (3.55) is satisfied better. This additional term generates

−8lω2[a3 cos(3ωt) + b3 sin(3ωt)] (3.66)

in Eq. (3.55) plus higher order terms in cos(5ωt) and sin(5ωt) as well as small
correction terms in cos(ωt) and sin(ωt). To cancel the cos(3ωt) and sin(3ωt)
terms, we have

a3 = −ay0

4l
,

b3 = −by0

4l
. (3.67)

Because y0 ¿ l, the correction term is indeed small compared with a(t)
and b(t). To obtain more and more accurate solutions, this process can be
continued by adding correction terms a5 cos(5ωt) + b5 sin(5ωt), a7 cos(7ωt) +
b7 sin(7ωt), and so on.

3.5 Waves on a String

In classical mechanics, wave is a simple form of collective motion whose
closest analogy is vibration. Consider a one-dimensional string of bounded
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particles in which each particle’s motion is influenced by its two nearest
neighbors, as shown in Fig. 3.3. If the motion of the particles around its
equilibrium point is small, one can assume the force acting on each particle
is proportional to the separation between the particles. The equation of
motion reads:

mäl = η(al−1 − al) + η(al+1 − al), (3.68)

where m is the mass of the particles, al the displacement of the lth particle
from the equilibrium point, and η the spring constant. Because the string is
fixed at both end points (l = 0 and l = N) we have a0(t) = aN(t) = 0. This
system of linear equations can be solved by a change of variable (Fourier
transformation)

al(t) =
∑

k

uk(t) sin(kls) + vk(t) cos(kls), (3.69)

where s is the distance between neighboring particles. The boundary condi-
tion a0(t) = 0 sets vk(t) = 0, and the possible values of k is determined by
the other boundary condition aN(t) = 0, which yields kNs = nπ or kL = nπ,
where L is the length of the string and n is a positive integer. Substituting

al(t) =
∑

k

uk(t) sin(kls) (3.70)

into Eq. (3.68), we have
∑

k

mük sin(kls) = 2η
∑

k

[cos(ks)− 1]uk sin(kls). (3.71)

Comparing coefficients, we have

mük = 2η[cos(ks)− 1]uk, (3.72)

hence

uk(t) = uk(0) cos(ωkt) +
u̇k(0)

ωk

sin(ωkt), (3.73)

where mω2
k = 2η[1 − cos(ks)] is called the dispersion relation of the wave.

Under the new variables uk, the equations of motion are decoupled. Each
degree of freedom uk is an independent harmonic oscillator. Each such col-
lective harmonic motion, labelled by k, is called a mode. In a continuous

system, s → 0, the dispersion relation becomes ωk = k
√

ηs2/m. We note

that m/s is the mass density ρ of the string and ηs is the tension T of

the string. Therefore we have ωk = k
√

T/ρ and the phase velocity ωk/k is

independent of k. In the continuum limit, Eq. (3.69) becomes

a(x, t) =
∑

k

uk(t) sin(kx), (3.74)
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Fig. 3.4: A model of transverse mechanical waves.

where we have changed from the discrete label l to the continuous label
x = ls. It is seen that the displacement of the particle at x is a superposition
of various modes (waves) sin(kx) and the amplitudes of these modes uk(t) are
harmonic oscillators. Substituting uk(t) in Eq. (3.73), we can write Eq. (3.74)
in another form.

a(x, t) =
∑

k

{
uk(0)

2
[sin(kx− ωt) + sin(kx + ωt)]

+
u̇k(0)

2ωk

[cos(kx− ωt)− cos(kx + ωt)]

}
. (3.75)

In the above analysis we have considered the longitudinal wave, where
the particle displacement is in the same direction of wave propagation. The
analysis of the transverse wave is similar. Consider the transverse displace-
ment shown in Fig. 3.4. For a small transverse displacement al, the restoring
force Fl is

Fl = T (sin θl−1 − sin θl) ≈ T
(

al − al−1

s
− al+1 − al

s

)
, (3.76)

where s is the distance between neighboring particles. Since the spring con-
stant η is equal to T/s, the equation of motion for the lth particle is the
same as Eq. (3.68).

3.6 Solutions of the Wave Equation

Consider the continuous limit of Eq. (3.68). Dividing both sides by s, we
have

m

s
äl = ηs

(al−1 − al) + (al+1 − al)

s2
. (3.77)
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In the limit s → 0, we change from the discrete label l to the continuous
label x = ls. Eq. (3.77) becomes

ρ
∂2a

∂t2
= T

∂2a

∂x2
, (3.78)

where ρ = m/s is the mass density of the string and T = ηs is the tension
of the string. Eq. (3.78) is a special case of the wave equation called the
nondispersive wave equation, which can be written as

∂2a

∂x2
− 1

v2

∂2a

∂t2
= 0, (3.79)

where v =
√

T/ρ is the phase velocity of the wave. To find the solution of

Eq. (3.79), we note that it can be written as

(
∂

∂x
− 1

v

∂

∂t

) (
∂

∂x
+

1

v

∂

∂t

)
a = 0, (3.80)

or (
∂

∂x
+

1

v

∂

∂t

) (
∂

∂x
− 1

v

∂

∂t

)
a = 0. (3.81)

Changing variables by

u = x + vt,

w = x− vt, (3.82)

we have
∂

∂u

∂

∂w
a = 0, (3.83)

or
∂

∂w

∂

∂u
a = 0. (3.84)

Therefore the general solution is

a(x, t) = f(x− vt) + g(x + vt) (3.85)

for any functions f and g. The actual f and g are determined by the initial
conditions a(x, 0) and b(x, 0) ≡ ∂a(x, t)/∂t|t=0. Namely

a(x, 0) = f(x) + g(x),

b(x, 0) = −vf ′(x) + vg′(x). (3.86)
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Differentiating the first equation, we have

a′(x, 0) = f ′(x) + g′(x),

b(x, 0) = −vf ′(x) + vg′(x). (3.87)

From these two equations we can solve f ′(x) and g′(x) in terms of the known
functions a′(x, 0) and b(x, 0), and then by integration we have f(x) and g(x)
up to the constants of integration.

Alternatively, we may use a technique called separation of variables to
solve Eq. (3.79). Let us assume the solution has the form

a(x, t) = f(x)g(t). (3.88)

Substituting into Eq. (3.79), and dividing by f(x)g(t), we have

f ′′(x)

f(x)
=

1

v2

g′′(t)
g(t)

. (3.89)

Since the left hand side is a function of x and the right-hand side is a function
of t, they must equal to the same constant independent of x and t. Let us
denote the constant −k2 Then we have

f(x) = e±ikx

g(t) = e±iωt, (3.90)

and ω/k = v.

a(x, t) =
∑

k

[
c1(k)ei(kx−ωt) + c2(k)ei(kx+ωt)

+ c3(k)e−i(kx−ωt) + c4(k)e−i(kx+ωt)
]

=
∑

k

[α1(k) sin(kx) sin(ωt) + α2(k) sin(kx) cos(ωt)

+ α3(k) cos(kx) sin(ωt) + α4(k) cos(kx) cos(ωt)] , (3.91)

where ci(k) or αi(k) (i = 1, 2, 3, 4) are constants to be determined by the
initial conditions or the boundary conditions.

If the solution is specified by the initial conditions a(x, 0) and b(x, 0) ≡
∂a(x, t)/∂t|t=0, we have

a(x, 0) =
∑

k

[α2(k) sin(kx) + α4(k) cos(kx)], (3.92)

b(x, 0) =
∑

k

[ωα1(k) sin(kx) + ωα3(k) cos(kx)]. (3.93)
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These are the Fourier expansion of a(x, 0) and b(x, 0), hence αi(k) (i =
1, 2, 3, 4) can be uniquely determined.

If in addition the solution is also specified at the boundary points, for
instance a(0, t) = a(L, t) = 0, which represents a string tied down at x = 0
and x = L, we have

a(x, t) =
∑

k

[α1(k) sin(kx) sin(ωt) + α2(k) sin(kx) cos(ωt)], (3.94)

where the boundary condition at x = L requires that k = nπ/L. Again the
initial condition a(x, 0) will determine α2(k) and b(x, 0) will determine α1(k).

3.7 Energy Density of String Waves

The time-averaged energy of the string wave is

E =
∑

l

mȧ2
l

2
+

η(al+1 − al)2

2
. (3.95)

In the continuum limit,

E =
∫ 

ρ

2

(
∂a

∂t

)2

+
T

2

(
∂a

∂x

)2

 dx. (3.96)

For standing waves, substituting

a(x, t) =
∑

k

uk cos(ωt + φ) sin(kx) (3.97)

into Eq. (3.96), we have

E = L
∑

k

(
ρ

8
ω2u2

k +
T

8
k2u2

k

)
=

LT

4

∑

k

k2u2
k. (3.98)

For a particular mode represented by k, the energy stored in the mode is

Ek =
LT

4
k2u2

k. (3.99)

For traveling waves, substituting

a(x, t) =
∑

k

uk√
2

cos(kx− ωt− φ) (3.100)
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into Eq. (3.96), we have

E = L
∑

k

(
ρ

4
ω2u2

k +
T

4
k2u2

k

)
=

LT

2

∑

k

k2u2
k. (3.101)

For a particular mode represented by k, the energy stored in the mode is

Ek =
LT

2
k2u2

k. (3.102)

3.8 Wave Propagation through an Interface

Imagine a composite string made of two different strings by joining them at
x = 0. Let us consider the propagation of string waves through the interface
between the two strings when a tension T is applied to the composite string.
As the wave goes though the interface, part of the wave will be transmitted
and part will be reflected. As we shall see, this is required by the boundary
conditions at the interface. Let the incident wave be

ai(x, t) = αi exp i(kix− ωt), (3.103)

and the transmitted wave be

at(x, t) = αt exp i(ktx− ωt). (3.104)

At x = 0 the mass element must oscillate synchronously, hence the transmit-
ted wave must have the same frequency as the incident wave. Yet ki 6= kt

because the two waves have different phase velocities. The amplitudes must
be continuous across the interface, that is

ai(0, t) = at(0, t), (3.105)

otherwise the position of the interface is undefined. The forces acted on the
mass elements at both sides of the interface must also be continuous, other-
wise the interface will experience an infinite acceleration. As the separation
s between the mass elements approaches zero, the force on the x < 0 side is

η∆ai =
T

s
∆ai → T

∂ai

∂x
, (3.106)

and force on the x > 0 side is

η∆at =
T

s
∆at → T

∂at

∂x
. (3.107)
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Therefore we have

∂ai

∂x
=

∂at

∂x
. (3.108)

These boundary conditions lead to

αi = αt,

kiαi = ktαt. (3.109)

Obviously there is a contradiction because ki 6= kt. The contradiction is
removed if there is a reflected wave

ar(x, t) = αr exp i(−kix− ωt). (3.110)

With the addition of a reflected wave, we have

αi + αr = αt,

kiαi − kiαr = ktαt. (3.111)

The solution is

αt =
2ki

kt + ki

αi,

αr =
ki − kt

kt + ki

αi. (3.112)

If the wave incidences from a medium of larger phase velocity to a medium
of smaller phase velocity, we have ki < kt. In this case the reflected wave is
π out of phase with the incident wave. In the opposite case the the reflected
wave is in phase with the incident wave. The transmitted wave is always in
phase with the incident wave.

We have shown in Eq. (3.102) that the energy density of a string wave is

E

L
=

T

2
k2u2

k. (3.113)

Therefore the energy-density flux flowing toward the interface is

T

2
vik

2
i α

2
i =

Tω

2
kiα

2
i ,

and that flowing out of the interface is

Tω

2
(ktα

2
t + kiα

2
r).

Substituting αt and αr in Eq. (3.112), we see the incoming energy-density flux
is the same as the outgoing flux, as expected from the energy conservation
law.
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Fig. 3.5: Oscillating marble in a bowl.

3.9 Exercises

Exercise 3.1. A round marble of mass m and radius r is placed at the
bottom of a round bowl of radius R. The marble can roll in the bowl without
slipping. If the marble is placed slightly off the center of the bowl, as shown
in Fig. 3.5. What is its oscillation frequency under the influence of gravity?
In this exercise we assume the amplitude of oscillation is so small that the
restoring force is proportional to the angle of displacement and the friction
of air is negligible.

Exercise 3.2. The mass of the moon is 7.36 × 1022 kg, its radius is 1.74 ×
106 m. Assume the mass distribution is a uniform sphere. We dig a tunnel
from the moon surface to the other side of the surface through the center of
the moon, then drop a baseball of 0.2 kg into the tunnel. The initial velocity
of the ball is zero. Ignore the gravity from other planets and consider only
the gravity of the moon. When the baseball reaches the other end, how much
time has passed? Hint: Use the shell theorem.

Exercise 3.3. Continue with the last exercise. We fill the tunnel with viscous
liquid, so that the motion of the baseball is damped. Assume the damping
force is proportional to its velocity, i.e., fd = −γv. If we wish that the
farthest position the ball can reach is the center of the moon (regardless how
long it will take). What is the minimum value of γ?

Exercise 3.4. On a frictionless table, a weight of mass m is tied to a thin
post at the center of the table by a spring. The spring and the weight can
rotate freely around the post without friction. The spring constant is k.
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Fig. 3.6: A cycloid.

Fig. 3.7: An inverted cycloid.

Show that if the initial displacement is in the x-direction while the initial
velocity is in the y-direction or the initial displacement is in the y-direction
while the initial velocity is in the x-direction, the trajectory of the weight can
be an ellipse. In these cases, if the total energy of the system is E, and the
angular momentum is L, what is the semi-major axis and semi-minor axis of
the ellipse as functions of E and L? In this exercise we assume the mass of
the spring is negligible and the length of the spring is zero when unstretched.

Exercise 3.5. If a disk of radius R is rolled horizontally, a point at the edge
of the disk traces out a curve shown in Fig. 3.6. This curve is known as a
cycloid. (a) What is the equation that describes the curve? (b) Consider
a bead sliding along an inverted cycloid as shown in Fig. 3.7. The bead is
released from a height a with zero initial velocity. Show that the time it
takes for the bead to reach the bottom is independent of a.

Exercise 3.6. A small ball of mass m is connected to two identical un-
stretched springs as shown in Fig. 3.8. The springs have a length l when
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Fig. 3.8: A soft oscillator.

they are not stretched or compressed. The spring constant is k. If the ball is
displaced in the direction perpendicular to the springs by a distance d ¿ l
and released with zero initial velocity, the oscillation period is T . If the
displacement is 2d, what will be the oscillation period?

Exercise 3.7. A coupled oscillator is shown in Fig. 3.9, in which k1 = k3 = 1,
k2 = 3, m1 = 1, and m2 = 2. Show that the motion of both weights can
be described by linear combinations of two oscillatory motions known as the
normal modes. What are the frequencies of the two normal modes? (Note:
You do not need to solve the equation of motion to know the frequencies. If
the displacement of the two weights are x1(t) and x2(t), You may simplify
the equation of motion by changing variables to y1(t) and y2(t) according to

y1 = a11x1 + a12x2,

y2 = a21x1 + a22x2, (3.114)

where aij are coefficients of linear combinations. If you choose these coeffi-
cients wisely, y1(t) and y2(t) will be solutions of independent simple harmonic
oscillators.

Exercise 3.8. A 2-gram guitar string is stretched to hold a tension of
100 newtons. The distance between the two bridges that fixes the two ends
of the string is 80 cm. What is the fundamental oscillation frequency f of
the string? If the string is pulled up at the center by 1 cm and suddenly
released, as shown in Fig. 3.10, what is the amplitude ratio among the waves
of frequencies f , 2f , and 3f?
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Fig. 3.9: Coupled oscillators.

Fig. 3.10: A guitar string pulled up at the center.

Exercise 3.9. A mechanical toy telephone can be made by connecting the
bottoms of two plastic cups with a stretched elastic string. As a person
speaks toward one cup, the sound wave is converted to the vibration of the
cup, and the vibration is transmitted by the string to the other cup in which
it is converted back to sound. The string has a linear mass density of 5 g/m
when it is not stretched. When stretched, its fractional increase of length is
0.1% per newton. How much tension must be applied to the string in order
to make the transmission faster than talking through the air directly? The
speed of sound in the air is 346 m/s. For simplicity in this exercise we ignore
the effect of gravity on the string.

Exercise 3.10. A string is stretched under a tension of 100 newtons. The
linear mass density ρ of the string is a function of x.

ρ(x) =





1 g/m x < 0,
4 g/m 0 ≤ x ≤ L,
1 g/m x > L,

where L is 1 m. A wave incidents from the region of x < 0 and transmits to
the region of x > L. The amplitude of the transmitted wave depends on the
frequency of the wave. If the amplitude of the incident wave in the region
of x < 0 is Ai and the amplitude of the transmitted wave in the region of
x > L is At, the transmittance T is defined by

T =
A2

t

A2
i

.
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Fig. 3.11: Two coupled springs.

Find the frequency of the wave such that the transmittance is 1, i.e., no wave
is reflected.

Exercise 3.11. Two equal masses are connected with two identical massless
springs of spring constant k, as shown in Fig. 3.11. Considering motion in the
vertical direction only, what are the angular frequencies of the two normal
modes? Find the ratio of amplitudes of the two masses in each of the two
modes.

Exercise 3.12. It is well known that the oscillation period of a simple har-
monic oscillator is independent of its oscillation amplitude. This is because
the restoring force of a simple harmonic oscillator is always proportional to
the length of stretching, no matter how long it is stretched. However, in the
real world a spring can break when it is stretched too much, therefore a more
realistic spring may be represented by the following potential function:

V (x) = a(e−2αx − 2e−αx),

where a and α are positive constants. The minimum of V (x) is at x = 0,
hence the position of the mass can oscillate around x = 0. When x →
∞, V (x) → 0, which means there is no restoring force when the spring is
stretched too much. In other words, it is broken. Calculate the oscillation
period of this oscillator as a function of the total energy E, a, and α.



Chapter 4

Statistical and Thermal Physics

4.1 Thermodynamic Variables and Processes

Thermodynamics is the physics about the change of state for macroscopic
systems as a result of energy transfer. A macroscopic system may consist
of many particles, and these particles can be atoms and molecules, or even
stars in a galaxy. Because it is impractical to describe the motion of so many
particles individually, we are concerned only with the state of the macro-
scopic system as a whole. The state of a macroscopic system is described by
thermodynamic variables such as the pressure P , the volume V , the inter-
nal energy U , the temperature T etc. These variables are well defined only
when the macroscopic system is in an equilibrium state. For instance, if we
divide a bottle in vacuum into two cells and put gas into one of them, after
a while the gas will reach a state of equilibrium in which we can measure its
temperature, pressure, volume, etc. If we suddenly remove the dividing wall
between the two cells, the gas will rush into the other cell. After a while a
new equilibrium is reached and we have a new pressure, temperature, and
volume. In this process we know the initial state and the final state of the
gas, but not the states in between. It is not possible to describe the state of
the gas between the initial state and the final state because before reaching
the equilibrium the pressure and temperature of the gas are likely to be dif-
ferent at each different position. In this case we call the process irreversible.
The word “irreversible” does not mean we cannot go back from the final
state to the initial state. It only means we cannot follow the path from the
initial state to the final state reversely, because we do not know the path

129
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in the first place. To know the path, every state of the macroscopic system
in between must be well defined. In order to meet this condition, we must
keep the system in equilibrium all the time. A possible way of doing this is
by changing the system very slowly, so that the system has enough time to
maintain equilibrium all the time. Then the path can be well defined.

A macroscopic system can be described by different thermodynamic vari-
ables in different ways. Thermodynamic variables are not necessarily inde-
pendent of each others. They can be related by some equations of state.
For instance, for the ideal gas we have the equation of state PV = NkT ,
which relates P and V to T . Therefore any two of the three variables P ,
V , and T are sufficient to specify the state of the ideal gas. The existence
of the equation of state allows us to treat one thermodynamic variable as
an implicit function of other thermodynamic variables, hence in analyzing
a thermodynamic problem we may use freely the most convenient variables.
For instance, if the thermodynamic process is under the condition of con-
stant temperature, then choosing temperature to be one of the independent
variables should greatly simplify the analysis.

In physics of few particles, a particle can have kinetic energy and potential
energy, and the energy can be changed by the work of external forces. In a
macroscopic system we must consider an additional form of energy known
as the internal energy. Consider the energy of a bottle of gas. Even though
the bottle itself is not moving, the gas molecules in the bottle is still moving
fast in all directions and thus have kinetic energy. If there are forces between
the molecules, the molecules also have potential energy. The energy of the
molecules is called the internal energy. The fast moving molecules also give
rise to a gas pressure, which can be used to do work. Because energy is
conserved, if the gas does some work to the outside world, it loses some of
its internal energy. But doing work is not the only way for the bottle of gas
to lose energy. If we put the bottle into cold water, the internal energy can
decrease without doing apparent work. Energy can flow out of the bottle by
heat conduction. Taking into consideration of heat conduction, the law of
energy conservation reads

dQ = dU + dW, (4.1)

where dQ is the infinitesimal amount of heat transferred to the system, dU
is the infinitesimal increase of internal energy, and dW is the infinitesimal
amount of work done to the outside world. This is known as the first law
of thermodynamics.
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In addition to the energy conservation law, it is found empirically that
heat cannot be transferred from a low-temperature object to a high-temperature
one without importing work from the outside world. This is known as the
second law of thermodynamics. Imagine how different the world would
be if the second law of thermodynamics could be broken. Then one would
be able to connect a machine between a chunk of ice and a tank of boiling
water to make the ice colder and the water hotter. The machine would not
need any fuel because no work would be required. The boiling water could
be utilized to drive a steam engine doing as much work as we desire, and
the ice could be used to cool our rooms and refrigerators. What a wonderful
world!

Since the work done by the system to the outside world is

∆W =
∫ f

i
P dV, (4.2)

it depends on the path from the initial state i to the final state f . As shown
in Fig. 4.1, the system does more work going through path A than going
through path B. Consequently the amount of heat ∆Q absorbed by the
system also depends on the path from the initial state to the final state. For
this reason neither W nor Q can be treated as a thermodynamic variable.
To be qualified as a thermodynamic variable, the variable must depend only
on the state of the system, not the path leading to the state. Because heat
transfer is the central problem of thermodynamics, the fact that Q is not
a thermodynamic variable causes great inconvenience. As we shall see, this
problem can be solved by introducing a new variable S known as the entropy,
which is qualified as a thermodynamic variable.

4.2 Entropy in Thermodynamics

The concept of entropy was first developed from the study of the efficiency
of Carnot engines. The construction of a Carnot engine is shown in Fig. 4.2.
The engine takes heat Q1 from a reservoir at temperature T1, converts some
of the heat to work W , and dumps the rest of the heat into another reservoir
at temperature T2. After a complete cycle the engine returns to its initial
state. Therefore the internal energy U does not change. By the first law of
thermodynamics, we have

∆Q = Q1 −Q2 = ∆U + W = W. (4.3)
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Fig. 4.1: Two paths with the same initial state and final state but exporting
different amount of work.

If W > 0, we must have T1 > T2. Otherwise we can use friction to convert the
work back into heat at the reservoir of temperature T2. Then the net effect
will be transporting heat from a lower-temperature reservoir to a higher-
temperature one. This violates the second law.

The efficiency of a Carnot engine is defined by

η =
W

Q1

=
Q1 −Q2

Q1

= 1− Q2

Q1

, (4.4)

where W is the work done by the engine and Q1 is the heat absorbed. From
the second law of thermodynamics, η must be smaller than 1, otherwise we
can use the engine to absorb heat Q1 from a reservoir and convert all the
heat to work. By friction, the work can be converted back to heat at another
reservoir which has a higher temperature. Then again the net effect will be
transporting heat from a lower-temperature reservoir to a higher-temperature
one, which violates the second law.

A reversible Carnot engine is one that can either absorb heat Q1 at T1,
release heat Q2 at T2, while exporting work W , or reversely absorb heat Q2

at T2, release heat Q1 at T1, while importing work W . If we connect two
identical reversible Carnot engines together and let one export work to drive
the other in the reverse direction, the net effect will be nothing happens.
However, because friction in the engines will convert some work into heat,
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Fig. 4.2: A model of thermal engines.

if we use one Carnot engine to drive another in the reverse direction, it is
unavoidable that some heat flows from T1 to T2. This makes the engines
irreversible. Therefore in reality there is no reversible engine. Theoretically
we can imagine an engine with almost no friction. Such an engine is almost
reversible.

Let us combine an irreversible Carnot engine and a reversible Carnot
engine, and investigate the efficiency of the combined engine. Let engine
A be the irreversible engine and B be the reversible engine running in the
reverse direction. All the work produced by engine A will be used to drive
engine B reversely, as shown in Fig. 4.3. The heat absorbed by the combined
engine at T1 is QA1 − QB1, and the heat released by the combined engine
at T2 is QA2 − QB2, while the net production of work is 0. The first law of
thermal dynamics requires that QA2 − QB2 = QA1 − QB1. Let us assume
T1 > T2. Because heat can only flow from the reservoir at temperature T1 to
the reservoir at temperature T2, we have QA1 ≥ QB1, which means

ηB =
W

QB1

≥ W

QA1

= ηA. (4.5)

In other words, the efficiency of a reversible Carnot engine is higher than
that of any irreversible Carnot engine. If engine A is also reversible, we can
reverse the roles of the two engines to obtain ηA ≥ ηB. Therefore any two
reversible Carnot engines have the same efficiency.
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Fig. 4.3: A reversible engine driven by an irreversible engine.

Let us use the compression and expansion of the ideal gas to construct
an ideal Carnot engine, and see how large the efficiency can be. The cycle
of the engine consists of four stages as shown in Fig. 4.4. In the first stage
the gas is kept in thermal contact with a reservoir at T1. The heat absorbed
from the reservoir makes the gas expand and do positive work. In the second
stage the gas is thermally isolated from the environment while continuing
expanding and doing positive work. In the third stage the gas is kept in
thermal contact with a reservoir at T2. The heat released to the reservoir
makes the gas compress and do negative work. In the fourth stage the gas is
thermally isolated from the environment while continuing compressing and
doing negative work.

Experimentally it is found that the ideal monoatomic gas has the following
equations of state,

PV = NkT, (4.6)

U =
3

2
NkT, (4.7)

and as we shall see, these equations of state can be well explained by the
kinetic theory of gases. Therefore in the first stage the work done by the gas
is

∫ V2

V1

P dV =
∫ V2

V1

NkT1

V
dV = NkT1 ln

(
V2

V1

)
. (4.8)
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Fig. 4.4: A Carnot cycle based on expansion and compression of an ideal gas.

Since the temperature of the gas does not change, ∆U = 0. The absorbed
heat is also equal to NkT1 ln(V2/V1). In the second state, the volume of the
gas continues to increase from V2 to V3. This time we have

∫ V3

V2

P dV =
∫ T2

T1

−dU = −
∫ T2

T1

3

2
d(NkT ) =

3Nk

2
(T1 − T2). (4.9)

Similarly, in the third stage the absorbed heat which is equal to the work
done is

∫ V4

V3

P dV = NkT2 ln(V4/V3). (4.10)

The work done in the fourth stage is 3Nk(T2−T1)/2, which cancels the work
done in the second stage. The efficiency of the engine is

η = 1 +
T2 ln(V4/V3)

T1 ln(V2/V1)
. (4.11)

During the second and the fourth stages, the gas expands without ab-
sorbing heat. The equation for this process is

0 = PdV + dU = PdV +
3

2
d(PV ) =

5

2
PdV +

3

2
V dP. (4.12)

By separation of variables, we have

5

3

dV

V
= −dP

P
. (4.13)
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After integration, we have

PV
5
3 = c, (4.14)

where c is a constant. This is the equation for the adiabatic expansion of the
ideal gas. Eq. (4.14) can also be written as

NkTV
2
3 = c. (4.15)

Hence

ln V =
3

2
ln

(
c

NkT

)
. (4.16)

This gives the relation between V2, V3 and V4, V1.

ln V3 − ln V2 =
3

2
(ln T1 − ln T2) = −(ln V1 − ln V4). (4.17)

Substituting in Eq. (4.11), we have

η = 1− T2

T1

. (4.18)

Because all the reversible Carnot engines have the same efficiency, this is the
universal efficiency of reversible Carnot engines. Because

η = 1− Q2

Q1

, (4.19)

Eq. (4.18) can also be written as

Q1

T1

=
Q2

T2

. (4.20)

For any Carnot engine we have η = 1−Q2/Q1 ≤ 1− T2/T1, therefore

Q1

T1

≤ Q2

T2

, (4.21)

where the equal sign applies only to reversible Carnot engines.

Let us define a cyclic process to be one that starts from a thermodynamic
state and ends in the same state. Consider a system Γ going through a cyclic
process that absorbs heat Q from the environment in which the temperature
is not kept constant. Let us construct the process from a sequence of small
component processes, such that each component process absorbs heat Q

(in)
i
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or releases heat Q
(out)
i at temperature Ti. For each component process, let us

use a reversible Carnot engine to supply Q
(in)
i or absorb Q

(out)
i as shown in

Fig. 4.5. Each reversible Carnot engine is constructed in the following way:
If the component process absorbs heat, the engine runs between temperature
T1 and Ti, where T1 is the temperature of a reservoir and T1 > Ti. On the
contrary, if the component process releases heat, the engine runs between
temperature Ti and T2, where T2 is the temperature of another reservoir and
Ti > T2. Let us separate the two groups of engines and label them by group
G1 and group G2. For the G1 engines, the engine absorbs heat Q

(1)
i from a

reservoir kept at T1, and releases heat Q
(in)
i to the component process at Ti.

From Eq. (4.21) we have

Q
(1)
i = T1

Q
(in)
i

Ti

. (4.22)

Therefore the total amount of heat absorbed from the reservoir at T1 is

Q(1) =
∑

i∈G1

Q
(1)
i = T1

∑

i∈G1

Q
(in)
i

Ti

. (4.23)

Similarly, for the G2 engines the engine absorbs heat Q
(out)
i from the com-

ponent process at Ti and releases heat Q
(2)
i to a reservoir kept at T2. From

Eq. (4.21) we have

Q
(2)
i = T2

Q
(out)
i

Ti

. (4.24)

Therefore the total amount of heat released to the reservoir at T2 is

Q(2) =
∑

i∈G2

Q
(2)
i = T2

∑

i∈G2

Q
(out)
i

Ti

. (4.25)

Let us treat Γ and the reversible Carnot engines all together as a composite
engine. The net effect of the composite engine is that it absorbs heat Q(1)

from a reservoir at T1 and releases heat Q(2) to another reservoir at T2. From
Eq. (4.21) we have

Q(1)

T1

≤ Q(2)

T2

. (4.26)

We may define a positive ∆Q to be the heat absorbed by a system and a
negative ∆Q to be the heat released. Under this notation we have ∆Qi =
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Fig. 4.5: A thermodynamic cycle in which the heat transfer is supplied by
Carnot engines.

Q
(in)
i for i ∈ G1 and ∆Qi = −Q

(out)
i for i ∈ G2. Then the net result can be

written as

∑

i

∆Qi

Ti

≤ 0. (4.27)

Let the number of component processes approach infinity. We have

∮ dQ

T
≤ 0, (4.28)

where the equal sign holds when the composite engine is reversible. Because
each engine of the composite engine is reversible, the equal sign holds when
the cyclic process of Γ is reversible.

Since

∮ dQ

T
= 0 (4.29)

for a reversible cyclic process, we may define a new variable S, which is a
function of the thermodynamic state a, by

S(a) =
∫ a

o

dQ

T
, (4.30)
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where o is an arbitrary reference state. From Eq. (4.28) we have

∫ a

o

dQ

T
+

∫ b

a

dQ

T
+

∫ o

b

dQ

T
≤ 0 (4.31)

for any integration path connecting o, a, b. Therefore we have

S(b)− S(a) ≥
∫ b

a

dQ

T
(4.32)

for any two arbitrary states a and b, where the equal sign applies to reversible
processes. For an isolated system dQ = 0, we have

S(b) ≥ S(a). (4.33)

This means the entropy of an isolated system can only increase.

We started from the second law of thermodynamics, which states that
heat cannot flow from a place of lower temperature to a place of higher
temperature in an isolated system, and arrived at the statement that the
entropy of an isolated system can only increase. Conversely, if heat Q could
flow from a place of lower temperature to a place of higher temperature, we
would have

∆S =
Q

T1

− Q

T2

< 0. (4.34)

Therefore, that the entropy of an isolated system can only increase is an
equivalent statement of the the second law of thermodynamics.

As an example, let us calculate ∆S for an ideal gas when its volume
is changed from Va to Vb while its temperature is changed from Ta to Tb.
Substituting U = 3NkT/2 and P/T = Nk/V into

∆S =
∫ b

a

dQ

T
=

∫ b

a

dU

T
+

∫ b

a

PdV

T
, (4.35)

we have

∆S =
∫ b

a

3Nk

2

dT

T
+

∫ b

a
Nk

dV

V

=
3Nk

2
(ln Tb − ln Ta) + Nk(ln Vb − ln Va). (4.36)

In other words,

S(T, V ) =
3Nk

2
ln T + Nk ln V − C, (4.37)
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where C is a constant assigned to be the entropy of the reference state a. We
may also write S as a function of U and V ,

S(U, V ) =
3Nk

2
ln U + Nk ln V − C ′, (4.38)

where again C ′ is assigned to be the entropy of the reference state a.

From the definition of S we have

dQ = TdS. (4.39)

This simple relation looks as if Q and S are related by a change of variable.
It is not. This is because T is not a function of S only; it depends on other
thermodynamic variable too. As we have seen, S is uniquely defined for each
thermodynamic state up to a constant, whereas it is not possible to assign a
unique Q to a thermodynamic state. How much heat a system has absorbed
depends on the history of the system. It is not a conserved quantity because
a system can do work to the outside world. Mathematically we can say 1/T
is an integration factor of dQ. By multiplying dQ with 1/T , we obtain an
integrable differential form dS.

4.3 Thermodynamic Potentials

With dQ = TdS the first law of thermodynamics reads

dU = TdS − PdV. (4.40)

This is a differential form which signifies that U is a function of S and V .
Since

dU =

(
∂U

∂S

)
dS +

(
∂U

∂V

)
dV, (4.41)

by comparison we have

(
∂U

∂S

)

V

= T,

(
∂U

∂V

)

S

= −P. (4.42)
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For isolated systems, no work is done and no heat is transported to the
outside world, hence dU = 0. If the volume is allowed to change while no
heat can flow in or out, we have

dU + PdV = 0. (4.43)

In analogy to the conversion between potential energy φ and work W repre-
sented by the equation dφ + dW = 0, we see that U is the potential energy
of a system when it is thermally isolated.

For open systems, it is not always convenient to choose S and V as the
thermodynamic variables because heat can flow in and out and volume can
change. As a result, dS and dV are not zero. For example, chemical reaction
usually occurs under constant P and T . In order to maintain constant T and
P , the system must be allowed to exchange heat with the outside world and
adjust its volume. In this case it would be more convenient to use P and T
as the thermodynamic variables because they are constants. What will the
first law become when P and T are used as the thermodynamic variables?
Let us consider first the Helmholtz free energy defined as A = U−TS. From
this definition we have

dA = dU − TdS − SdT = −dW − SdT = −PdV − SdT. (4.44)

This is a differential form signifying that A is a function of T and V , and
therefore we have

(
∂A

∂V

)

T

= −P,

(
∂A

∂T

)

V

= −S. (4.45)

For a reversible process that occurs at constant T and V , A does not change.
If the volume is allowed to change while temperature is kept constant, we
have

dA + PdV = 0 (4.46)

at constant temperature. In analogy to the conversion between potential
energy φ and work W represented by the equation dφ+dW = 0, we see that
A is the potential energy of a system when the temperature of the system is
kept constant.

Consider an irreversible process pir that brings the system from state
s1 to state s2 at constant temperature, and the process does an amount of
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work ∆Wir to the outside world which is also kept at the same constant
temperature. The change of Helmholtz free energy is As2 − As1 ≡ ∆Ar

We may bring the system back from s2 to s1 by a reversible process pr

at the same constant temperature. In this process the work ∆Wr done to
the outside world plus the change of Helmholtz free energy is zero, hence
∆Wr = −(As1 − As2) = ∆Ar. To ensure that the temperature does not
change, the two processes are carried out under a close contact with a thermal
reservoir of temperature T . The work done by the combined process pir + pr

is equal to ∆Wir − (As1 − As2). This work cannot be positive because if
so we are converting heat drawn from a thermal reservoir at temperature
T completely into work. This violates the second law of thermodynamics.
Therefore

∆Wir + ∆Ar ≤ 0. (4.47)

As we have mentioned, ∆Wir is the amount of work done to the outside
world when the state of the system is changed from s1 to s2. Since the
outside world is also kept at a constant temperature T , if we use this amount
of work to change the state of the outside world in a reversible way, the
change of Helmholtz free energy for the outside world is

∆Aoutside = −(−∆Wir) = ∆Wir. (4.48)

Note that in this case the work done by the outside world is −∆Wir. Conse-
quently, the total change of Helmholtz free energy ∆A is

∆A = ∆Aoutside + ∆Ar ≤ 0. (4.49)

In other words, when a system undergoes an internal irreversible process at
a constant temperature T , we have ∆A < 0. In comparison, when a system
undergoes an internal irreversible process at a constant internal energy U ,
we have ∆S > 0. If a system is not initially in equilibrium, it can move
toward equilibrium through irreversible processes. If the irreversible process
is carried out under the constraint ∆U = 0, we see that the entropy change
∆S is positive until the system reaches equilibrium. Therefore we say at
equilibrium the entropy S reaches maximum. Similarly, if the irreversible
process is carried out under the constraint ∆T = 0, we have ∆A < 0 until the
system reaches equilibrium. Therefore we say at equilibrium the Helmholtz
free energy A reaches minimum.

We can move a step further to define the Gibbs free energy as G =
U − TS + PV . From this definition we have

dG = dU − TdS − SdT + PdV + V dP



4.3. Thermodynamic Potentials 143

= −dW + PdV − SdT + V dP

= −SdT + V dP. (4.50)

This is a differential form signifying that G is a function of T and P , and
therefore we have

(
∂G

∂T

)

P

= −S,

(
∂G

∂P

)

T

= V. (4.51)

For a reversible process that occurs at constant T and P , G does not change.
For an irreversible process, from Eqs. (4.46) and (4.49) we have

∆Aoutside ≤ −∆Ar. (4.52)

For constant P , ∆(PV ) = P∆V , hence ∆G = ∆A + P∆V . Consequently

∆Aoutside + P∆Voutside ≤ −∆Ar − P∆Vsystem, (4.53)

where ∆Voutside is the change of volume of the outside world, ∆Vsystem is the
change of volume of the system, and ∆Voutside = −∆Vsystem. This means the
total change of the Gibbs free energy ∆G satisfies ∆G ≤ 0. Therefore we say
at equilibrium the Gibbs free energy G reaches minimum when temperature
and pressure are both kept constant.

Another useful thermodynamic variable is the enthalpy defined by H =
U + PV . From this definition we have

dH = dU + PdV + V dP = TdS + V dP. (4.54)

This is a differential form signifying that H is a function of S and P , and
therefore we have

(
∂H

∂S

)

P

= T,

(
∂H

∂P

)

S

= V. (4.55)

At constant pressure dH = TdS = dQ, hence H is commonly used to specify
the heat absorbed in chemical reactions under constant pressure.
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4.4 Kinetic Theory of Ideal Gas

Daniel Bernoulli was the person who first gave a correct analysis of the
properties of gases in terms of the motion of their constituent molecules.
At that time (1738), the concept of atoms and molecules was far from being
mature, and there had been no experimental evidence of their existence. The
theory is completely a result of Bernoulli’s creative thinking.

Consider the statistical distribution of gas particles in a closed rectangular
box. The number of particles with velocity around v is

dN

N
= f(v)d3v, (4.56)

where f(v) is the distribution function that satisfies

∫
f(v)d3v = 1. (4.57)

Assume the length of the box is L and the area of the wall in the x-direction
is A. Within a time interval ∆t, the impulse produced by this group of
particles bouncing against the wall in the x-direction is

dFx∆t = 2mvxdN, (4.58)

where ∆t = L/vx. The total force on the wall produced by all particles with
all velocities is

Fx =
2mN

L

∫

vx>0
v2

xf(v)d3v. (4.59)

Since by symmetry f(v) = f(−v), Eq. (4.59) can be written as

Fx =
mN

L

∫

all vx

v2
xf(v)d3v

=
mN

L
v2

x, (4.60)

where v2
x denotes the average of v2

x. Since v2 = v2
x +v2

y +v2
z and v2

x = v2
y = v2

z ,
Eq. (4.60) can be written as

Fx =
mN

3L
v2. (4.61)
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Dividing both sides by A and noting that AL = V is the volume of the gas,
we have

PV =
2N

3
E, (4.62)

where E is the average kinetic energy of the gas particles. Comparing with
the empirical law of ideal gas

PV = NkT, (4.63)

we have

E =
3kT

2
. (4.64)

Eq. (4.64) establishes a connection between heat and the internal motion
of matter. This concept was well ahead of its time, as we note that the
transformation of mechanical energy to heat by friction had not become
clear until a century later.

Let us consider the form of f(v). By symmetry f(v) cannot depend on
the direction of v, therefore f(v) = f(v2) = f(v2

x + v2
y + v2

z). Since vx, vy,
and vz are independent random variables, we may decompose the distribution
function f(v2) into g(v2

x)g(v2
y)g(v2

z). By symmetry, the distribution functions
of v2

x, v2
y, and v2

z are all the same function g. Let vy = vz = 0, we have
f = cg, where c is a constant.

cg(v2
x + v2

y + v2
z) = g(v2

x)g(v2
y)g(v2

z). (4.65)

If a function F satisfies F (x + y) = cF (x)F (y), we may take the derivative
of both sides with respect to x, then let x = 0. This leads to F ′(y) =
cF ′(0)F (y). Integrating it with respect to y, we have F (y) = aeby, where a
and b are constants. With this observation in mind, we see f(v2) = aebv2

,
where a and b are constants to be determined by the following equations:

∫
f(v2)d3v = 1. (4.66)

∫
v2f(v2)d3v =

3kT

m
. (4.67)

Before computing the two integrals in Eqs. (4.66) and (4.67), let us first
evaluate

I0 =
∫ ∞

−∞
e−x2

dx. (4.68)
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We may write

I2
0 =

∫ ∞

−∞
e−(x2+y2) dxdy =

∫ ∞

0

∫ 2π

0
e−r2

r dφdr = π. (4.69)

Hence I0 =
√

π. Then we evaluate

I2 =
∫

x2e−x2

dx (4.70)

using integration by parts. Let u = x, dv = xe−x2
dx.

∫
x2e−x2

dx =
∫ e−x2

2
dx =

√
π

2
. (4.71)

From the value of I0 and I2, we have

g(vx) =

√
m

2πkT
exp

(
−mv2

x

2kT

)
, (4.72)

and

∫
f(v)d3v =

∫ (
m

2πkT

) 3
2

exp

(
−mv2

2kT

)
d3v

=
∫ (

m

2πkT

) 3
2

exp

(
−mv2

2kT

)
4πv2dv. (4.73)

This distribution was first derived by James Clerk Maxwell, and now is known
as the Maxwell distribution. We may express the Maxwell distribution in

terms of energy. Then we have v =
√

2E/m and

f(E) dE =
2√
π

(
1

kT

) 3
2 √

E exp
(
− E

kT

)
dE. (4.74)

Note that f(E) is independent of the mass of the gas particles.

In the discussion above, we have assumed the gas particle distribution is
uniform in space. This is true when the gas is not under the influence of an
external force. If the gas is pushed by an external force, the particle moves
along the direction of the force. As a result, the pressure builds up against
the force until the balance is reached. Because the pressure is proportional
to density, there will be a density gradient in the direction of the external
force. In that case, we may no longer assume the density is independent of
position. The law of ideal gas now reads

P (r) = ρ(r)kT. (4.75)
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Consider a thin layer of gas pushed by a conservative force −∇φ(r). Let us
assume the normal vector of the layer is in the same direction as the force.
The thickness of the layer is dx and the area is A. At equilibrium we have

−N∇φ(r) = ∇P (r)Adx = ∇ρ(r)kTAdx, (4.76)

where N is the total number of gas particles in the layer. Noting that
N/(Adx) = ρ(r), we have

∇ρ(r)

ρ(r)
=
−∇φ(x)

kT
. (4.77)

Therefore

ρ(r) = ρ0 exp

[−φ(r)

kT

]
. (4.78)

Combining with Eq. (4.73), we have the phase-space distribution function

F (r,v) = ρ0

(
m

2πkT

) 3
2

exp


−

mv2

2
− φ(r)

kT


 . (4.79)

4.5 Diffusion

In the center of a large room if a droplet of perfume is released, it takes a
long while for people at the corner of the room to notice. The farther one
is away from the source of the perfume, the later one detects the fragrance.
Although the average speed of gas molecule can be as large as several hundred
meters per second, the fragrant molecules cannot go straight to the someone’s
nose. In the process of reaching the nose, the molecules suffer from many
random collisions with other gas particles. Each collision randomly changes
the direction of moving. Therefore the migration of the molecules is like a
random walk, which takes much longer time to go far than straight movement
does. As a matter of fact, the transport of fragrant molecules in the real
world is mainly by convective air current. If there exists no air current, it
would take several hours for a significant fraction of the fragrant molecules
to wander a distance of just one meter.

Consider two neighboring regions defined by two slabs. Slab A is at
position x + ∆x and slab B at position x. Because gas particles in these
two slabs move in random directions, the chance for a particle to move from
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slab A to slab B is equal to the chance for a particle to move from slab B
to slab A. However, if the total number of particles in slab A is different
from that in slab B, the net flux from A to B is not zero. The flux from
A to B is proportional to NATA→B, while from B to A is proportional to
NBTB→A, where NA and NB are the number of particles in slab A and slab
B respectively, and TA→B=TB→A is the transition probability. The net flux
from A to B is simply proportional to NA −NB. In a general mathematical
expression one can write

J(r, t) = −D∇ρ(r, t), (4.80)

where J(r, t) is the flux vector, and ρ(r, t) is the density distribution. The
proportional constant D is called the diffusion constant.

In the migration process, the number of gas particles in any volume el-
ement is conserved. Consider a box at r0 with sides equal to ∆x, ∆y, and
∆z. Within a time ∆t, the number of particles flowing into the cell in the
x-direction is equal to Jx(r0, t)∆y∆z∆t, and the number of particles flowing
out of the cell in the x-direction is equal to Jx(r0 + ∆x, t)∆y∆z∆t. The net
accumulation of particles is

∆n = Jx(r0, t)∆y∆z∆t− Jx(r0 + ∆x, t)∆y∆z∆t. (4.81)

Dividing both sides by ∆V ≡ ∆x∆y∆z and ∆t, in the infinitesimal limit we
have

∂ρ

∂t
= −∂Jx

∂x
. (4.82)

Taking into account the flows in the y- and z-directions, we have

∂ρ

∂t
= −

(
∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z

)
. (4.83)

Namely,

∇ · J(r, t) +
∂ρ(r, t)

∂t
= 0. (4.84)

This is known as the continuity equation. Combining Eqs. (4.80) and
(4.84), we have

−D∇2ρ(r, t) +
∂ρ(r, t)

∂t
= 0. (4.85)
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This is known as the diffusion equation.

Given an initial density distribution ρ(r, 0), what is the density distribu-
tion ρ(r, t)? The problem can be solved by Fourier analysis. Let

ρ(r, t) =

(
1√
2π

)3 ∫
ρ̃(k, t) exp(ik · r)d3k. (4.86)

Substituting it into the diffusion equation, we have

Dk2ρ̃(k, t) = −∂ρ̃(k, t)

∂t
. (4.87)

Hence
ρ̃(k, t) = ρ̃(k, 0)e−Dk2t. (4.88)

Because ρ̃(k, 0) can be obtained from the initial condition ρ(r, 0), ρ̃(k, t) is
solved. Namely

ρ̃(k, t) =

(
1√
2π

)3 ∫
ρ(r, 0) exp(−ik · r)d3r · e−Dk2t. (4.89)

Let us assume the initial distribution of the fragrant gas is

ρ(r, 0) =
ρ0

(2π)
3
2 σ3

exp

(
− r2

2σ2

)
. (4.90)

Then

ρ̃(k, 0) =
ρ0

(2π)
3
2 σ3

(
1√
2π

)3 ∫
exp

(
− r2

2σ2

)
exp(−ik · r)d3r

=
ρ0

(2π)
3
2

exp

(
−k2σ2

2

)
. (4.91)

ρ̃(k, t) =
ρ0

(2π)
3
2

exp

[
−k2

(
σ2

2
+ Dt

)]
. (4.92)

ρ(r, t) =

(
1√
2π

)3 ∫ ρ0

(2π)
3
2

exp

[
−k2

(
σ2

2
+ Dt

)]
exp(ik · r)d3k

=
ρ0

(2π)
3
2 (σ2 + 2Dt)

3
2

exp

(
− r2

2σ2 + 4Dt

)
. (4.93)

We see that the fragrant gas expands from its initial radius σ (defined by the
standard deviation of the Gaussian distribution) to

√
σ2 + 2Dt after time t.
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4.6 Random Walk

Consider a drunken man walking in a large empty field. For each step i,
it takes time ti to complete the walk. The position changes by ri, and the
direction is randomly chosen. After n steps the distance Rn from the origin
is

R2
n =

∣∣∣∣∣
n∑

i=1

ri

∣∣∣∣∣
2

=
n∑

i=1

|ri|2 +
∑

i 6=j

2ri · rj. (4.94)

The expectation value of R2
n is

E
(
R2

n

)
= nE

(
|r|2

)
= nr2, (4.95)

because
∑

i 6=j 2ri · rj averages to zero. The time it takes to walk so far is
t =

∑n
i ti, and its expectation value is nE(t) = nt. Let us model the gas

diffusion process by random walk. We call
√

r2 the mean-free path lm and t
the mean-free time tm. The mean-square range of diffusion as a function of
time is

R(t)2 = nl2m =
tl2m
tm

. (4.96)

Since Eq. (4.93) is the density distribution of the gas at time t as a result of
diffusion, if the probability distribution of the position of a gas molecule at
t = 0 is

P (r, 0) = δ(r) = lim
σ→0

1

(2π)
3
2 σ3

exp

(
− r2

2σ2

)
, (4.97)

the probability P (r, t) of finding a gas molecule at time t and at |r| = r is
proportional to exp[−r2/(4Dt)]. The mean-square distance from the origin
is

R(t)2 =

∫∞
0 r2 exp

(
− r2

4Dt

)
4πr2 dr

∫∞
0 exp

(
− r2

4Dt

)
4πr2 dr

= 6Dt. (4.98)

The integrals in the above equation can be evaluated by the formula in
Eq. (1.247). Hence we have

D =
l2m
6tm

. (4.99)
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It is tantalizing to identify

lm
tm

= v, (4.100)

where v is the average velocity

v =
∫ ∞

0

(
m

2πkT

) 3
2

v exp

(
−mv2

2kT

)
4πv2dv

=

√
8kT

πm
. (4.101)

Note that the evaluation of such integrals can be found in Eq. (1.388). How-
ever, because lm is the root-mean-square displacement instead of the mean
displacement, Eq. (4.100) is not exact. Bearing this in mind, we may write

D ≈ lm
6

√
8kT

πm
=

lm
3

√
2P

πρm

, (4.102)

where P is the pressure and ρm is the mass density of the gas. By measuring
the diffusion constant, one can estimate lm from Eq. (4.102).

Let us use a hard sphere model to describe the gas particle and consider
its cross section in collision. Although the physical cross section of a sphere
is πa2, where a is the radius of the sphere, the effective cross section in
collision is larger. As a matter of fact, two spheres start to touch each
other when their distance is 2a. Therefore the collisional cross section is
4πa2 and the average volume a particle occupies is 4πa2tmvr, where vr is the
average relative velocity between two colliding particles. The mathematical
expression for vr is

vr =
∫
|v1 − v2|f(v1)f(v2)d

3v1d
3v2, (4.103)

which can be calculated from the Maxwell distribution by changing variables:

vd =
1√
2

(v1 − v2) ,

vs =
1√
2

(v1 + v2) . (4.104)

We have

vr =
∫
|v1 − v2|f(v1)f(v2)d

3v1d
3v2 =

√
2

∫
|vd|f(vs)f(vd)d

3vdd
3vs

=
√

2 v. (4.105)
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Hence the average volume occupied by a particle is 4
√

2πa2tmv ≈ 4
√

2πa2lm,
and the number density of the gas is ρg ≈ 1/(4

√
2πa2lm). We can compare

it with the number density of the same gas particle in the liquid or solid
form. Assume in the liquid or solid form the number density ρc is close to
that of the ideal close-packing of spheres, namely ρc =

√
2/(8a3). Let Vg be

the volume per mole for the gas (≈ 22.4 l), and Vc be the volume per mole
for the liquid or solid form. These two numbers are not difficult to measure.
We can obtain a by

ρg

ρc

=
Vc

Vg

≈ a

πlm
. (4.106)

The number of particles per mole, the Avogadro’s number NA, is then

NA ≈ Vg

4
√

2πa2lm
. (4.107)

4.7 Boltzmann Distribution

In a typical macroscopic system, the number of equations that govern the
motion of the constituent atoms or molecules can be as large as 1023. These
equations are coupled to each others as a result of interaction between de-
grees of freedom. Even if such a large number of equations can be solved by
some supercomputer in the future, there will be too much information, useful
or not, in the solutions to be digested by a human being. In most cases, we
are not so concerned with the individual dynamics of each degree of freedom.
Instead, we are concerned with the average dynamics of the system. The key
point is that each macroscopic state of matter corresponds to an extremely
large number of microscopic states. Some macroscopic states are more prob-
able than others because they correspond to a larger number of microscopic
states. In order to find an economic way to connect macroscopic states with
microscopic states, Boltzmann postulated that for an interactive system at
equilibrium, the system has an equal probability in every microscopic state.
This revolutionary idea led to a powerful method—statistical mechanics.

Let us denote pi the probability of the ith microscopic state and Tij the
transition probability from state j to i. Since the equations of motion for the
microscopic degrees of freedom are time-reversible, we may assume Tij = Tji.
The rate of change of pi can be written as

dpi

dt
=

∑

j

Tijpj −
∑

j

Tjipi =
∑

j

Tij(pj − pi). (4.108)
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Let us define a quantity s by

s ≡ −∑

i

pi ln pi, (4.109)

then we have

ds

dt
= −∑

i

dpi

dt
(1 + ln pi). (4.110)

Substituting Eq. (4.108) in, we have

ds

dt
= −∑

ij

Tij(pj − pi)(1 + ln pi). (4.111)

Since i, j are dummy indices, we may exchange them to get

ds

dt
= −∑

ij

Tij(pi − pj)(1 + ln pj)

= −∑

ij

Tij(pj − pi)(−1− ln pj). (4.112)

Adding these two equations, we have

ds

dt
= −1

2

∑

ij

Tij(pj − pi)(ln pi − ln pj). (4.113)

Since the right-hand side of Eq. (4.113) is always positive, we conclude that
s always increases with time. Since pi are constrained by the condition∑

i pi = 1, we can find the maximum of s by the method of Lagrange’s
multipliers. Namely

∂s

∂pi

+ λ
∂

∂pi


∑

j

pj − 1


 = − ln pi − 1 + λ = 0, (4.114)

where λ is the Lagrange’s multiplier associated with the constraint
∑

i pi = 1.
Eq. (4.114) leads to the conclusion that as t → ∞, pi = pj for any i, j.
Namely the probability of every microscopic state is the same.

We may look at I ≡ e−s as the amount of information we have at hand. If
we know the system is exactly in the mth state, we have the full information
about the system. In this case pm = 1, pi = 0 for i 6= m, therefore s = 0, I =
1. If every state has the same probability then we have the least information
about the system. In this case pi = 1/N , s = ln N , therefore I = 1/N , where
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N is the total number of microscopic states. Because we cannot keep track
of all the state transitions, as time goes by information is lost. That is, s
increases with time.

Let us consider a macroscopic system made of a large number of micro-
scopic parts, each of which is characterized by its microscopic state. For
simplicity, let us distinguish the microscopic states only by their energy Ei.
Assume there are ni microscopic systems, each of energy Ei. One has

∑

i

ni = N, (4.115)

∑

i

niEi = E, (4.116)

where N is the number of microscopic systems and E is the total energy. For
each set {ni} there are Γ({ni}) ways of constructing the macroscopic system.

Γ({ni}) =
N !∏
i ni!

. (4.117)

We may refer to of each the Γ({ni}) ways as a microscopic state of the macro-
scopic system. In Eq. (4.114) we have shown that as t →∞ the probability
of every microscopic state is the same, hence a set {nk} is less probable than
another set {nl} if Γ({nk}) is smaller than Γ({nl}). Consequently the most
probable distribution of {ni} is the one that maximizes Γ under the constraint
of Eqs. (4.115) and (4.116). By the method of Lagrange multipliers

∂

∂ni

[
ln Γ({ni}) + α(N −∑

i

ni) + β(E −∑

i

niEi)

]
= 0. (4.118)

Using Stirling’s approximation ln N ! ≈ N ln N −N ,

ln Γ({ni}) ≈ N ln N −∑

i

ni ln ni. (4.119)

Eq. (4.118) becomes

−(ln ni + 1)− α− βEi = 0, (4.120)

hence ni ∝ exp(−βEi), which means the probability of finding a microscopic
system with energy Ei is proportional to exp(−βEi).

Now consider two macroscopic systems, the total number of ways of con-
structing the two systems is Γ({ni}) = Γ1({n1i})Γ2({n2i}). If they are iso-
lated, the individual distributions are determined by

∂

∂n1i

[
ln Γ1({n1i}) + α1

(
N1 −

∑

i

n1i

)
+ β1

(
E1 −

∑

i

n1iE1i

)]
= 0

(4.121)
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and

∂

∂n2i

[
ln Γ2({n2i}) + α2

(
N2 −

∑

i

n2i

)
+ β2

(
E2 −

∑

i

n2iE2i

)]
= 0

(4.122)
respectively. If the two systems are brought to thermal equilibrium, there
is only one constraint of total energy,

∑
i n1iE1i +

∑
i n2iE2i = E, instead of

two independent energy constraints
∑

i n1iE1i = E1,
∑

i n2iE2i = E2. Fewer
constraints mean more possibility. Therefore we have Γeq ≥ Γiso. Equality
occurs only if β1 = β2 initially. This means when a system approaches
equilibrium, ln Γ increases until the β of each of its parts becomes equal.
This is a strong indication that ln Γ is related to entropy and β is a measure
of temperature.

Let us investigate the relation between ln Γ and the internal energy of the
system. The internal energy U of the system is U =

∑
i niEi, and

dU =
∑

i

Eidni +
∑

i

nidEi. (4.123)

On the right-hand side the first term is the change of thermal energy because
dni changes the state distribution of the system. In contrast, the second
term does not change the state distribution, instead it changes uniformly the
energy of all the microscopic systems in the same state i. Such an energy
change is produced by adiabatic macroscopic external forces. Therefore the
second term is the work done by external forces. From

ln Γ = N ln N −∑

i

ni ln ni, (4.124)

and

ni =
Ne−βEi

Q
, (4.125)

Q =
∑

i

e−βEi , (4.126)

we have

d ln Γ = −∑

i

(ln ni + 1)dni

= −∑

i

(ln N − βEi − ln Q + 1)dni. (4.127)

Because ln N − ln Q + 1 is a constant and
∑

i dni = dN = 0, we have

d ln Γ =
∑

i

βEidni. (4.128)
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In other words,

d ln Γ

β
= d

(∑

i

Eini

)
−∑

i

nidEi = dU + dW, (4.129)

where dW is the work done by the system to the outside world. Compar-
ing with the first law of thermodynamics dU = dQ − dW , and noting the
definition dQ = TdS, we have

S = k ln Γ, (4.130)

β =
1

kT
. (4.131)

Eq. (4.130) relates the number of microscopic states Γ to the macroscopic
quantity S, and Eq. (4.131) yields

ni ∝ exp
(
− Ei

kT

)
, (4.132)

which is known as the Boltzmann distribution.

Using Eq. (4.119), and the fact
∑

i ni = N , we have

S

N
= −k

∑

i

ni

N
ln

(
ni

N

)
. (4.133)

If we interpret ni/N as the probability in the state i, according to Eq. (4.113),
S/N always increases with time. We see that statistical mechanics provides
a clear way to understand the second law of thermodynamics from a micro-
scopic point of view.

By calculating Γ as a function of macroscopic variables, such as the energy
E, the volume V etc., one can obtain the entropy function S(E, V ). From
S(E, V ) one can obtain the equation of macroscopic state. This is how
statistical mechanics works. As an example, let us derive the equation of
state for the ideal gas. Envision N independent particles in a box of volume
V . For each particle the number of possible states is proportional to V .
Because the particles move independently, the number of microscopic states
for the whole system is proportional to V N . In addition, the particles can
have different momenta subjected to the constraint

3N∑

i=1

p2
i /(2m) = E. (4.134)
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Considering the surface area of a 3N -dimensional sphere, the number of

states with total energy E is proportional to
√

E
3N−1

. Therefore one has

Γ(E, V ) = CV N
√

E
3N−1

, (4.135)

where C is a proportional constant depending only on N and m and

S(E, V ) = k ln Γ(E, V ) ≈ kN ln V +
3

2
kN ln E + k ln C(N). (4.136)

From the thermodynamic relation dE = TdS − PdV one has

dS =
1

T
dE +

P

T
dV, (4.137)

hence

P

T
=

∂S

∂V
= kN/V, (4.138)

1

T
=

∂S

∂E
= 3kN/(2E). (4.139)

These are the equations of state for the ideal gas.

The entropy function is not always the most convenient to start with.
For example, in studying a system which is in thermal contact with a large
heat bath, it is more convenient to describe the system as a function of (T, V )
than (E, V ) because T is fixed by the temperature of the bath. Therefore one
uses the Helmholtz free energy A = E − TS, in view of dA = −SdT −PdV .
Since the system can exchange energy with the heat bath, its energy is not a
fixed value as in an isolated system. Instead the energy follows a probability
distribution, namely the Boltzmann distribution. The expectation value is

E =

∑
Ei

EiΓ(N, V,Ei)e
−Ei/kT

∑
Ei

Γ(N, V,Ei)e−Ei/kT
. (4.140)

Let us define the canonical partition function

Q(N, V, T ) ≡ ∑

Ei

Γ(N, V,Ei)e
−Ei/kT , (4.141)

one has

E =
−∂ ln Q

∂β
. (4.142)

On the other hand,

E = A− T
∂A

∂T
= −T 2∂(A/T )

∂T
=

∂(A/kT )

∂β
, (4.143)

therefore A = −kT ln Q. By calculating Q from the microscopic states, one
obtains the macroscopic quantity A.
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4.8 Sedimentation and Brownian Motion

If you have watched a sedimentation pool, you must have found that heavy
particles such as marbles and sands are all dropped to the bottom. But,
for small particles the behavior is quite different. Not all of them drop to
the bottom, nevertheless the concentration increases near the bottom. To
obtain clear water, we must drain the pool from near the top, where the
concentration of the particles are smallest. These particles are heavier than
water, why don’t they all drop to the bottom? The Boltzmann distribution
provides the answer. Let the vertical distance from the bottom be z. The
potential energy for a particle at z is mgz, where m is the effective mass of
the particle. The effective mass is ms − mb, where ms is the mass of the
particle and mb is the mass of the water of the same volume. From the
Boltzmann distribution we have

ρ(z) = ρ(0) exp
(
−mgz

kT

)
, (4.144)

where ρ(z) is the concentration at z. For heavy particles, mgz À kT , the
concentration is negligibly small for z > 0. In other words they all drop to
the bottom. For particles of three times the water density, if the particle
diameter is 10 nm, at 300K the height at which the concentration drops to
1/e is 5 cm. By measuring the 1/e height of sedimentation, one can obtain
the value of k, and then the Avogadro’s number by NA = R/k, where R is
the gas constant.

The suspended particles are not hanging still in the water. They bounce
around like random walk. This random motion can be observed under mi-
croscopes, and it is known as the Brownian motion. If the radius of the sus-
pended particles is r and the viscosity of water is η, then according to Stokes
law the particles fall down under gravity at a drift velocity mg/(6πrη). The
down drift flux ρ(z)mg/(6πrη) must be balanced by the diffusion caused by
the concentration gradient. We have

D
dρ(z)

dz
+

mg

6πrη
ρ(z) = 0. (4.145)

The solution is

ρ(z) = ρ(0) exp

(
− mgz

6πrηD

)
. (4.146)

Comparing with Eq. (4.144), we have

D =
kT

6πrη
. (4.147)
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By observing the random motion of a suspended particle under a microscope,
one can obtain the mean-free path and mean free time and then the diffusion
constant by Eq. (4.99). From the diffusion constant and Eq. (4.147), one can
obtain the value of k, and then the Avogadro’s number again by N = R/k.

4.9 Osmotic Pressure

Consider the particles in a suspension solution. If the particles are under the
influence of an external conservative force F (r) = −∇φ(r), then according
to the Boltzmann distribution the concentration follows

ρ(r) = ρ0 exp

[−φ(r)

kT

]
. (4.148)

Since the particles’ average velocity is zero, the net force applied to them
must be zero. The external force per unit volume is −ρ(r)∇φ(r). This force
must be balanced by a pressure difference that arises from the concentration
difference. This is exactly the pressure difference that drives the diffusion.
Let the pressure at r be P (r). For a thin-slab volume element of area A
and thickness dx, if the normal vector of the slab is in the same direction as
∇P (r), the force from the pressure difference on the two sides of the slab is
−A∇Pdx. Therefore the force from the pressure difference per unit volume
is −∇P (r). The balance condition is

ρ(r)∇φ(r) +∇P (r) = 0. (4.149)

Taking the gradient of Eq. (4.148), we have

∇ρ(r) = −ρ(r)

kT
∇φ(r). (4.150)

Comparing Eq. (4.149) and Eq. (4.150), we have

P (r) = ρ(r)kT. (4.151)

This is the extra pressure caused by the diffusion of the suspended particles,
and is known as the osmotic pressure.

We may also understand the osmotic pressure from the point of view
of entropy. When suspended particles are mixed into a solvent to form a
solution, the suspended particles introduce a large number of microscopic
states. This increases the entropy. If we assume that the concentration of
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the suspended particles is small, so that the particles move independently of
each other, then

Γs = C(N)V Nf(E), (4.152)

where f(E) represents the total number of velocity combinations the sus-
pended particles can have under the constraint that the total energy of them
is E. Since the suspended particles form a subsystem that can exchange en-
ergy with the large system of the solvent, E is not a fixed number. Instead,
the temperature is approximately fixed because the small energy exchange
will not change the solvent temperature significantly. In this situation we
should choose the Helmholtz free energy A(N, T, V ) as the thermal dynam-
ics variable to calculate. To obtain A(N, T, V ), we should first evaluate the
partition function Q(N, T, V ).

Q(N, T, V ) =
∫

C(N)V Nf(E) exp
(
− E

kT

)
dE. (4.153)

Therefore

A(N, T, V ) = −kT ln Q = −kT ln C(N)− kTN ln V − kTD(T ), (4.154)

where

D(T ) = ln
[∫

f(E) exp
(
− E

kT

)
dE

]
. (4.155)

From the relation

−P =

(
∂A

∂V

)

T

, (4.156)

we have

−P = −kT
(

N

V

)
. (4.157)

In other words,
P = kTρ, (4.158)

where ρ is the concentration. This is exactly the same as Eq. (4.151). Note
that we have only considered the pressure produced by the subsystem of the
suspended particles, therefore Eq. (4.158) is the pressure difference between
the suspension solution and the pure solvent. The pressure of the pure solvent
can be obtained from Γ or Q of the solvent, which is not included in the
calculation of this section.

It is known that plants gather water by the capillary effect. Since in
most cases the leaves are surrounded by less moisture than the roots, water
is transported from the roots to the leaves. However, because the capillary
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effect works in both directions, it does not explain why some plants, such
as coconut and watermelon, are able to gather a large quantity of water
in their fruits. It turns out that a little chemicals dissolved in water will
help. Dissolving 30 g of fructose or 5 g of NaCl into 1 liter of water, you
get a concentration of 0.17 mole of molecules or ions per liter. The osmotic
pressure of this solution is about 0.17 × 22.4 = 3.9 atm. Such a pressure is
large enough to raise the solution to 40 meters high. Plants have developed
semipermeable membranes to maintain an osmotic pressure that attracts
water. In dry area, plants must maintain a high osmotic pressure to compete
for water. If you grow such plants, you should be careful not to water them
too much. Too much water will cause the cells to burst, and that kills the
plant. The osmotic pressure also explains why watermelon grown in dryer
sandy soil is sweeter.

4.10 Boiling Point

In Taiwan, tea tasting and mountain hiking are two popular recreational
activities. If you boil water on a high mountain to prepare tea, you may
notice that the boiling point is below 100◦C. In contrast, if you dissolve some
salt into the water, you may know that the boiling point rises. How do we
understand these phenomena?

Since the boiling occurs in the open atmosphere, if the cover of the pot is
not tightly sealed, the pressure is equal to the air pressure of the environment,
which is held constant. Inside the pot the temperature also remains constant
at the boiling point. As we have seen, in this case the best thermodynamic
variable to choose is the Gibbs free energy G.

Because liquid water and water vapor are two different phases, the Gibbs
free energy are two different functions of T and P . We have

dGg = VgdP − SgdT,

dGl = VldP − SldT, (4.159)

where Gg is the free energy of the gas-phase water and Gl is that of the
liquid-phase water. Since both V and S are proportional to the number of
molecules, we may rewrite Eq. (4.159) as

dgg = vgdP − sgdT,

dgl = vldP − sldT, (4.160)
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where gg, vg, and sg are the specific Gibbs free energy (Gibbs free energy
per mole), the specific volume (volume per mole), and the specific entropy
(entropy per mole) respectively for the gas phase. Similarly, gl, vl, and sl are
the same quantities for the liquid phase.

As we have shown in Section 4.3, at equilibrium the total change of G
must be zero. Therefore at the boiling point the gain of G for the gas must
be equal to the loss of G for the liquid if some water molecules are converted
from the liquid phase to the gas phase. If m moles of water molecules are
converted, the change of Gg is mgg, and the change of Gl is −mgl. The total
change of G is zero means gg = gl at the boiling point. Since gg and gl are
two different functions of T and P , in principle we can use the condition
gg = gl to find T as an implicit function of P . Then for every P we have a
corresponding T at which the water boils. In other words, in principle we
can find the boiling temperature T as a function of P from the condition
gg = gl. However, in practice we do not know the form of gg or gl, can we
still say something about the change of boiling temperature resulting from
the change of pressure?

Empirically we know water boils at 1 atm, 100◦C. We may extrapolate
the implicit function T (P ) near this known point. From

dgg = vgdP − sgdT = dgl = vldP − sldT. (4.161)

we have

dP

dT
=

sg − sl

vg − vl

. (4.162)

Since the change of entropy sl − sg is done at constant T , we have ql =
T (sg − sl) and

dP

dT
=

ql

T (vg − vl)
, (4.163)

where ql is the molar latent heat that must be supplied to vaporize the liquid.
Eq. (4.163) is known as the Clapeyron equation.

Let us use the Clapeyron equation to calculate the boiling point at 2000 m
above the sea level. The average mass of air per mole is 28.8 g. From the
Boltzmann distribution, at 2000-m height the air pressure drops by 21%,
assuming the temperature is 20◦C. That is ∆P = −2.1 × 104 Pa. Since the
specific volume of liquid water is much smaller than that of the water vapor,
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we may ignore vl in the Clapeyron equation in comparison with vg. Then we
can integrate the Clapeyron equation to get a relation between ∆P and ∆T ,
assuming the equation of state for the water vapor is the same as that of the
ideal gas. Namely, one has

dP

dT
=

qlP

NkT 2
. (4.164)

The equation can be integrated by separation of variables. That is

∆(ln P ) = − ql

Nk
∆

(
1

T

)
. (4.165)

The molar latent heat for water is 40860 J/mole. We have

ln 0.79 = − 40860

6.02× 1023 × 1.38× 10−23

(
1

T
− 1

373

)
, (4.166)

which gives the boiling point T = 93.4◦C.

We can estimate the boiling point of a solution in a similar way. If we
dissolve 5 g of NaCl in to 1 liter of water, we get 0.17 mole of ions in the
solution. According to Raoult’s law, the vapor pressure of the solution Ps

will be reduced relative to the vapor pressure of pure water Pw according to
the following equation.

Ps

Pw

=
ρl − ρi

ρl

, (4.167)

where ρl is the number density of water and ρi is the number density of ions.
The amount of vapor pressure difference one must compensate by increasing
the temperature is therefore

∆P = Pw − Ps =
Pwρi

ρl

. (4.168)

Taking Pw = 1 atm, we have ∆Pv = 0.17× 0.018 atm = 3.09× 102 Pa. Using
the Clapeyron equation again, we obtain ∆T ≈ 0.087◦C.

The vapor pressure difference ∆P can also be derived without using
Raoult’s law. Consider the system shown in Fig. 4.6. The vapor is in equilib-
rium with both the solution and the pure water at the boiling temperature
of the solution. At this temperature the vapor pressure of the pure water
exceeds the boiling vapor pressure of the solution by

∆P = Po
ρv

ρl

, (4.169)

where Po is the osmotic pressure and ρv, ρl are the densities of the water
vapor and the solution at the boiling point respectively. Using the relation
Pw = ρvkT and Po = ρikT , we find that Eq. (4.169) is the same as Eq. (4.168).
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Fig. 4.6: Vapor pressures of solutions. The osmotic pressure Po is equal to
PA − PB = ρlgh, and the difference in vapor pressure between the solution
and the pure water is PA − PC = −ρvgh, where h is the height difference
between the solution and the pure water.

4.11 Exercises

Exercise 4.1. The highest point of NTU campus is the Ling-Tou mountain at
Xi-Tou experimental forest. The height is 2025 m. Assume the temperature
of the atmosphere is fixed at 20◦C. What is the ratio of oxygen concentration
at this point to that at sea level?

Exercise 4.2. A thermally insulated box is divided into two compartments
by a thin rigid wall. The volume of compartment A is 2 liters, and the volume
of compartment B is 1 liter. We fill compartment A with 1 mole of He gas at
600 K and compartment B with 1 mole of Ne gas at 300 K. Then we drill a
small hole on the wall between the two compartments so that the two gases
can mix slowly with each other. After equilibrium is reached, how much is
the change of entropy? In this exercise we assume both gases are ideal gas.

Exercise 4.3. The equation of state of a thermal dynamic system is PV =
NkT . If we treat the internal energy U of the system as a function of volume
V and temperature T , show that U is a function of T only. Namely,

(
∂U

∂V

)

T

= 0. (4.170)
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Hint: Since we are using V and T as the independent variables, it is reason-
able to start from the Helmholtz free energy

dA = −SdT − PdV, (4.171)

which yields
(

∂A

∂V

)

T

= −P. (4.172)

Since A = U − TS, we have
(

∂U

∂V

)

T

− T

(
∂S

∂V

)

T

= −P. (4.173)

Because S is not in the equation of state, we had better get rid of it, otherwise
we would not know what to do with it. To do that, you need to derive the
relation

(
∂S

∂V

)

T

=

(
∂P

∂T

)

V

, (4.174)

from dA = −SdT − PdV . Then you can use the equation of state to prove
(∂U/∂V )T = 0.

Exercise 4.4. If a 2-kg frozen chicken takes 10 hours to defrost, under the
same condition how long does it take to defrost a 2-ton elephant? Although
a chicken has a different body shape from an elephant, in this problem we
assume both were curled up like a meat ball when they were frozen. We
also assume the heat conductivity, specific heat, and mass density for both
are the same. The time to defrost can be defined by that the temperature
at the center reaches 0.9T0, where T0 is the absolute temperature of the
environment.

Exercise 4.5. Dry ice can be made by suddenly opening the valve of a
high-pressure CO2 tank. The temperature of CO2 in the tank is 25◦C. The
process can be approximated by a simple model in which the CO2 gas goes
through adiabatic expansion from pressure P = P0 to P = 1 atm. The ice
point for CO2 is −78◦C. What is the minimum value of P0? For simplicity,
we assume the heat capacity of CO2 is approximately 7k/2 per molecule at
constant pressure, and 5k/2 per molecule at constant volume, where k is the
Boltzmann constant.

Exercise 4.6. A thick round pipe buried under 0◦C ground is used to trans-
port hot water of 90◦C. The inner radius of the pipe is 2 cm and the outer
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radius is 5 cm. If the inner surface of the pipe is maintained at 90◦C and
the outer surface at 0◦C, what is the temperature between the two surfaces
as a function of r, where r is the distance from the center of the pipe? In
this exercise we assume the specific heat of the pipe does not change with
temperature. We also ignore thermal radiation.

Exercise 4.7. A factory extracts pure water from sea water at 300 K by
using semipermeable membrane to filter out ions. The ion concentration of
sea water is approximately 1 mole per liter. The factory extracts 1 liter of
pure water from every 5 liters of sea water. How much minimum work must
be done for each liter of pure water so produced?

Exercise 4.8. A high-speed centrifugal machine is used to separate U235F6

gas from U238F6 gas to make fuel for nuclear reactors. The machine is made
of a tube 20 meters long lying horizontally on the x-y plane and rotating
around the z-axis which passes through the mid-point of the tube. The tube
is filled with a natural mixture of U235F6 and U238F6. The speed of rotation
is 3000 round per minute. The natural abundance of U235 is 0.72%, and that
of U238 is 99.27%. After the two gases reach equilibrium, what is the ratio of
number density between U235F6 and U238F6 at the two far ends of the tube?
Assume the temperature of the gases is 300 K. The mass of Fluorine atom is
19 g/mole. In this exercise some numerical integrations are needed. If your
hand-held calculator cannot do numerical integration, you may express the
answer in terms of the following function:

F (x) =
∫ x

0
et2dt.

Namely, assume the value of F (x) is known for all x.

Exercise 4.9. A high-pressure stewpot can greatly reduce the cooking time.
One may view cooking as some kind of chemical reaction. From the order
of the activation energy one may estimate that for every 5◦C increase of
temperature, the reaction rate is doubled. If a sealed high-pressure stewpot
can maintain a pressure of 1.1 atm, by how much one can speed up the
cooking? Namely, if the cooking takes 1 hour at 1 atm, how long will it
take at 1.1 atm? In this exercise we assume the maximum temperature the
stewpot can reach is the boiling point of water.

Exercise 4.10. In northern Taiwan, most people use electric heaters to keep
their rooms warm during some cold days. Consider an insulated room sealed
with 1-atm air. No heat or air can leak out of the room. The size of the
room is 10 m× 6 m× 4 m. If the air in the room is an ideal gas with a heat
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capacity per molecule at constant volume equal to 5k/2, how much energy
it takes to heat up the room from 15◦C to 20◦C with an electric heater?

The energy-efficiency rating (EER) of an air-conditioner is defined by how
many joules per second are removed for each watt of power it draws. Typical
EER is 2.7 for small air-conditioners. If one uses an air-conditioner in the
reverse direction to heat up the room, how much energy is needed to heat up
the room from 15◦C to 20◦C? Although physically the EER will vary with
both the indoor temperature and the outdoor temperature, for simplicity we
assume the EER is a constant of 2.7.

If one uses an ideal Carnot engine running reversely to pump heat from
outside into the room, where the temperature outside is also 15◦C, how much
work is needed to fulfill the same purpose?

Exercise 4.11. Consider two thermally insulated 100-liter tanks. One is
filled with 100◦C water and the other with 0◦C water. If we use the two
tanks to drive an ideal Carnot engine, what is the maximum work the engine
can produce? The heat capacity of water is 4.18 J/(K· g) in the temperature
range considered here.

Exercise 4.12. Consider a spherical water droplet of radius R surrounded
by air of water-vapor concentration x in a large room. The air and the
droplet are at the same temperature T . The density of the water droplet
is ρw, and the density of the pure water vapor is ρv. The concentration is
measured by the fraction of water molecules in the air. The water droplet
will slowly evaporate as a result of the diffusion of water molecules. Since at
the surface of the water droplet the liquid-phase water is in equilibrium with
the gas-phase water, it is reasonable to assume that right above the surface
of the water droplet the water-vapor concentration is x0, which corresponds
to the saturated vapor pressure at T , and far away from the droplet the
water concentration is x (x < x0) in the steady state. Then we have a
steady-state concentration gradient of water molecules in the radial direction.
This concentration gradient will drive the transport of water molecules by
diffusion. The diffusion coefficient is D. What is the rate of change of the
radius of the water droplet dR/dt as a function of x, x0, ρw, ρv, R, and D? In
this exercise we assume the evaporation rate is small so that the temperature
of the droplet remains constant.

Exercise 4.13. The open-circuit voltage V of a battery is a function of
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temperature T .

V = 12 + 0.05(T − T0)− 0.0005(T − T0)
2,

where V is measured in volts and T0 = 25◦C. If the battery is kept at 18◦C
by thermal contact with a heat reservoir, for each Coulomb of electricity that
flows through the battery, how much heat is absorbed by the battery from
the reservoir? We assume the battery has no internal resistance.

Exercise 4.14. A gas is modeled as hard spheres undergoing random col-
lisions. If the temperature is increased from T to 2T at the same pressure,
by what factor the diffusion coefficient will change? If the pressure is in-
crease from P to 2P at the same temperature, by what factor the diffusion
coefficient will change?

Exercise 4.15. A person is confined in a sealed room. There is a round
hole on the wall connected to the atmosphere through which oxygen can
diffuse into the room. The hole is filled with porous material such that air
convection through the hole is not possible. The thickness of the wall is
10 cm. In order for the person to remain comfortable, the concentration of
the oxygen must not be lower than 80% of its normal concentration at 1 bar
(100 kPa). Because a person consumes 30 g of oxygen per hour, the hole must
be large enough to supply this amount of oxygen. If the oxygen molecule is
modeled as a hard sphere of 0.3-nm diameter, what is the minimum area of
the hole? In this problem we assume the temperature is 300 K and diffusion
is the only mechanism oxygen can pass through the hole. We also note that
oxygen occupies 20.94% of air by volume. To simplify the calculation we
treat nitrogen and carbon dioxide molecules as hard spheres that have the
same diameter and mass as the oxygen molecule, and assume that inside the
room the concentration of oxygen is uniform.

Exercise 4.16. In a three-dimensional world, if gas diffusion is modeled by
random walk, the diffusion coefficient D is related to the mean free path lm
by

D ≈ lm
6

√
8kT

πm
,

where T is the temperature and m is the mass of the gas molecule. How
would this formula change in a two-dimensional world?

Exercise 4.17. A stack of poker cards can be considered as a macroscopic
system which can have many different microscopic configurations. A stack of
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52 cards is initially arranged sequentially from spade-A, spade-K, . . . spade-
3, spade-2, heart-A, heart-K, . . . heart-3, heart-2, diamond-A, diamond-K,
. . . diamond-3, diamond-2, club-A, club-K, . . . club-3, club-2. After shuffling
it thoroughly how much does the entropy of this system increase? Note that
you are required to give a numerical answer in the form of a.b×10 c J/K.
To be fair to your poor classmates who do not own an advanced calculator
that can do large factorial, you must use the Stirling formula to calculate the
factorial.

Exercise 4.18. After a typhoon attack, the sedimentation pool of Taipei
water department is full of dust. Assume the depth of the pool is 3 m, and the
dust particles are spheres of 10-nm radius with a density equal to 3.0-g/cm3.
Initially the number density of the dust in the pool is ρ0, which is independent
of the height h measured from the bottom of the pool. After some time the
density becomes a decreasing function of h, because the particles fall to
the bottom. How many days does it take for the density at h = 3 m to
fall below ρ0/10? The temperature is 300 K and the viscosity of water is
1.0× 10−3 N·s/m2. If your answer is m days, you are only required to write
a equation that determines m. The equation may contain an integral that
cannot be integrated analytically. Note that the rectangular function recf(x)
is defined as

recf(x) =

{
1 for x in [−1

2
, 1

2
]

0 otherwise.

The Fourier transform of recf(x) is

1√
2π

∫ ∞

−∞
recf(x)e−ikxdx =

1√
2π

sinc(k/2) ≡ 1√
2π

sin(k/2)

k/2
.

For simplicity in notation, you may use the sinc function in the integral
expression of your answer.

Exercise 4.19. The enthalpy change for the reaction CO + 1
2
O2 → CO2 is

∆H = −283 kJ/mole if the reactants are maintained at 1 bar (100 kPa),
25◦C before the reaction, and the product is also maintained at the same
condition after the reaction. If 0.5 mole of CO and 0.25 mole of O2 react
in a sealed box of volume 1 m3, and before the reaction the gas mixture is
maintained at 1 bar (100 kPa), 25◦C by filling the box with N2 gas, how
much will the temperature increase after the reaction? In this problem we
assume CO, O2, N2, and CO2 are all ideal gas, and in the temperature range
considered here their heat capacities are all 5k/2. We also assume there is
no reverse reaction and the N2 gas does not participate in any reaction.



170 Chapter 4. Statistical and Thermal Physics



Chapter 5

Fluid Mechanics

5.1 Convective Derivative

A fluid is made of many particles each having its own position and veloc-
ity. As in the case of thermodynamics and statistical mechanics, there is
no way we can track the motion of each particle, therefore we should use
distribution functions to describe the average behavior of groups of particles.
Because each group of particles are moving with time, and particle exchange
between groups occurs frequently, it is difficult to keep track of the posi-
tion, velocity, and number of particles in a group all the time. Instead, it
is more convenient to keep track of the number of particles and the average
velocity at fixed points in space. We may divide the three dimensional space
into cells and label each cell by its location r, then a way to describe the
fluid is by the number density field ρ(r, t) and velocity field u(r, t) at each
location. In general the group of particles at a position does not have the
same velocity, however, if the standard deviation of the velocity distribution
is small compared with its average, we can use the average velocity as an
approximation.

By noting that the flux vector J is related to ρ and u by

J = ρu, (5.1)

we may take a close look at the continuity equation Eq. (4.84) by writing it
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as

∂ρ

∂t
= −∇ · (ρu) = −∇ρ · u− ρ∇ · u. (5.2)

Let us imagine a situation in which the flow field u is a constant. In this case
∇ · u = 0 and the particles have no chance to accumulate. Intuitively one
may think if the particles do not accumulate, the density cannot change with
time. Then, why is there still the possibility of density change as a function
of time, as expressed by the rest of the equation

∂ρ

∂t
+∇ρ · u = 0, (5.3)

instead of simply

∂ρ

∂t
= 0? (5.4)

The answer is that in order to use this intuitive (and correct) argument, one
must follow the motion of the group of particles in space, instead of looking
at the density at a fixed point. If we follow the motion of a group of particles,
the position of the group of particles changes with time, therefore the change
of density with time for the group of particles is not simply ∂ρ/∂t, but

dρ(r(t), t)

dt
=

∂ρ

∂t
+∇ρ · dr

dt
, (5.5)

where dr/dt = u. For example, let us imagine that a factory released a large
quantity of pollutant gas through its chimney in a short period. The wind
carries the pollutant to the east at a constant velocity. Even though the
velocity is constant, a bird sitting on a tall tree on the path still experiences
a density change of the pollutant. It first rises, then falls. In contrast, if the
bird flies with the same velocity as the wind, it will experience a constant
density of pollutant. Hence we can write either

dρ

dt
+ ρ∇ · u = 0, (5.6)

or

∂ρ

∂t
+∇ · (ρu) = 0, (5.7)

with the understanding that

dρ

dt
=

∂ρ

∂t
+∇ρ · u. (5.8)
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They describe the same physical situation only from different points of view.
The relation between dρ/dt and ∂ρ/∂t can be applied to other physical quan-
tities too. In general,

dG

dt
=

∂G

∂t
+ (u · ∇)G, (5.9)

and dG/dt written in the form of Eq. (5.9) is called the convective derivative
of G.

5.2 Momentum Conservation

Let us consider the conservation of momentum in the x-direction. Let f(r,v)
be the phase-space distribution function of the particles. We have

∫
f(r,v) d3v = ρ(r), (5.10)

where ρ(r) is the number density at r. The momentum density in the x-
direction is

px(r) = m
∫

vxf(r,v) d3v = mρ(r)v̄x(r) = mρ(r)ux(r), (5.11)

where m is the mass of a single particle and ux(r) ≡ v̄x(r) is the x-component
of the average velocity at r. Differentiating both sides, we have

∂px

∂t
=

∫ ∂

∂t
[mvxf(r,v)] d3v. (5.12)

Replacing ρ in Eq. (5.2) by mvxf(r,v) and u by v, we have

∂px

∂t
=

∫
−∇ · [mvxvf(r,v)] d3v. (5.13)

Since ∇· is a differential operation with respect to spatial coordinates, it is
independent of the integration over v. Under this condition we may move
∇· out of the integrand.

∂px

∂t
= −∇ ·

(
m

∫
vxvf(r,v) d3v

)
. (5.14)

Under an external force field F(r), Eq. (5.14) becomes

∂px

∂t
= −∇ ·

(
m

∫
vxvf(r,v) d3v

)
+ mρFx. (5.15)
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The first term on the right-hand side accounts for the net momentum flux
that flows into the cell at r, and the second term accounts for the momentum
increase due to acceleration. If we define the stress tensor Tij by

Tij = m
∫

vivjf(r,v) d3v = mρvivj, (5.16)

where vivj denotes the average of vivj, Eq. (5.15) can be written in the
compact tensor form:

∂pi

∂t
= −∂Tij

∂xj

+ mρFi, (5.17)

where repeated indices are summed automatically. We may decompose the
velocity into the average velocity u plus the random velocity v−u, then the
stress tensor can be written as

Tij = mρuiuj + m
∫

(vi − ui)(vj − uj)f(r,v) d3v. (5.18)

The second term on the right-hand side averages to zero except for i = j.
When i = j it is equal to mρ(vi − ui)2, which is 2/3 of the average kinetic
energy seen by an observer moving with the fluid. By Eq. (4.62) we may
write

Tij = mρuiuj + Pδij, (5.19)

where P is the pressure and δij is the Kronecker delta. We may expand both
sides of Eq. (5.17) to obtain

mρ
∂ui

∂t
+ mui

∂ρ

∂t
= −∂P

∂xi

−mui
∂(ρuj)

∂xj

−mρuj
∂ui

∂xj

+ mρFi. (5.20)

By the continuity equation, the second terms on both sides cancel each other.
We have

mρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + mρF. (5.21)

We can use the identity (u · ∇)u = ∇(u2/2) − u × (∇ × u) to rewrite
Eq. (5.21) into another form:

mρ

[
∂u

∂t
+∇

(
u2

2

)
− u× (∇× u)

]
= −∇P + mρF. (5.22)
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If F is a conservative force field, such as the gravitational field, we have
F = −∇φ. For an irrotational steady-state flow of constant density, we have
∇×u = 0, ∂u/∂t = 0, and ∇ρ = 0. Under these conditions we may integrate
Eq. (5.22) and get

P +
mρu2

2
+ mρφ = constant. (5.23)

This is known as the Bernoulli theorem.

When the Bernoulli theorem is applied to air, it may not be quite prac-
tical to assume that the density is constant. After all, unlike water, air
is compressible. In this case we need to consider the relation between the
pressure and the density, which is determined by the equation of state in a
thermodynamic system. Assume there is no heat conduction, the change of
internal energy per mole is

dε = −Pd

(
NA

ρ

)
=

NAP

ρ2
dρ, (5.24)

where NA is the Avogadro’s number. In other words,

∇
(

ε

NA

+
P

ρ

)
=
∇P

ρ
. (5.25)

Substituting it into Eq. (5.22), for a steady-state flow we have

ε

NA

+
P

ρ
+

mu2

2
+ mφ = constant. (5.26)

In thermodynamics the enthalpy H is defined by H = U + PV . We see
that ε + PNA/ρ is simply the enthalpy per mole. Therefore Eq. (5.26) can
be interpreted as the conservation of energy in which the internal energy is
replaced by the enthalpy. This is not difficult to understand, since in this
case the volume of the fluid cell is not fixed, we need to add to the internal
energy the work done by the pressure in squeezing the cell.

For ideal gases, ε+PNA/ρ is proportional to the temperature. Therefore
when the flow is accelerated, the temperature drops. This can be seen in
the moisture condensation near the tips of the wings or sails as the air flows
fast around the tips, driven by the large pressure difference between the two
sides.
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5.3 Viscosity

When two adjacent cells flow at different velocities, due to friction the velocity
difference has a tendency to diminish. The friction is caused by particle
collisions at the boundary. On the average, collisions will cause some particles
in the fast moving cell to slow down and some in the slow moving cell to
speed up. Therefore, to the first order approximation there is a momentum
transfer between the two cells proportional to the velocity difference. In
deriving Eq. (5.21) we did not include such an effect known as viscosity.

Consider a cubic flow cell at (x, y, z) spanned by the three infinitesimal
vectors ∆xe1, ∆ye2, and ∆ze3. In the x-direction, viscosity yields drag forces
acting on the four surfaces of the flow cell parallel to the x-axis. The surface
facing the y-direction is dragged by a force proportional to ∂ux/∂y, where
the derivative ∂ux/∂y is evaluated at (x, y + ∆y, z), and the surface facing
the −y-direction is dragged by a force proportional to −∂ux/∂y, where the
derivative ∂ux/∂y is evaluated at (x, y, z). Both forces are also proportional
to the surface area. Let µ be the proportional constant. The total force in
the x-direction contributed from these two surfaces is

F (y)
x = µ

[
∂ux

∂y
(x, y + ∆y, z)− ∂ux

∂y
(x, y, z)

]
∆x∆z

≈ µ
∂2ux

∂2y
∆x∆y∆z. (5.27)

Similarly, the total drag force in the x-direction contributed from the two
surfaces facing the z- and −z-directions is

F (z)
x = µ

[
∂ux

∂z
(x, y, z + ∆z)− ∂ux

∂z
(x, y, z)

]
∆x∆y

≈ µ
∂2ux

∂2z
∆x∆y∆z. (5.28)

Adding the forces acting at all the four surfaces, we see the force density
contributed from viscosity is

fx = µ

(
∂2ux

∂2y
+

∂2ux

∂2z

)
. (5.29)

Comparing Eq. (5.29) with Eq. (5.17), we find that terms in the form of
∂ui/∂xj must be added to Tij in order to take viscosity into account. Let T v

ij
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denotes the viscous part of the stress tensor that is to be added to Tij. A
possible choice of T v

ij is

T v
ij = −µ

[(
∂ui

∂xj

+
∂uj

∂xi

)
+

(
∂ui

∂xj

− ∂uj

∂xi

)]
, (5.30)

where T v
ij is intentionally separated into two terms. The first term on the

right-hand side is the symmetric part and the second term on the right-
hand side is the asymmetric part. The asymmetric part is a component of
∇ × u, hence it represents pure rotation of the fluid at the spatial point
r under consideration. Since rotation of the fluid cannot change its linear
momentum, the asymmetric part does not contribute to the viscous force.
Therefore we have

T v
ij = −µ

(
∂ui

∂xj

+
∂uj

∂xi

)
. (5.31)

We may further decompose T v
ij into a traceless part and a scalar part. The

traceless part represents the directional shearing of the flow at the spatial
point r under consideration, whereas the scalar part represents the net out-
ward flux of the fluid at the spatial point r under consideration. The traceless
part of T v

ij that can be constructed from ∂ui/∂xj + ∂uj/∂xi is
(

∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij∇ · u

)
, (5.32)

and the scalar part is just a term proportional to ∇ · u. Therefore the most
general form of T v

ij is

T v
ij = −µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij∇ · u

)
− ζδij∇ · u, (5.33)

where µ is the coefficient of viscosity and ζ is the coefficient of bulk viscosity.
To include T v

ij in the equation of motion, we add the term −∂(T v
ij)/∂xj to

Eq. (5.21).

−∂T v
ij

∂xj

= µ
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij∇ · u

)
+ ζδij

∂

∂xj

(∇ · u)

= µ

[
∇2ui +

∂

∂xi

(∇ · u)− 2

3

∂

∂xi

(∇ · u)

]
+ ζ

∂

∂xi

(∇ · u).(5.34)

After that Eq. (5.21) becomes

mρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + µ∇2u +

(
µ

3
+ ζ

)
∇(∇ · u) + mρF. (5.35)
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For the incompressible flow, we have ∇ · u = 0. The equation reduces to

mρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + µ∇2u + mρF. (5.36)

This is known as the Navier-Stokes equation. It is different from Eq. (5.21)
only by the term µ∇2u. Comparing with the diffusion equation Eq. (4.85),
we see that µ∇2u is a diffusive term, which tends to equalize the flow velocity.

As an example of application, let us use the Navier-Stokes equation to
solve the problem of flow in a round pipe. Because of viscosity, a finite
pressure must be applied to make the liquid flow through the pipe. But the
flow speed is not a constant. At the edge of the pipe the flow speed is zero,
and at the center it is maximum. Let us assume the flow is in a steady state,
and the flow velocity has only the z-component, which is a function of the
radius. In the cylindrical coordinate system we have u = [0, 0, u(r)], and it
is easy to see the left-hand side of Eq. (5.36) is zero. The pressure gradient
cannot be a function of r, because there is no flow in the radial direction. It
cannot be a function of z either, because u does not depend on z. Therefore
it can only be a constant which is equal to −∆p/L, where ∆p is the pressure
difference between the two ends and L is the length of the pipe. Now we
have

∇2u = −∆p

µL
. (5.37)

In the cylindrical coordinate system this is

1

r

∂

∂r

(
r

∂

∂r

)
u = −∆p

µL
. (5.38)

Integrating with respect to r twice, we have

u(r) = −∆p

µL

r2

4
+ C ln r + D, (5.39)

where C and D are to be determined by the boundary conditions. Because
the flow is finite at the center, C = 0. At r = R, where R is the radius of
the pipe, the flow is zero, therefore

u(r) =
∆p

µL

R2 − r2

4
. (5.40)

Integrating the flux over r, we have

F =
∆p

µL

∫ R

0

R2 − r2

4
2πr dr =

π∆pR4

8µL
. (5.41)
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This is known as the Poiseuille’s law. The R4 dependence means the flux is
very sensitive to the pipe radius. If the radius of the blood vessel is reduced
to 90%, perhaps by plaques, the flow is reduced to 66%. That means the
heart must produce 50% more pressure to keep the same flow. This is a
dangerous situation if the blood vessel has weakened walls.

5.4 Sound Waves

In a fluid, sound wave can be treated as an oscillating perturbation of the
steady state fluid. Neglecting viscosity, we may start from Eq. (5.21) and
the continuity equation. We have five variables to solve. They are ρ, P , and
u. But Eq. (5.21) and the continuity equation give only four equations. The
last equation we need is the equation of state, which relates P to ρ. Consider
the sound wave in an ideal gas, in which the equation of state is P = cργ,
where γ = cp/cv and c is a constant. We have chosen the adiabatic equation
of state instead of the isothermal equation of state (P = ρkT ) because in
the time scale of sound wave, the compression of an ideal gas under 1 atm
and 300 K is effectively adiabatic. There is simply not enough time for
the gas to reach thermal equilibrium. Let us assume the wave propagation
is in the x-direction, and set ρ = ρ0 + ∆ρ, u = u0 + ∆u, where ρ0 and
u0 are constants and ∆ρ and ∆u are small perturbations. For an observer
moving with the fluid, u0 = 0. Neglecting second-order terms, the continuity
equation becomes

∂∆ρ

∂t
+ ρ0

∂∆u

∂x
= 0, (5.42)

and Eq. (5.21) becomes

mρ0
∂∆u

∂t
= −γP0

ρ0

∂∆ρ

∂x
. (5.43)

By eliminating ∆u, the two equations can be combined into a wave equation

∂2∆ρ

∂t2
− γP0

mρ0

∂2∆ρ

∂x2
= 0. (5.44)

The velocity of the sound wave is

cs =

√
γP0

mρ0

=

√
γkT

m
. (5.45)
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5.5 Waves on Water Surface

Waves on water surface can be created by perturbations that change the
height of the surface locally. Such perturbations may come from the wind,
the wake of a passing ship, or even earth quakes. When the surface in a
localized region is raised above its equilibrium height, gravity pulls the water
back. At the same time, because the pressure under this region is higher
than its neighboring regions, water also flows out underneath horizontally.
By the time the water stops flowing, the surface has already dropped to below
its equilibrium height, and then the reverse process occurs. This yields an
oscillatory motion for the surface height.

Let us first write down the equations for a moving fluid near equilibrium.
We keep only terms of first-order perturbation and neglect all the high-order
terms. Assume the pressure is P + ∆P , the horizontal velocity is u + ∆ux,
the vertical velocity is ∆uz, and the mass density is ρ + ∆ρ. The first-order
perturbation terms ∆P , ∆ux, ∆uz, ∆ρ are functions of x, z, t, and P , u, ρ
are functions of z only. The equation of motion in the x-direction is

(ρ + ∆ρ)
d

dt
(u + ∆ux) = − ∂

∂x
(P + ∆P ), (5.46)

and that in the z-direction is

(ρ + ∆ρ)
d∆uz

dt
= − ∂

∂z
(P + ∆P )− g(ρ + ∆ρ). (5.47)

Since −∂P/∂z = gρ, the above equation can be written as

(ρ + ∆ρ)
d∆uz

dt
= −∂∆P

∂z
− g∆ρ. (5.48)

Because water is nearly incompressible, it is reasonable to assume

d

dt
(ρ + ∆ρ) = 0. (5.49)

From Eq. (5.6) we have

∇ · u = 0. (5.50)

Replacing d/dt by ∂/∂t+u ·∇ and neglecting high-order terms, Eqs. (5.46)–
(5.50) become

ρ

(
∂∆ux

∂t
+ u

∂∆ux

∂x
+ ∆uz

du

dz

)
= −∂∆P

∂x
, (5.51)
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ρ

(
∂∆uz

∂t
+ u

∂∆uz

∂x

)
= −∂∆P

∂z
− g∆ρ, (5.52)

∂∆ρ

∂t
+ u

∂∆ρ

∂x
+ ∆uz

dρ

dz
= 0, (5.53)

∂∆ux

∂x
+

∂∆uz

∂z
= 0. (5.54)

Since we are interested in perturbations having the form of a wave, let us
assume the solutions for ∆P , ∆ux, ∆uz, ∆ρ all have the form f(z)ei(kx−ωt).
Substituting it into Eqs. (5.51)–(5.54), we obtain

ρ

[
−i(ω − ku)∆ux + ∆uz

du

dz

]
= −ik∆P, (5.55)

−iρ(ω − ku)∆uz = −∂∆P

∂z
− g∆ρ, (5.56)

−i(ω − ku)∆ρ + ∆uz
dρ

dz
= 0, (5.57)

ik∆ux +
∂∆uz

∂z
= 0. (5.58)

Substituting Eq. (5.58) into Eq. (5.55), we have

ρ

k
(ω − ku)

∂∆uz

∂z
+ ρ∆uz

du

dz
= −ik∆P. (5.59)

Substituting Eq. (5.57) into Eq. (5.56), we have

−iρ(ω − ku)∆uz − ig
∆uz

ω − ku

dρ

dz
= −∂∆P

∂z
. (5.60)

Differentiating Eq. (5.59) and multiplying Eq. (5.60) by ik, we can eliminate
∆P on the right-hand side of them and obtain

∂

∂z

[
ρ

k
(ω − ku)

∂∆uz

∂z
+ ρ∆uz

du

dz

]

= kρ(ω − ku)∆uz + kg
∆uz

ω − ku

dρ

dz
. (5.61)
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To find out the boundary conditions for the equations above, let us con-
sider not only the motion of the water, but also that of the air on top of the
water. Now there are two layers of fluids to be considered. The interface is
at z = 0. For z > 0 the air has a density ρ1 + ∆ρ1, a pressure P1 + ∆P1, and
velocity components u1 + ∆u1x and ∆u1z. Similarly, for −D < z < 0, where
D is the depth of the water, the water has a density ρ2 + ∆ρ2, a pressure
P2 + ∆P2, and velocity components u2 + ∆u2x and ∆u2z.

Below and above the surface at z = 0, we may assume that the flow is
uniform. Then we have du/dz = 0. If the densities of the fluids depend
only weakly on z, we may ignore dρ/dz. Under these conditions Eq. (5.61)
is simplified to

ρ

k
(ω − ku)

(
∂2

∂z2
− k2

)
∆uz = 0. (5.62)

This implies

f(z) = Aekz + Be−kz. (5.63)

For the air, ∆u1z must remain finite at z →∞, hence

∆u1z = B1e
−kzei(kx−ωt). (5.64)

For the water we have ∆uz = 0 at z = −D, hence

∆u2z = A2

(
ekz − e−2kDe−kz

)
ei(kx−ωt). (5.65)

In addition to these boundary conditions, the deviation of a small patch of the
air-water interface from its equilibrium position at z = 0, which we denote
by ∆z, must be the same for both sides. Let us assume ∆z ∝ ei(kx−ωt). On
the air side we have

d∆z

dt
=

(
∂

∂t
+ u · ∇

)
∆z = −i(ω − ku1)∆z = ∆u1z. (5.66)

On the water side we have

d∆z

dt
=

(
∂

∂t
+ u · ∇

)
∆z = −i(ω − ku2)∆z = ∆u2z. (5.67)

Therefore the consistency of the air-water interface implies

∆u1z

ω − ku1

=
∆u2z

ω − ku2

(5.68)
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at z = 0. With this relation we may rewrite Eqs. (5.66) and (5.67) as

∆u1z = C(ω − ku1)e
−kzei(kx−ωt). (5.69)

∆u2z = C(ω − ku2)

(
ekz − e−2kDe−kz

1− e−2kD

)
ei(kx−ωt). (5.70)

To obtain the dispersion relation (ω as a function of k), we may integrate
Eq. (5.61) from z = 0− to z = 0+ with the condition du/dz = 0.

[
ρ

k
(ω − ku)

∂∆uz

∂z
+ ρ∆uz

du

dz

]∣∣∣∣∣
z=0+

z=0−

=
∫ 0+

0−
kρ(ω − ku)∆uz dz +

(
∆uz

ω − ku

)

z=0
kgρ

∣∣∣∣
z=0+

z=0−
. (5.71)

The second term on the left-hand side and the first term on the right-hand
side are zero. The result is

ρ1(ω − ku1)
2 + ρ2 coth(kD)(ω − ku2)

2 = kg(ρ2 − ρ1). (5.72)

Since the density of air is much smaller than the density of water, we may
drop terms involving ρ1. In the special case u2 = 0 we have

ω2 = kg tanh(kD). (5.73)

For a tidal wave the wavelength is much larger than the depth. Then we have
kD ¿ 1, and Eq. (5.73) becomes ω = k

√
gD. The velocity of the tidal wave

is
√

gD. Near the shore line where the depth is about 10 m, the wave travels
at 10 m/s or 36 km/hr. At deep seas (D = 1000 m) the wave can travel
at 360 km/hr, which is the speed of an airplane! That is why we have only
a short warning time after a tsunami is triggered by an earth quake. The
tidal wave propagates without dispersion until it approaches the shore line,
where the depth gradient makes the rear part of the wave move faster than
the front part. As a result, the wave can pile up many times higher than it
is on the open sea. This is why tsunamis are rarely dangerous to ships on
the sea, but can cause severe damage to the shore.

Eq. (5.73) also provide a clue on the speed of vessels that displace water to
gain buoyancy. As the vessel moves forward with a velocity v, the bow pushes
water aside and generate a trailing wave. The wave that has a phase velocity
equal to v is excited most efficiently, because the excitation is synchronous
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(resonant) to the motion of the vessel. If the wavelength λ is twice of the
vessel length L, the stern of the vessel will sink into the trough of the wave
generated by the bow. That will force the vessel to climb against the slope
of the wave and encounter a large resistance. On the contrary, if λ = L the
vessel will cruise at a level position with minimum resistance. Assume the
vessel is cruising in deep water, we have kD À 1 and Eq. (5.73) becomes

ω2 = kg, (5.74)

which gives

ω

k
=

√
λg

2π
. (5.75)

The conditions λ = L and v = ω/k yield

v =

√
Lg

2π
. (5.76)

For a 100-m vessel this optimal speed is 45 km/hr (24.3 knots).

5.6 Kelvin-Helmholtz Instability

We know that waves on water surface can be created by wind. However,
it is not obvious how the air that moves parallel to the water surface can
cause waves. After all, the parallel wind does not apparently exert any
force to disturb the surface. In order to understand this phenomenon, let
us consider two layers of fluids. The upper layer is the wind, moving with a
constant velocity u1 in the x-direction. The lower layer is the water, moving
with a constant velocity u2 also in the x-direction. We shall see that if
there is a small perturbation on the air-water interface at z = 0, under
suitable conditions the perturbation will grow. This is known as the Kelvin-
Helmholtz instability.

We may start from Eq. (5.72) with u1 6= u2 and D →∞.

ρ1(ω − ku1)
2 + ρ2(ω − ku2)

2 = kg(ρ2 − ρ1). (5.77)

Solving for ω, we have

ω = k(α1u1 + α2u2)±
√
−k2α1α2(u1 − u2)2 + kg(α2 − α1), (5.78)
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where

α1 =
ρ1

ρ1 + ρ2

, α2 =
ρ2

ρ1 + ρ2

. (5.79)

If ω has an imaginary part, u1z and u2z which are proportional to ei(kx−ωt) will
grow exponentially with time from an arbitrarily small initial perturbation.
This occurs when

−k2α1α2(u1 − u2)
2 + kg(α2 − α1) < 0. (5.80)

That is

k >
g(α2 − α1)

α1α2(u1 − u2)2
. (5.81)

Eq. (5.81) explains why low speed wind will only excite ripples of short
wavelength. It is interesting to know that even if the two fluids are identical
(α1 = α2), the Kelvin-Helmholtz instability still exists. The instability can
be suppressed by viscosity when the velocity difference is small. That is
why adding soluble polymers to water circulation systems can increase pump
efficiency by suppressing instabilities that cost energy.

5.7 The Reynolds number

In a system governed by the Navier-Stokes equation, instabilities that lead
to turbulence may occur because the term (u · ∇)u is highly nonlinear. The
instabilities can be suppressed by the diffusive term µ∇2u which tends to
smooth out the spatial variation of u. The crucial point is how large µ is,
comparing with other parameters of the system. In Section 4.5 we have seen
that the range of action for diffusion within time t is on the order of

√
Dt.

Hence for diffusion to be effective in smoothing out the spatial variation of
density,

√
Dt must be comparable to the length scale l0 of the system. Let

us write the Navier-Stokes equation in the following form,

∂u

∂t
+ (u · ∇)u = −∇P

ρm

+
µ

ρm

∇2u + F (5.82)

where ρm is the mass density. By analogy, for viscosity to be effective in

smoothing out the spatial variation of u,
√

µt/ρm must be comparable to l0.
If the velocity scale of the system is u0, then the time scale of the system is
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l0/u0. Thus it is reasonable to imagine that under the following condition,
viscosity is likely to suppress instabilities.

√
µl0

ρmu0

≈ l0. (5.83)

In a dimensionless form, this condition is equivalent to

1

R
≡ µ

ρmu0l0
≈ 1, (5.84)

where R is known as the Reynolds number. Instabilities occur usually
when R exceeds a few thousands.
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5.8 Exercises

Exercise 5.1. Consider a tube filled with an ideal gas and placed in an
environment of 1 atm. One side of the tube is sealed, and the other side is a
piston that can move freely. If the piston moves inwards the air in the tube
is compressed. In this case the pressure will be larger than 1 atm, and a
pressure difference is built up that works against the piston movement. On
the contrary, if the piston moves outwards the air in the tube is diluted. In
this case the pressure drops below 1 atm, and again a pressure difference is
built up against the piston movement. If the range of the piston movement
is small, this is an analogy of a spring. (From the view point of Taylor
expansion, as long as the derivative of the restoring force with respect to
the displacement is not zero, any small oscillation can be treated as simple
harmonic oscillation.) Assume the mass of the piston is 1 kg, and the cross
section is 10 cm2. At equilibrium the distance between the piston and the
sealed end is 1 m, and the air temperature is 25 ◦C. What is the resonance
frequency of this air-spring? Hint: the thermal conductivity of air is poor,
therefore in the time scale of the piston movement, the gas in the tube should
be treated as adiabatic expansion or compression.

Exercise 5.2. A round concentric pipe is used to transport water. Water
flows between the inner tube and the outer tube under pressure. The radius
of the outer surface of the inner tube is r1 and the radius of the inner surface
of the outer tube is r2. Derive a formula that describes the water flux as a
function of the pressure difference ∆P between the two ends of the pipe, r1

and r2, and the viscosity of water µ.

Exercise 5.3. A cart on a railway track carries a water tank. The tank is
drained by a horizontal pipe shown in Fig. 5.1. As the water is being drained,
Peter thinks the cart will move to the left, because due to the viscosity of
water, the pipe will be dragged by the water which is moving to the left. But
Paul does not agree. He thinks the right end of the pipe is under a higher
pressure than the left end. After all, and the water flow is driven by this
pressure difference. Because of the pressure difference, the cart will move to
the right. Who is correct? Does the cart continue to move after the tank
becomes empty? Can you calculate the speed of the cart as a function of
time? The mass of the cart is M , the initial height of the water in the tank
is h, the diameter of the tank is D, the radius of the pipe is R, the length
of the pipe is L, and the viscosity is µ. We assume R ¿ D so that the flow
speed in the tank is negligible comparing with that in the pipe.
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Fig. 5.1: Draining a tank.

Fig. 5.2: A balloon attached to an accelerating boxcar by a thread.

Exercise 5.4. A uniform solid plastic ball of density 0.5 g/cm3 is floating
on the surface of a water tank. Assume water is incompressible. If the
atmosphere pressure is increased at a constant temperature, the volume of the
ball submerged in the water (1) increases, (2) decreases, (3) does not change.
Choose your answer and explain why.

Exercise 5.5. A sealed boxcar is gliding down a slope with acceleration
a = g sin θ as shown in Fig. 5.2, where g is the free-fall acceleration at the
surface of the Earth and θ is the angle of the slope. A balloon filled with
helium is attached to the floor by a thin thread. What is the angle φ between
the thread and the normal vector of the floor? You may not need the following
data. But we provide them anyway in case you complain. The density of the
air is 1.143 g/l. The density of helium in the balloon is 0.18 g/l. The volume
of the balloon is 10 l, and the weight of the balloon when empty is 4 g.

Exercise 5.6. An hourglass is made by welding the tips of two cone-shaped
glass bottle together. The full angle of the cone is 30◦ and the height of each
cone is 10 cm. The neck connecting the two bottles has an inner diameter
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Fig. 5.3: Mechanical coupling by viscous fluid.

of 2 mm. The lower bottle is filled with tiny teflon balls whose diameter is
much smaller than 2 mm. Now we flip the hourglass. How long does it take
for 7/8 of the teflon balls to flow into the lower bottle? In this problem we
assume the teflon balls collectively behave like an incompressible fluid, and
the gap between the balls allows air to pass from the lower bottle to the
upper bottle. We also assume the teflon balls are slippery enough so that
the surface of the “fluid” remains flat all the time.

Exercise 5.7. Consider a shaft of radius r positioned at the center of a
rotating tube of length l as shown in Fig. 5.3. The inner radius of the tube
is R, and the angular velocity of the tube is ω. A viscous fluid of viscosity µ
is sealed in the space between the shaft and the tube. To prevent the shaft
from rotating together with the tube, how much toque must be applied to
the shaft? In this exercise we ignore the viscous force from the end caps of
the tube.

Exercise 5.8. It is well-known that the gravitational force from the Moon is
the major cause of the tidal wave observed twice a day. However, because the
Earth is spinning and the tidal wave can only propagate with a finite speed,
the tidal wave is not synchronized with the motion of the Moon. Assume
the Moon moves circularly in the equatorial plane of the Earth, and assume
there is no land on the surface of the Earth to interfere with the tidal-wave
propagation. If the wave length of the tidal wave is much larger than the
depth of the sea, how deep the sea must be for the tidal wave to synchronize
with the motion of the Moon? In this exercise we assume the curvature of
the Earth’s surface is negligibly small.
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Chapter 6

Electrostatics

6.1 Gauss’ Law

From Coulomb’s law, the electric field at r produced by a charge density
distribution ρ(r′) is

E(r) =
1

4πε0

∫
ρ(r′)

r− r′

|r− r′|3 d3r′, (6.1)

and the force acted on a charge density distribution by an external electric
field is

F =
∫

ρ(r)E(r) d3r. (6.2)

Since

∇ 1

|r− r′| = − r− r′

|r− r′|3 , (6.3)

Eq. (6.1) can also be written as

E(r) = − 1

4πε0

∇
∫ ρ(r′)
|r− r′| d

3r′ = −∇φ(r), (6.4)

where

φ(r) =
1

4πε0

∫ ρ(r′)
|r− r′| d

3r′ (6.5)

191
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is the electric potential. Mathematically Eq. (6.1) or (6.5) are not conve-
nient to use because they involve integration all over the space. Moreover, if
the charge distribution changes with time, because the electric field cannot
change instantly with the motion of the charges, the change of the electric
field will be delayed by |r− r′|/c. Namely,

E(r, t) =
1

4πε0

∫
ρ(r′, t′)

r− r′

|r− r′|3 d3r′, (6.6)

where t′ = t − |r − r′|/c. This further complicates the calculation. It turns
out that the 1/r2 dependence on the Coulomb force allows us to write a much
simpler mathematical equation for the electric field, which is known as the
Gauss’ law.

Let us start by calculating the divergence of the electric field Ep produced
by a single point charge q. From Eq. (1.343), it can be readily seen that

∇ · r

|r|3 = 0, (6.7)

everywhere except at r = 0, where the equation is undefined, therefore ∇ ·
Ep = 0 except at r = 0. Consider the surface integral

∫

S
Ep · da,

where S is an arbitrary surface enclosing the charge. Imagine cutting the
volume enclosed by S into two parts V1 and V2. The first part V1 contains
the charge, and the second part V2 does not. The surface S is also divided
correspondingly into two surfaces S1 and S2. Let us denote H the interface
surface between V1 and V2, then S1 + H encloses V1 and S2 + H encloses V2.
We have

∫

S
Ep · da =

∫

S1+H
Ep · da +

∫

S2+H
Ep · da, (6.8)

because the surface integral at H cancels. Because ∇ ·Ep = 0 everywhere in
V2, by Gauss’ theorem Eq. (1.322) the second term on the right-hand side of
Eq. (6.8) is zero. Hence we have

∫

S
Ep · da =

∫

S1+H
Ep · da, (6.9)

This means we can deform the surface S successively to a small sphere around
the charge without changing the surface integral. Namely

∫

S
Ep · da =

∫

σ
Ep · da, (6.10)
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where σ represents a sphere of radius r in which the charge sits at the center.
But

∫

σ
Ep · da =

q

ε0

, (6.11)

hence
∫

S
Ep · da =

q

ε0

, (6.12)

for any surface enclosing the charge.

Now consider a group of charges enclosed by S. Since the field E produced
by a group of charges is the superposition of that produced by each individual
charge, we have

∫

S
E · da =

1

ε0

∫

V
ρ(r) d3r. (6.13)

This is the integral form of the Gauss’ law. Using Gauss’ theorem, we have
∫

V
∇ · E d3r =

∫

S
E · da =

1

ε0

∫

V
ρ(r) d3r. (6.14)

Since V can be an arbitrarily small region, we have

∇ · E =
ρ

ε0

. (6.15)

This is the differential form of the Gauss’ law. In terms of the electric po-
tential, Gauss’ law is written as

−∇2φ =
ρ

ε0

. (6.16)

Using Gauss’ law, we can prove the shell theorems easily. Let us consider
a sphere of uniform charge density. The radius of the sphere is R, and the
total charge on the sphere is q. Let us choose the center of the sphere to be
the origin. By symmetry at position r the field is in the direction of r and
only a function of r. If r > R,

∫

S
E · da = E(r)4πr2 =

q

ε0

, (6.17)

where S is a sphere centered at the origin with radius r. In other words

E(r) =
1

4πε0

q

r2
. (6.18)
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This is the same as the case in which all the charge is put at the origin. In
contrast, if r < R there is no charge enclosed in the surface, hence E(r) = 0.

We can use Gauss’ law to calculate the electric field produced by charge
distributions that have high symmetries. For example, for charges uniformly
distributed on a infinite long line along the z-axis, by symmetry the electric
field is in the horizontal radial direction and is a function of r only. Let us
choose the surface of integration to be that of a cylinder along the z-axis,
with radius r and length L. Gauss’ law yields

E(r)2πrL =
ρlL

ε0

, (6.19)

where ρl is the line charge density. Hence

E(r) =
ρl

2πε0r
. (6.20)

Similarly, one can prove that the electric field produced by charges on
a infinitely extended sheet is a constant. Again, by symmetry the electric
field is normal to the sheet and is only a function of the distance d to the
sheet. By choosing the surface of integration to be that of a rectangular box
enclosing a rectangular area A of the sheet, Gauss’ law yields

E(d)2A =
ρsA

ε0

, (6.21)

where ρs is the line charge density. Therefore

E(d) =
ρs

2ε0

, (6.22)

which is a constant.

6.2 Electric Dipole

The simplest charge distribution beyond a single point charge or an uniform
distribution is the electric dipole. An electric dipole is formed by two charges
of opposite signs separated by a small distance. The electric field produced
by an electric dipole at the origin is

E(r) = − q

4πε0

∇
[

1

|r− d/2| −
1

|r + d/2|

]
. (6.23)
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Consider the Taylor expansion of 1/|r− r′| around r for the case |r′| ¿ |r|.
1

|r− r′| =
1

r
+∇

(
1

r

)
· (−r′) + . . .

=
1

r
+

r · r′
r3

+ . . . (6.24)

At a distance r much larger than d, the first term of the Taylor expansion of
Eq. (6.23) is

E(r) = − 1

4πε0

∇
(
p · r

r3

)
, (6.25)

where p = qd is called the electric dipole moment. For a charge distribu-
tion centered around the origin, the definition of the dipole moment can be
generalized to

p ≡
∫

r′ρ(r′) d3r′. (6.26)

Applying Eq. (6.24) to Eq. (6.5), we have

φ(r) =
1

4πε0

[
1

r

∫
ρ(r′) d3r′ +

r

r3
·
∫

r′ρ(r′) d3r′ + . . .
]

=
1

4πε0

(
q

r
+ p · r

r3
+ . . .

)
. (6.27)

The first term on the right-hand side is the monopole potential, and the
second term is the dipole potential, which agrees with Eq. (6.25). For p in
the z-direction, Eqs. (6.25) and (1.339) gives

E(r) = − 1

4πε0

(
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂

) (
p cos θ

r2

)
, (6.28)

hence

Er(r) =
1

4πε0

2p cos θ

r3
,

Eθ(r) =
1

4πε0

p sin θ

r3
,

Eφ(r) = 0. (6.29)

Consider a static charge distribution centered around the origin in an
external field. If the length scale of variation of the external field is much
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larger than the size of the charge distribution, the force experienced by the
charge distribution is

Fi =
∫

ρ(r)Ei(r) d3r ≈
∫

ρ(r)

[
Ei(0) +

∂Ei

∂rj

rj

]
d3r. (6.30)

If the net charge is zero, the term involving Ei(0) is zero, and the term
involving ∂Ei/∂rj is the dipole force.

Fi =
∂Ei

∂rj

pj, (6.31)

or

F = (p · ∇)E. (6.32)

Using the vector identity

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b× (∇× a) (6.33)

and noting that p is a constant vector and ∇×E = −∇×∇φ = 0, we have

F = ∇(p · E). (6.34)

The potential energy stored in the dipole is

U = −
∫

F · ds = −
∫
∇(p · E) · ds = −p · E. (6.35)

The torque experienced by the charge distribution is

τ =
∫

ρ(r)r× E(r) d3r ≈
∫

ρ(r)r× E(0) d3r = p× E. (6.36)

6.3 Electric Polarization

Some molecules have a permanent dipole moment. They are called polar
molecules. Under an external field polar molecules will rotate until the dipole
moment is parallel to the field. For nonpolar molecules, the charge distri-
bution can be deformed by the external field, such that the positive charge
moves in the direction of the field and the negative charge moves in the oppo-
site direction. If the medium does not conduct electricity, the movement will
not continue, because after all the electrons cannot leave the atoms. But still,
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the slight deformation will create a dipole moment again parallel to the field.
Such dipoles are called induced dipoles. For a nonconducting medium let us
define the electric polarization P to be the dipole moment per unit volume.
From Eq. (6.25) it is seen that the electric polarization also contributes to
the electric potential. Namely,

φ(r) =
1

4πε0

∫ [
ρ(r′)
|r− r′| + P(r′) · r− r′

|r− r′|3
]

d3r′

=
1

4πε0

∫ [
ρ(r′)
|r− r′| + P(r′) · ∇′ 1

|r− r′|

]
d3r′. (6.37)

Assuming P = 0 at the boundary in the infinity, integration by parts gives

φ(r) =
1

4πε0

∫ [
ρ(r′)
|r− r′| −

∇′ ·P(r′)
|r− r′|

]
d3r′. (6.38)

This is the potential produced by the charge distribution ρ−∇·P. Therefore,
in a polarizable medium Gauss’ law becomes

∇ · E =
1

ε0

(ρ−∇ ·P) . (6.39)

The electric displacement D is defined by

D = ε0E + P. (6.40)

We have

∇ ·D = ρ. (6.41)

In the linear regime the induced dipole moment is proportional to the
external field, hence we may define χe such that

P = ε0χeE, (6.42)

where χe is called the electric susceptibility. In this case D is proportional
to E. The electric permittivity ε is defined by the following relation

D = εE, (6.43)

where

κe ≡ ε

ε0

= 1 + χe (6.44)
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is called the dielectric constant or the relative electric permittivity. Substi-
tuting Eq. (6.43) into Eq. (6.41), one obtains

∇ · E =
ρ

κeε0

, (6.45)

or equivalently

∫

S
E · da =

1

ε

∫

V
ρ(r) d3r =

q

κeε0

. (6.46)

6.4 Capacitors

A capacitor is usually made of two narrowly spaced metal films, with a thin
layer of dielectric material sandwiched in between. Charges of opposite signs
can be stored temporally on the two films without neutralizing each other.
Due to the attractive force between the charges on the two films and the
repulsive force between charges on the same film, the larger the film and the
thinner the layer between them, the easier charges can be stored.

Let us model a capacitor by two infinitely large parallel plates with a small
gap between them. One surface is uniformly charged to +q and the other to
−q. On both sides of the capacitor, because the electric field produced by a
uniformly charged sheet is a constant, the field produced by two uniformly
charged sheets of opposite sign is zero. Hence E = 0 everywhere except
between the gap. To evaluate E between the gap, let us choose a rectangular
box that encloses a rectangular area A of only one sheet. Then the only
surface on which E is nonzero is the surface between the gap. Gauss’ law
yields

EA =
ρsA

ε0

, (6.47)

hence between the gap E is a constant. The voltage difference between the
plates is simply V = Ed, and the charge is simply q = ρsA. The capacitance
C is defined by

C =
q

V
, (6.48)

hence

C =
ε0A

d
. (6.49)
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Next we consider a capacitor made of two concentric cylinders with a
dielectric medium filling between them. The outer cylinder is charged to +q
and the inner cylinder is charged to −q. Again the capacitance C is defined
by C = q/V where V is the difference of the electrical potential between the
two cylinders. By cylindrical symmetry, the electric field has only the radial
component. At radius r, we have

Er(r)2πrL =
q

κeε0

, (6.50)

where L is the length of the cylinders. The potential difference is

V =
∫ R2

R1

Er(r) dr =
q

2πLκeε0

ln
(

R2

R1

)
, (6.51)

where R1 and R2 are the radii of the inner and outer cylinders respectively.
Hence

C =
2πLκeε0

ln(R2/R1)
. (6.52)

In the limit R2 −R1 = d, d ¿ R1,

C =
2πLκeε0

ln (1 + d/R1)
≈ Aκeε0

d
, (6.53)

where A = 2πR1L is the area of the conducting plate. This is the capacitance
of two parallel plates. Note that the capacitance is proportional to κe, hence
filling the gap with media of large dielectric constants is a common practice
in manufacturing capacitors.

When a small amount of charge ∆q leaves the capacitor, it carries away
a small amount of energy equal to V ∆q. The total amount of energy that
can be carried away from a capacitor of charge Q is

E =
∫ Q

0
V (q) dq =

∫ Q

0

Q− q

C
dq

=
Q2

2C
=

CV 2

2
=

QV

2
. (6.54)
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6.5 Exercises

Exercise 6.1. 12 resistive wires are employed to construct the frame of a
cube. The resistance of each wire is R. If we connect one corner of the cube
to the ground and its diagonal corner to a voltage source of voltage V , what
is the current that flows out of the voltage source?

Exercise 6.2. Write down the electric potential produced by a charge +q
at (d, 0, 0) and a charge −q at (−d, 0, 0). Show that the potential is zero on
the y-z plane.

Exercise 6.3. An infinitely large plane conductor is placed at the y-z plane.
A charged particle carrying charge +q is placed on the x-axis with a distance
d from the y-z plane. The charges on the conductor are attracted by the
charged particle, therefore they gather around the x-axis. Find the induced
surface charge density as a function of the distance from the origin. Note
that if you know the electric field normal to the conductor, you can calculate
the surface charge density by Gauss’ law. Hint: On a conductor the electric
potential is a constant. Therefore the induced charge density must arrange
itself together with the charged particle at (d, 0, 0) to make the electric po-
tential a constant. Because the conductor plane extends to infinity where
the potential is zero, the constant potential must be zero. Therefore the
situation is similar to that of Exercise 6.2.

Exercise 6.4. Replace the infinitely large plane conductor in Exercise 6.3
by a conducting sphere of radius R at the origin, where R < d. The sphere is
connected to the ground so that its potential is zero. Calculate the induced
surface charge density on the sphere. Hint: You may try to replace the
sphere by a negative charge −q′ at (d′, 0, 0) to make the electric potential at
the sphere equal to zero.

Exercise 6.5. Consider the circuit shown in Fig. 6.1. Each capacitor has
a capacitance of 1 µF, and R À 1 kΩ. In the beginning switches S1–S6

are closed and S7–S9 are open. At certain time switches S1–S6 are opened,
and immediately after that switches S7–S9 are closed. What is the output
voltage? If we close S10 now, how long does it take for the output voltage to
drop to 1/e of its maximum value? A simplified version of the same circuit
is shown in Fig. 6.2. Explain in words why the output pulse is practically
the same as that in Fig. 6.1 if R À 1 kΩ. (If you can explain by calculation,
it will even be better. But explaining in words is already acceptable.)
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Fig. 6.1: Maxbank high-voltage pulse generator.

Fig. 6.2: Maxbank high-voltage pulse generator, a simplified version.

Exercise 6.6. Two spherical electrodes of radius R separated by a distance
d are buried deeply into a conducting material that extends to infinity in
all directions. Assume R ¿ d. The conductivity of the material is σ. One
electrode is connected to a voltage source of +V and the other electrode is
connected to a voltage source of −V . What is the total current that flows
between the two electrodes? Use this method to measure the conductivity of
distilled water, and compare it with the value on textbooks.

Exercise 6.7. A capacitor is made of two parallel conducting plates. Be-
tween the plates is a plastic sheet with a dielectric constant κe > 1. If the
capacitor is charged by a battery and then disconnected, show that by remov-
ing the plastic sheet, the energy stored in the capacitor is increased. Where
does the extra energy come from? In contrast, if the capacitor remains con-
nected to the battery after it is charged, show that by removing the plastic
sheet, the energy stored in the capacitor is decreased. Where does the energy
go?

Exercise 6.8. In a conductor charges can move freely to form a steady-state
distribution ρs(r). At t = 0 if we set up a charge distribution ρ(r, 0) which
is different from ρs(r), the charge distribution will evolve into ρs(r) after a
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while. Show that

ρ(r, t) = ρs(r) + [ρ(r, 0)− ρs(r)]e
−λt.

where λ is related to the conductivity σ of the conductor. What is λ? In
this exercise we assume the current associated with the change of charge
distribution is small enough such that the effect of inductance is negligible.

Exercise 6.9. In experimental physics it is important to confine the motion
of ions in a small space in order to make the interaction time long enough.
Show that it is impossible to make an ion trap by using only static electric
field.



Chapter 7

Magnetostatics

7.1 Ampere’s Law

In 1819 Oersted observed that magnetic flux can be produced by electric cur-
rents. This was an important discovery, because it established the relation
between electricity and magnetism, which appeared as two different phenom-
ena before. By the experimental works of Biot and Savart, and later that of
Ampere, it was established that the magnetic-flux density B produced by a
current density distribution J can be written as

B(r) =
µ0

4π

∫
J(r′)× r− r′

|r− r′|3 d3r′, (7.1)

and the force acted on a current density distribution by an external magnetic-
flux density is

F =
∫

J(r)×B(r) d3r. (7.2)

Since

∇ 1

|r− r′| = − r− r′

|r− r′|3 , (7.3)

from the vector identity

∇× (ψa) = ∇ψ × a + ψ∇× a, (7.4)

203
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Eq. (7.1) can be transformed into

B(r) = ∇× µ0

4π

∫ J(r′)
|r− r′| d

3r′ − µ0

4π

∫ ∇× J(r′)
|r− r′| d3r′. (7.5)

The second term on the right-hand side is zero because J(r′) does not depend
on r. It then follows that

∇ ·B = 0, (7.6)

because ∇ · (∇× F) = 0 for any vector field F. Eq. (7.6) is consistent with
the fact that no magnetic charge has ever been found.

Similar to the transformation from Eq. (6.1) to Eq. (6.15), Eq. (7.1) can
be reduced to a much simpler form. By taking the curl of Eq. (7.1) and using
the vector identity

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b, (7.7)

we have

∇×B(r) =
µ0

4π

∫
J(r′)∇ · r− r′

|r− r′|3 d3r′

− µ0

4π

∫
[J(r′) · ∇]

r− r′

|r− r′|3 d3r′. (7.8)

For the first term on the right-hand side of Eq. (7.8), since

∇ · r− r′

|r− r′|3 = 0 (7.9)

except at r = r′, we may reduce the integration region to a small sphere σ
around r without changing value of the integral.

∫
J(r′)∇ · r− r′

|r− r′|3 d3r′ =
∫

σ
J(r′)∇ · r− r′

|r− r′|3 d3r′. (7.10)

In the limit where the radius of σ approaches zero, we have
∫

σ
J(r′)∇ · r− r′

|r− r′|3 d3r′ = J(r)
∫

σ
∇ · r− r′

|r− r′|3 d3r′. = 4πJ(r), (7.11)

where we obtain the second equality by Gauss’ theorem. For the second term
on the right-hand side of Eq. (7.8), we note that

−
∫

[J(r′) · ∇]
r− r′

|r− r′|3 d3r′

= ∇
∫

[J(r′) · ∇]
1

|r− r′| d
3r′

= ∇
∫

J(r′) · ∇ 1

|r− r′| d
3r′. (7.12)
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Because

∇ 1

|r− r′| = −∇′ 1

|r− r′| , (7.13)

where ∇′ means differentiation with respect to r′, we have

∇
∫

J(r′) · ∇ 1

|r− r′| d
3r′

= ∇
∫

J(r′) · (−∇′)
1

|r− r′| d
3r′

= ∇
∫ [

−∇′ · J(r′)
|r− r′| +

∇′ · J(r′)
|r− r′|

]
d3r′

= ∇
[
−

∫

S

J(r′)
|r− r′| · da +

∫ ∇′ · J(r′)
|r− r′| d3r′

]
. (7.14)

Assuming that there is no current at the boundary surface in the infinity,
the first term on the right-hand side is zero. By the continuity equation
∇′ · J = −∂ρ/∂t, we have ∇′ · J = 0 in the static case. Hence the second
term on the right-hand side is also zero. Back to Eq. (7.8), we have

∇×B = µ0J. (7.15)

This is known as Ampere’s law. Its integral form is, according to Stokes’s
theorem,

∮
B · dl = µ0

∫

S
J · da. (7.16)

One may use Ampere’s law to calculate the magnetic flux density pro-
duced by current distributions of high symmetry. Let us consider the mag-
netic flux density produced by a current I on a infinitely long wire along the
z-axis. At a distance r from the wire, by Eq. (7.1) we see that B is perpen-
dicular to both the wire and r. Hence B has only the azimuthal component.
Choosing the loop of integration to be a circle around the wire, Ampere’s
law yields

Bθ2πr = µ0I, (7.17)

hence

Bθ =
µ0I

2πr
. (7.18)
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Similarly, let us consider the magnetic flux density produced by a in-
finitely large sheet of current distribution. Assuming the sheet is on the y-z
plane with the current in the y-direction, and the observation point is at
(d, y, z). Since the current distribution is independent of y and z, the mag-
netic flux density at (d, y, z) is the same as that at (d, 0, 0). By Eq. (7.1),
B at (d, 0, 0) must be perpendicular to both the y-axis and the position
vector dx̂, hence has only the z-component. Eq. (7.1) also tells us that
Bz(−d, 0, 0) = −Bz(d, 0, 0). We may choose the loop of integration to be a
rectangular path in the z-x plane defined by the four corners (d, 0,−L/2),
(d, 0, L/2), (−d, 0, L/2), and (−d, 0,−L/2). Ampere’s law yields

Bz(d)2L = µ0JsL, (7.19)

where Js is the surface current density. Therefore the magnetic flux density
produced by a infinitely large sheet of current distribution is a constant
µ0Js/2.

7.2 Lorentz Force

Since a current is nothing but a stream of moving charges, Eq. (7.2) gives the
force experienced by a group of moving charges in a magnetic flux density.

F =
∫

J(r)×B(r) d3r

=
∫

ρ(r)v(r)×B(r) d3r

=
∑

i

qivi ×Bi, (7.20)

where qi and vi are the charge and velocity of the ith particle respectively,
and Bi is the B-field at the location of the ith particle. Combining with the
force produced by the electric field, a moving charge experiences a force

F = q(E + v ×B). (7.21)

This is known as the Lorentz Force.
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7.3 Force between Current Loops

Consider the force between two current loops. According to Eqs. (7.1) and
(7.2), the force is

F =
∫

J1(r)×
[
µ0

4π

∫
J2(r

′)× r− r′

|r− r′|3 d3r′
]

d3r

=
µ0

4π
I1I2

∮ ∮
ds×

(
ds′ × r− r′

|r− r′|3
)

, (7.22)

where we have used the relation

Ids = J d3r. (7.23)

By the vector identity Eq. (1.357), Eq. (7.22) can be reduced to

F =
µ0

4π
I1I2

[∮ ∮
ds · r− r′

|r− r′|3 ds′ −
∮ ∮

ds · ds′ r− r′

|r− r′|3
]
. (7.24)

Since

r− r′

|r− r′|3 = −∇ 1

|r− r′| , (7.25)

the first term on the right-hand side of Eq. (7.24) is zero. Hence

F = −µ0

4π
I1I2

∮ ∮
ds · ds′ r− r′

|r− r′|3 . (7.26)

7.4 Vector Potential

The vector potential A of the magnetic-flux density is defined by

B = ∇×A. (7.27)

This definition automatically satisfies the equation ∇ · B = 0. But how do
we know there is such a vector field satisfying Eq. (7.27)? Eq. (7.27) can be
explicitly written as

∂Az

∂y
− ∂Ay

∂z
= Bx,

∂Ax

∂z
− ∂Az

∂x
= By,

∂Ay

∂x
− ∂Ax

∂y
= Bz. (7.28)
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These are the three equations for the three components of A. However, since
∇ ·B = 0 these three equations are not independent. It is easy to see that if
A satisfies the equation

∇×A = B, (7.29)

A′ = A+∇φ also satisfies the same equation, because ∇×∇φ = 0 for any φ.
Therefore we must impose another condition to make the solution unique. A
convenient condition to fix the solution is ∇·A = 0. By adding the condition
∇ ·A = 0, we have enough equations to determine A. If ∇ ·A 6= 0, we can
choose φ such that

∇2φ = −∇ ·A. (7.30)

Then we have ∇ · A′ = ∇ · A + ∇2φ = 0. Since Eq. (7.30) is the same as
that for the electric potential Eq. (6.16), by Eq. (6.5) we see the appropriate
φ to choose is

φ(r) =
1

4π

∫ ∇′ ·A(r′)
|r− r′| d3r′. (7.31)

To write out A explicitly, let us take the curl of Eq. (7.27). By the vector
identity

∇× (∇×A) = ∇(∇ ·A)−∇2A, (7.32)

we have

∇2A = −∇×B. (7.33)

For each component of A, the equation is the same as that for the electric
potential Eq. (6.16), hence by Eq. (6.5) we have

A(r) =
1

4π

∫ ∇′ ×B(r′)
|r− r′| d3r′. (7.34)

The vector potential given by Eq. (7.34) satisfies ∇ ·A = 0, because

∇ ·A(r) =
1

4π

∫
[∇′ ×B(r′)] · ∇ 1

|r− r′| d
3r′

=
1

4π

∫
[∇′ ×B(r′)] · (−∇′)

1

|r− r′| d
3r′

= − 1

4π

∫
∇′ ·

[∇′ ×B(r′)
|r− r′|

]
d3r′ +

1

4π

∫ ∇′ · [∇′ ×B(r′)]
|r− r′| d3r′

= − 1

4π

∫

S

∇′ ×B(r′)
|r− r′| · da +

1

4π

∫ ∇′ · [∇′ ×B(r′)]
|r− r′| d3r′

= −µ0

4π

∫

S

J(r′)
|r− r′| · da +

µ0

4π

∫ ∇′ · [J(r′)]
|r− r′| d3r′. (7.35)
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Assuming that there is no current at the boundary surface in the infinity, the
first term on the right-hand side is zero. In the static case we have ∂ρ/∂t = 0.
By the continuity equation it implies ∇ · J = 0. Hence the second term on
the right-hand side is also zero. Since ∇′ × B(r′) = µ0J(r′), Eq. (7.34) can
be written as

A(r) =
µ0

4π

∫ J(r′)
|r− r′| d

3r′. (7.36)

This is the same result we have already derived in Eq. (7.5). The symmetry
between Eq. (6.5) and (7.36) reveals that using A to replace B in calculation
has the same advantage as using φ to replace E, as we shall see in the
subsequent sections.

7.5 Magnetic Dipole

Since an isolated magnetic charge has never been found, the simplest mag-
netic structure is a magnetic dipole. A magnetic dipole can be defined by
the magnetic-flux density generated by a small current loop. Similar to the
Taylor expansion of φ in Eq. (6.27), we may expand A in the following way:

Ai(r) =
µ0

4π

[
1

r

∫
Ji(r

′) d3r′ +
r

r3
·
∫

r′Ji(r
′) d3r′ + . . .

]
. (7.37)

By the vector identity

ri
∂Jk

∂xk

=
∂

∂xk

(xiJk)− ∂xi

∂xk

Jk =
∂

∂xk

(xiJk)− Ji, (7.38)

which reads

ri∇ · J = ∇ · (riJ)− Ji, (7.39)

and the fact ∇ · J = 0, we have

∇ · (riJ) = Ji. (7.40)

Hence
∫

Ji d
3r =

∫
∇ · (riJ)d3r =

∫

S
riJ · da, (7.41)

where in the last step we have used Gauss’ theorem. For a localized current
distribution, we may assume that J vanishes at some boundary surface. Then
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the first term on the right-hand side of Eq. (7.37) is zero. The second term
on the right-hand side of Eq. (7.37) can be reduced by the vector identity

(r · r′)J = (r · J)r′ − r× (r′ × J). (7.42)

We shall first prove
∫

(r · r′)J(r′) d3r′ = −
∫

[r · J(r′)]r′ d3r′. (7.43)

From Eq. (7.40) one has
∫

r′k∇′ · [r′iJ(r′)] d3r′ =
∫

r′kJi(r
′) d3r′. (7.44)

Using the identity

∇ · (ψa) = (a · ∇)ψ + ψ∇ · a (7.45)

we have
∫

r′k∇′ · [r′iJ(r′)] d3r′ =
∫
∇′ · [r′kr′iJ(r′)] d3r′ −

∫
r′iJ(r′) · (∇′r′k) d3r′

=
∫

S
r′kr

′
iJ(r′) · da′ −

∫
r′iJ(r′) · (δlkel) d3r′

=
∫

S
r′kr

′
iJ(r′) · da′ −

∫
r′iJk(r

′) d3r′. (7.46)

For a localized current distribution, we may assuming J = 0 at some bound-
ary surface. Then the first term on the right-hand side vanishes, and from
Eq. (7.40) we have

−
∫

r′iJk(r
′) d3r′ =

∫
r′kJi(r

′) d3r′. (7.47)

Multiplying both sides by ri and summing over i, we have

−
∫

rir
′
iJk(r

′) d3r′ =
∫

riJi(r
′)r′k d3r′, (7.48)

where the repeated index is by definition summed over. This is exactly
Eq. (7.43). Integrating Eq. (7.42) and substituting Eq. (7.43) into it, we
obtain

∫
(r · r′)J(r′) d3r′ = −r× 1

2

∫
r′ × J(r′) d3r′. (7.49)

With this identity, Eq. (7.37) is reduced to

A(r) = − µ0

4πr3
r× 1

2

∫
r′ × J(r′) d3r′. (7.50)
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The magnetic moment is defined as

m =
1

2

∫
r′ × J(r′) d3r′, (7.51)

and

A =
µ0

4π

m× r

r3
. (7.52)

For m in the z-direction,

A =
µ0

4π

m sin θ

r2
φ̂. (7.53)

B = ∇×A and Eq. (1.350) gives

Br =
µ0

4π

1

r2 sin θ

∂

∂θ

[
r sin θ

(
m sin θ

r2

)]
=

µ0

4π

2m cos θ

r3
,

Bθ = −µ0

4π

1

r sin θ

∂

∂r

[
r sin θ

(
m sin θ

r2

)]
=

µ0

4π

m sin θ

r3
. (7.54)

The field pattern is exactly the same as in Eq. (6.29), hence justifying
Eq. (7.51) as the definition of magnetic dipole moment.

If a current I flows in a closed loop whose line element is dl, Eq. (7.51)
becomes

m =
I

2

∫
r× dl. (7.55)

If the loop is in a plane,

∫
r× dl = 2a, (7.56)

where a = |a| is the area enclosed by the loop, and the direction of a is
normal to the plane. Hence we have

m = Ia. (7.57)

If we replace J(r′) by ρ(r′)v(r′) in Eq. (7.51) and note that r′×v(r′) is simply
the angular momentum L divided by the mass m of the charges, we have

m =
q

2m
L. (7.58)
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Because the magnetic-flux density produced by a tiny magnet has the same
pattern as Eq. (7.54), Eq. (7.58) suggests that magnetism originates from
the angular momentum of electrons in atoms.

To find out the force and torque acted on a magnetic dipole, let us consider
the following function

Um(r) = −
∫

J(r′ − r) ·A(r′) d3r′. (7.59)

Taking the gradient of both sides and using

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b× (∇× a), (7.60)

we have

∇Um(r) = −
∫ {

[A(r′) · ∇]J(r′ − r) + A(r′)× [∇× J(r′ − r)]
}
d3r′. (7.61)

Because J is a function of r′ − r, we can replace ∇ by −∇′ which operates
on functions of r′.

∇Um(r) =
∫ {

[A(r′) · ∇′]J(r′ − r) + A(r′)× [∇′ × J(r′ − r)]
}
d3r′. (7.62)

Using Eq. (7.60) again, we have

∇Um(r) =
∫
∇′[J(r′ − r) ·A(r′)]d3r′

−
∫ {

[J(r′ − r) · ∇′]A(r′) + J(r′ − r)× [∇′ ×A(r′)]
}
d3r′. (7.63)

Let us examine the x′-component of the first term on the right-hand side.

∫ ∂

∂x′
[J(r′ − r) ·A(r′)]dx′dy′dz′ =

∫
[J(r′ − r) ·A(r′)]dy′dz′

∣∣∣∣
x′=∞

x′=−∞
. (7.64)

Assuming J = 0 at the boundary surface in the infinity, this term vanishes.
The same is true for the other two components. Hence the first term on the
right-hand side of Eq. (7.63) is zero. Using

∇ · (ψa) = (a · ∇)ψ + ψ∇ · a (7.65)

the second term on the right-hand side of Eq. (7.63) becomes
∫

[J(r′ − r) · ∇′]Ai(r
′) d3r′

=
∫
∇′ · [J(r′ − r)Ai(r

′)]− Ai(r
′)[∇′ · J(r′ − r)] d3r′. (7.66)
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The first term on the right-hand side can be reduced to a surface integral.
Assuming J = 0 at the boundary surface in the infinity, this term is zero.
The second term on the right-hand side is also zero because for static current
density distributions, ∇ · J = 0. Therefore we have

∇Um(r) = −
∫

J(r′ − r)× [∇′ ×A(r′)] d3r′

= −
∫

J(r′ − r)×B(r′) d3r′. (7.67)

From Eq. (7.2), we see that −∇Um(r) is the force experienced by the current
density distribution J(r′ − r). Hence in Eq. (7.59)

Um(r) = −
∫

J(r′ − r) ·A(r′) d3r′ (7.68)

is the potential energy of a current density distribution J(r′ − r) in a fixed
external field A(r′).

Next, we expand A in Eq. (7.59) to show the contribution of the magnetic
dipole in Um(0).

Um(0) = −
∫

Ji(r
′)Ai(r

′) d3r′

= −
∫

[Ai(0) + r′ · ∇Ai(0)] Ji(r
′) d3r′. (7.69)

By the vector identity

ri∇ · J = ∇ · (riJ)− Ji (7.70)

and the fact ∇ · J = 0, we have

∇ · (riJ) = Ji, (7.71)

hence
∫

Ji d
3r =

∫
∇ · (riJ)d3r =

∫

S
riJ · da, (7.72)

where in the last step we have used Gauss’ theorem. Assuming there is no
current at the boundary surface in the infinity, it is seen the first term on
the right-hand side of Eq. (7.69) vanishes. In the tensor notation we have

a× b = aibjεijk, (7.73)
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where εijk = 1 if the order of permutation for {ijk} is even, εijk = −1 if the
order of permutation is odd, and εijk = 0 if any two indices are the same.
Define Ai

j ≡ ∂Ai/∂rj, in the tensor notation Eq. (7.69) becomes

Um(0) = −
∫

r′jA
i
jJi d

3r′. (7.74)

Using the identity εijkεlmk = δilδjm − δimδjl in Eq. (1.355), Eq. (7.47) can be
written as

∫
r′lJm d3r′ =

1

2

∫
(r′lJm − r′mJl) d3r′

=
1

2

∫
r′iJj(δilδjm − δimδjl) d3r′

=
1

2

∫
r′iJjεijkεlmk d3r′. (7.75)

Multiplying both sides by Aα
l , we have

∫
Aα

l r′lJm d3r′ =
1

2

∫
r′iJjεijkA

α
l εlmk d3r′. (7.76)

Eq. (7.51) is equivalent to

1

2

∫
r′iJjεijk d3r′ = mk, (7.77)

where mk is the kth component of m, hence we have
∫

Aα
l r′lJm d3r′ = mkA

α
l εlmk. (7.78)

Multiplying both sides by δmα, it becomes
∫

Aα
l r′lJα d3r′ = mkA

α
l εlαk. (7.79)

Noting that the left hand side is
∫

Aα
l r′lJα d3r′ = −Um(0) and on the right-

hand side Aα
l εlαk is simply the kth component of ∇×A = B. That is,

Um = −mkBk = −m ·B. (7.80)

The force acted on the current distribution is therefore

F = ∇(m ·B). (7.81)

To find out the torque τ acted on a magnetic dipole, we note that

τ ≈
∫

r′ × [J(r′)×B(0)] d3r′

=
∫

[r′ ·B(0)]J(r′) d3r′ −
∫

[r′ · J(r′)]B(0) d3r′. (7.82)
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By the same method we derive Eq. (7.49), namely replacing r by B(0), we
can show that

∫
[B(0) · r′]J(r′) d3r′ = −B(0)× 1

2

∫
r′ × J(r′) d3r′

= m×B(0), (7.83)

while by Eq. (7.47)

∫
[r′ · J(r′)]B(0) d3r′ = B(0)

∫
r′ · J(r′) d3r′ = 0. (7.84)

Therefore

τ = m×B. (7.85)

7.6 Magnetization

Some materials are made of atoms or molecules with a permanent magnetic
dipole moment. Under an external field the atoms or molecules may rotate
to make their magnetic moment parallel to the field. Even without rotation,
the current distribution can be deformed by the external field, as a result
the magnetic moment changes. Let us define the magnetization M to be the
magnetic dipole moment per unit volume. From Eqs. (7.50) and (7.51) it is
seen that the magnetization also contributes to the vector potential. Namely,

A(r) =
µ0

4π

∫ [
J(r′)
|r− r′| +

M(r′)× (r− r′)
|r− r′|3

]
d3r′. (7.86)

The magnetization term can be written as

∫ M(r′)× (r− r′)
|r− r′|3 d3r′ =

∫
M(r′)×

(
∇′ 1

|r− r′|

)
d3r′

=
∫ ∇′ ×M(r′)

|r− r′| d3r′ −
∫
∇′ × M(r′)

|r− r′| d
3r′, (7.87)

where we have used the vector identity ∇× (ψa) = ∇ψ × a + ψ∇× a. The
second term on the right-hand side can be reduced to surface integral by
Stokes’ theorem. Let us consider its z-component by defining a new vector

N(r′) =
Mx(r

′)
|r− r′| x̂ +

My(r
′)

|r− r′| ŷ. (7.88)
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(∫
∇′ × M(r′)

|r− r′| d
3r′

)

z

=
∫

[∇′ ×N(r′)] · ẑdxdydz

=
∫ (∮

N(r′) · dl
)

dz, (7.89)

where the line integral is over a loop at infinity on the x-y plane. Assuming
M = 0 in the infinity, this term vanishes. From Eq. (7.34) we have

∇×B = µ0J + µ0∇×M. (7.90)

The magnetization thus plays the role of an effective current density

JM = ∇×M. (7.91)

The macroscopic field H called the magnetic field is defined by

H =
B

µ0

−M. (7.92)

Then we have

∇×H = J. (7.93)

For some materials M is proportional to H, then we have

M = χmH, (7.94)

where χm is the magnetic susceptibility. In this case

B = µ0(χm + 1)H = κmµ0H = µH, (7.95)

where κm is called the relative permeability and µ the absolute permeability.
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7.7 Exercises

Exercise 7.1. Two charged particles carrying charges +q and −q are sep-
arated by a distance d in the y-direction. They are also moving in the
x-direction with the same velocity v. The mutual attraction force between
them is F when v = 0. At what v the mutual attraction between them is
reduced to F/2?

Exercise 7.2. A solid metal cylinder rotating with angular velocity ω about
its axis is put in a uniform magnetic field B parallel to its axis. The Lorentz
force and the centrifugal force push electrons to create a charge distribution.
What is the charge distribution? If the charge distribution you obtained
can be positive or negative everywhere, how would you explain the law of
charge conservation? Hint: Since the charge cannot leave the cylinder, it
may accumulate on the surface.
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Chapter 8

Electrodynamics

8.1 Faraday’s Law

In 1831 Faraday discovered that an electric current can be induced in a closed
wire loop by changing the magnetic flux that goes through the loop. This
important discovery can be written in the following mathematical form:

E = − d

dt

∫
B · da, (8.1)

where E is called the electromotive force, and the integration on the right-
hand side covers the surface enclosed by the wire loop. Faraday observed
that the relation between E and the induced current I simply follows the
Ohm’s law:

E = IR, (8.2)

where R is the resistance of the wire. Hence E can be interpreted as the
result of an induced electric field that drives the current. The direction
of the electromotive force is such that the magnetic flux produced by the
induced current is opposite to the change of the magnetic flux. In other
words, the induced current works against the change of the magnetic flux.
This is known as Lenz’ law.

Maxwell recognized that Eq. (8.1) is more general than it appears. Be-
cause it does not require a wire to define the electric field, and in fact an

219
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electric field can be defined even in vacuum, Maxwell rewrote Eq. (8.1) in
the following form which is independent of the presence of a wire.

∮
E · ds = − d

dt

∫
B · da. (8.3)

This is an important step in the development of electrodynamics, because it
reveals directly that an electric field can be induced by a changing magnetic
flux, even in vacuum. For the case of a static loop, by using the Stoke’s
theorem Eq. (8.3) can be written in the differential form

∇× E = −∂B

∂t
. (8.4)

But what about a moving wire loop? In Faraday’s experiments the chang-
ing magnetic flux may arise from a wire loop moving in a static magnetic
flux density distribution. How should we describe such cases by Eq. (8.3)? It
turns out that as a wire moves relative to a magnetic flux density, a charge
q in the wire will also experience a force proportional to qv × B, in addi-
tional to the electric force qE, as shown in Eq. (7.21). Consider a closed loop
moving at velocity v. If the loop has a fixed shape, then every point on the
loop labeled by the position vector r must move at the same velocity. In this
case v is independent of r. We may apply the convective derivative to the
right-hand side of Eq. (8.1).

dB

dt
=

∂B

∂t
+ (v · ∇)B =

∂B

∂t
+∇× (B× v) + v(∇ ·B). (8.5)

Substituting into Eq. (8.3), for a static B-field we have

∮
E · ds = −

∫
∇× (B× v) · da. (8.6)

Using the Stoke’s theorem, we have

∮
E · ds =

∫
(v ×B) · ds. (8.7)

This establishes the fact that in the case of a moving wire loop, the electro-
motive force is nothing but the Lorentz force. Because v × ds is the area
swept by the line element ds per unit time, we have

∮
(v ×B) · ds =

∮
B · (ds× v) = −

∫
B · ∂(da)

∂t
. (8.8)
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Substituting back into Eq. (8.7), we have

∮
E · ds = −

∫
B · ∂(da)

∂t
. (8.9)

For a loop of fixed shape the area enclosed by the loop does not change,
hence we have

∫ ∂(da)

∂t
=

∂

∂t

∫
da = 0. (8.10)

If B is uniform, the right-hand side of Eq. (8.9) vanishes. However, if B is
not uniform, the right-hand side of Eq. (8.9) does not vanish because each
point of integration is weighted by a different B. This is the electromotive
force induced by a loop moving in a static B field. The change of flux arises
from the change of the surface of integration.

8.2 Maxwell Equations

Let us summarize the four laws we have learned that govern the electromag-
netic interactions.
Gauss’ law:

∇ ·D = ρ. (8.11)

Ampere’s law:

∇×H = J. (8.12)

Faraday’s law:

∇× E = −∂B

∂t
. (8.13)

and because no magnetic charge has ever been found, we have

∇ ·B = 0. (8.14)

Among these laws, Ampere’s law is valid only for static cases. By applying∇·
on both sides of Eq. (8.12), it leads to ∇·J = 0. This cannot be right for the
general case because the conservation of charge requires that ∇·J+∂ρ/∂t =
0. Therefore Maxwell modified Eq. (8.12) to make it consistent with the
continuity equation. The modification is done by adding JD = ∂D/∂t on the



222 Chapter 8. Electrodynamics

right-hand side of Eq. (8.12), where JD ≡ ∂D/∂t is called the displacement
current. This is known as the Ampere-Maxwell law:

∇×H = J +
∂D

∂t
. (8.15)

These equations are now called the Maxwell equations collectively.

The need to introduce JD in Ampere’s law can also be seen in Eq. (7.8).
By Eq. (7.14), the second term on the right-hand side of Eq. (7.8) is

∇
∫ µ0

4π

∇′ · J(r′)
|r− r′| d3r′

=
µ0

4π
∇

∫ [
−∂ρ(r′)

∂t

]
1

|r− r′| d
3r′

=
µ0

4π

∂

∂t

∫
ρ(r′)

r− r′

|r− r′|3 d3r′

= µ0ε0
∂E

∂t
. (8.16)

Therefore Eq. (7.15) should be

∇×B = µ0J + µ0ε0
∂E

∂t
. (8.17)

In a polarizable and magnetizable medium it becomes Eq. (8.15).

Substituting B = ∇×A into Faraday’s law, we have

∇×
(
E +

∂A

∂t

)
= 0. (8.18)

This allows us to define a scalar potential φ by

−∇φ = E +
∂A

∂t
, (8.19)

or

E = −∇φ− ∂A

∂t
. (8.20)

The vacuum forms of Eqs. (8.11) and (8.15) are

∇ · E =
ρ

ε0

, (8.21)

∇×B = µ0

(
J + ε0

∂E

∂t

)
. (8.22)
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Substituting Eq. (8.20) into Eq. (8.21), we obtain

∇2φ +
∂

∂t
(∇ ·A) = − ρ

ε0

. (8.23)

Substituting B = ∇×A and Eq. (8.20) into Eq. (8.22), we obtain

∇(∇ ·A)−∇2A = µ0J−∇
(
µ0ε0

∂φ

∂t

)
− µ0ε0

∂2A

∂t2
, (8.24)

where ∇×∇×A = ∇(∇ ·A)−∇2A. That is,

∇2A− µ0ε0
∂2A

∂t2
−∇

(
µ0ε0

∂φ

∂t
+∇ ·A

)
= −µ0J. (8.25)

We have already mentioned that the equation B = ∇ ×A is not sufficient
to determine A uniquely. The three components of the equation are not
independent because ∇ · B = 0. This allows us to impose an additional
condition on A. For static cases we used to choose ∇ ·A = 0, but now if we
choose

µ0ε0
∂φ

∂t
+∇ ·A = 0, (8.26)

Eqs. (8.23) and (8.25) can be simplified to the following form:

∇2φ− µ0ε0
∂2φ

∂t2
= − ρ

ε0

. (8.27)

∇2A− µ0ε0
∂2A

∂t2
= −µ0J. (8.28)

Eqs. (8.26), (8.27), and (8.28) are equivalent to the Maxwell equations.

In a medium whose polarization and magnetization response linearly to
the electromagnetic field, Eqs. (8.11) and (8.12) become

∇ · E =
ρ

ε
, (8.29)

∇×B = µ

(
J + ε

∂E

∂t

)
, (8.30)

and Eqs. (8.26), (8.27), and (8.28) become

µε
∂φ

∂t
+∇ ·A = 0, (8.31)

∇2φ− µε
∂2φ

∂t2
= −ρ

ε
, (8.32)

∇2A− µε
∂2A

∂t2
= −µJ. (8.33)
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8.3 Electromagnetic Waves

Before Maxwell, E and B are thought of as mathematical instruments for
calculating the interactions between charges and currents. It is more conve-
nient to calculate first E and B from the charge and current sources then
use them to calculate the force experienced by a test charge or current. But
Eqs. (8.27) and (8.28) reveal that even if there is no charge and current, E
and B can exist in the form of electromagnetic waves. Of course, one can
argue that the existence of the wave equation does not guarantee its solution,
because after all, there must be an initial disturbance of charges or currents
at some place to produce the wave, just like a pendulum will not oscillate by
itself; there must be someone to give it an initial push. Such kinds of debate
in point of view can become philosophical. In the end, it is hard to deny the
advantage of treating E and B as real physical quantities. This is because in
terms of source charges and currents, the interaction is distributed. Namely,
as we shall see in Section 8.5, the force between a test charge q and a charge
distribution ρ(r′, t′) is

F(r, t) =
q

4πε0

∫
ρ(r′, t′)

r− r′

|r− r′|3 d3r′, (8.34)

where t′ = t − |r − r′|/c and c is the speed of propagation for the electro-
magnetic disturbance, and the force between a current I of length dl and a
current distribution J(r′, t′) is

dF(r, t) =
µ0Idl

4π
×

∫
J(r′, t′)× r− r′

|r− r′|3 d3r′. (8.35)

In contrast, in terms of E and B, the interaction is simply the Lorentz force
equation

F(r, t) = ρE(r, t) + J×B(r, t), (8.36)

where F(r, t) is the force per unit volume. The interaction is local, meaning
that only physical quantities at r is involved. This is why it is advantageous
to treat electromagnetic fields as real physical quantities such that we do
not always need to know where the sources are and what they are doing.
As a matter of fact, no one has ever looked at a charge as a banana in
one’s hand; we know the existence of charges only through their interaction
with other charges. Therefore, in physics the interaction between various
physical quantities is the only thing we are sure about. In this point of view
electromagnetic fields are physically as real as charges and currents.
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When there is no charge or current, Eqs. (8.32) and (8.33) become the
wave equations. They show that even when locally there is no source of
the electromagnetic field, the electromagnetic field can still exist as waves.
The prediction of the existence of electromagnetic waves is a great triumph
of the Maxwell equations. It turns out that 1/

√
µ0ε0, the phase velocity of

the electromagnetic wave, is the same as the speed of light. Hence Maxwell
equations also suggested that light is a kind of electromagnetic waves.

The existence of electromagnetic waves can also be seen directly from the
Maxwell equations without going through the scalar and vector potentials.
By taking the curl of both sides of Eq. (8.13), we have

∇× (∇× E) = − ∂

∂t
∇×B. (8.37)

Using µH = B and Eq. (8.15) to replace ∇×B, we have

∇× (∇× E) = ∇(∇ · E)−∇2E = −µ
∂

∂t

(
J +

∂D

∂t

)
. (8.38)

Using εE = D and Eq. (8.11)

∇2E− µε
∂2E

∂t2
=

1

ε
∇ρ + µ

∂J

∂t
. (8.39)

Similarly, taking the curl of both sides of Eq. (8.15) and using εE = D,
µH = B, we have

∇× (∇×B) = µ∇× J + µε
∂

∂t
∇× E. (8.40)

Using Eq. (8.13) to replace ∇× E, we have

∇× (∇×B) = ∇(∇ ·B)−∇2B = µ∇× J− µε
∂2B

∂t2
, (8.41)

or

∇2B− µε
∂2B

∂t2
= −µ∇× J. (8.42)

When there is no charge or current, E and B can still exist as waves with
phase velocity v = 1/

√
µε in media and v = 1/

√
µ0ε0 = c in vacuum.
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8.4 Radiation by Charge Acceleration

Let us look into the solutions of Eqs. (8.27) and (8.28). The equations are
of the form

∇2φ(r, t)− 1

c2

∂2φ(r, t)

∂t2
= −f(r, t). (8.43)

By expanding φ(r, t) and f(r, t) into a superposition of modes with time
dependent amplitudes,

φ(r, t) =
∑

k

a(k, t)uk(r), (8.44)

f(r, t) =
∑

k

g(k, t)uk(r), (8.45)

we have

∑

k

[
∇2uk(r)a(k, t)− 1

c2
uk(r)ä(k, t)

]
= −∑

k

uk(r)g(k, t). (8.46)

For simplicity, let us choose uk(r) to be the Fourier components exp(ik · r).
Then we have

∑

k

[
−k2uk(r)a(k, t)− 1

c2
uk(r)ä(k, t)

]
= −∑

k

uk(r)g(k, t). (8.47)

Because exp(ik · r) forms a complete orthonormal basis, we have

k2a(k, t) +
1

c2
ä(k, t) = g(k, t). (8.48)

For each k, this is the equation of a driven harmonic oscillator. In reality
any harmonic oscillator must have a damping factor, no matter how small
it is. Similarly we can add a damping term to Eq. (8.48) even though it is
negligibly small. The reason we keep it here is that it helps in the following
calculation. With the damping term added Eq. (8.48) becomes

k2a(k, t) +
γ

c2
ȧ(k, t) +

1

c2
ä(k, t) = g(k, t), (8.49)

where γ is a positive constant. For each k this is the same equation as that of
a driven harmonic oscillator, which has been solved in Eq. (3.11). Therefore
we may write out the solution directly. In the case γ → 0 we have

a(k, t) =
c

k

∫

t>t′
sin[ck(t− t′)]g(k, t′) dt′. (8.50)
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In the above analysis, we see that electromagnetic waves are driven by
time-varying charges and currents. If the electromagnetic radiation is pro-
duced by currents in a charge neutral environment such as a metal wire, we
have ρ = 0. In this case we see J must be a function of time in order to pro-
duce radiation (ω 6= 0). In other words, electromagnetic waves are produced
by accelerating charges.

8.5 Retarded Potentials

According to Eq. (1.346), in the spherically symmetric case Eq. (8.27) be-
comes

1

r2

∂

∂r

[
r2∂φ(r, t)

∂r

]
− 1

c2

∂2φ(r, t)

∂t2
= −ρ(r, t)

ε0

. (8.51)

Let us change the variable to u(r, t) ≡ rφ(r, t), we have

1

r

[
∂2u(r, t)

∂r2
− 1

c2

∂2u(r, t)

∂t2

]
= −ρ(r, t)

ε0

. (8.52)

For a point charge at r = 0, we have
[
∂2u(r, t)

∂r2
− 1

c2

∂2u(r, t)

∂t2

]
= 0, (8.53)

except for r = 0. The solution is

u(r, t) =
∑

k

ak(t)e
ikr, (8.54)

where ak(t) satisfies the equation for the harmonic oscillator.

äk(t) + c2k2ak(t) = 0. (8.55)

Define ω ≡ ck, we have

u(r, t) =
∑

k

cke
i(kr−ωt) + dke

i(kr+ωt). (8.56)

At this point let us focus our attention only on the outgoing wave, then we
choose only the first term

u(r, t) =
∑

k

cke
i(kr−ωt). (8.57)
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Hence

φ(r, t) =
∑

k

ck
ei(kr−ωt)

r
. (8.58)

This is the outgoing-wave solution of Eq. (8.51) for r 6= 0 when the only
source of φ is a point charge at r = 0. Let us expand ρ(r, t) into a Fourier
series,

−ρ(r, t)

ε0

= − 1

ε0

∑
ω

ρ̃(r, ω)e−iωt (8.59)

and substitute it and Eq. (8.58) back into Eq. (8.51). We have

∑

k

cke
−iωt

[
∇2

(
eikr

r

)
+ k2 eikr

r

]
= − 1

ε0

∑
ω

ρ̃(r, ω)e−iωt. (8.60)

Since ω = ck, we may replace
∑

k in Eq. (8.60) by
∑

ω. Comparing coeffi-
cients, we have

ck

[
∇2

(
eikr

r

)
+ k2 eikr

r

]
= − 1

ε0

ρ̃(r, ω). (8.61)

Since ρ̃(r, ω) = 0 except at r = 0, we may integrate the above equation over
a small sphere σ with radius rσ around the origin.

ck

∫

σ

[
∇2

(
eikr

r

)
+ k2 eikr

r

]
d3r = − 1

ε0

∫

σ
ρ̃(r, ω) d3r. (8.62)

The second term on the left-hand side approaches zero as rσ → 0 because
∣∣∣∣∣
∫

σ

eikr

r
d3r

∣∣∣∣∣ ≤
∫

σ

1

r
d3r

=
∫ rσ

0
4πrdr

= 2πr2
σ. (8.63)

The first term can be reduced to a surface integral by Gauss’ theorem.

ck

∫

σ
∇2

(
eikr

r

)
d3r

= ck

∫

σ
∇ ·

[
ik

eikr

r
r̂ + eikr∇

(
1

r

)]
d3r

= ck

∫

sσ

[
ik

eikr

r
r̂ + eikr∇

(
1

r

)]
· da, (8.64)
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where sσ is the surface of σ. The first term on the right-hand side approaches
zero as rσ → 0, because

∣∣∣∣∣
∫

sσ

eikr

r
r̂ · da

∣∣∣∣∣ ≤
1

rσ

4πr2
σ (8.65)

The second term is equal to −4πck as rσ → 0, because

lim
rσ→0

eikrσ → 1, (8.66)

and

lim
rσ→0

∫

sσ

∇
(

1

r

)
· da = lim

rσ→0

∫

sσ

(−r̂

r2

)
· da = −4π. (8.67)

Hence

ck =
1

4πε0

∫

σ
ρ̃(r′, ω) d3r′. (8.68)

Putting ck back into Eq. (8.58), we have

φ(r, t) =
1

4πε0

∑

k

ei(kr−ωt)

r

∫

σ
ρ̃(r′, ω) d3r′

=
1

4πε0

1

r

∫

σ

∑

k

ρ̃(r′, ω)e−i(ωt−kr) d3r′

=
1

4πε0

1

r

∫

σ

∑
ω

ρ̃(r′, ω)e−iω(t−r/c) d3r′

=
1

4πε0

∫

σ

ρ(r′, t′)
r

d3r′, (8.69)

where t′ = t − r/c. Eq. (8.69) describes the scalar potential produced by a
time-varying charge density at the origin. If there is charge density in other
locations, by superposition of φ we have

φ(r, t) =
1

4πε0

∫ ρ(r′, t′)
|r− r′| d

3r′. (8.70)

This is called the retarded scalar potential. It describes the scalar potential
at (r, t) produced by a time-varying charge density at (r′, t′) with t′ = t −
|r− r′|/c.

Similarly, we have the retarded vector potential

A(r, t) =
µ0

4π

∫ J(r′, t′)
|r− r′| d3r′ (8.71)

which describes the vector potential at (r, t) produced by a time-varying
current density at (r′, t′) with t′ = t− |r− r′|/c.
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8.6 Energy Density of Electromagnetic Fields

For a static charge distribution in a static external electric field, the potential
energy is

UE =
∫

ρ(r)φ(r) d3r. (8.72)

Let us write ρ(r) = αn(r), where α is a scalar proportional constant. If φ(r)
is established by the charge distribution itself, then φ(r) is also proportional
to α, namely φ(r) = αψ(r). The potential energy stored in the charge
distribution is the energy spent in building up the distribution as we let α
increase from 0 to its final value.

UE =
∫ α

0
αdα

∫
n(r)ψ(r) d3r =

1

2

∫
ρ(r)φ(r) d3r. (8.73)

Using the identity ∇ · (ψa) = ψ∇ · a + a · ∇ψ, we may write Eq. (8.73) in a
different form:

UE =
1

2

∫
ρ(r)φ(r) d3r

=
1

2

∫
[∇ ·D(r)]φ(r) d3r

=
1

2

∫
∇ · [φ(r)D(r)] d3r− 1

2

∫
D(r) · [∇φ(r)] d3r

=
1

2

∫

S
φ(r)D(r) · da− 1

2

∫
D(r) · [∇φ(r)] d3r

=
1

2

∫
D(r) · E(r) d3r, (8.74)

where we assume the surface integral of φ(r)D(r) at infinity vanishes. The
equivalence between Eq. (8.73) and Eq. (8.74) suggests that we may look at
the electric potential energy from two different points of view, one as the
energy stored in the charges in a potential field according to Eq. (8.73), the
other as the energy stored in the field itself according to Eq. (8.74). Using the
equation ∇·E = ρ/ε0, we may switch between these two points of view freely.
If we allow the charges to move by themselves, the movement will reduce the
potential energy, and the difference will be converted to the kinetic energy
of the charges. Conversely, if the kinetic energy of the charges is decreased,
it is converted into potential energy described by Eq. (8.73), which can also
be viewed as the energy stored in the electric fields according to Eq. (8.74).
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For a static current distribution in a static magnetic field, the situation
is different. In Eqs. (7.59) and (7.67) we have shown that if the force experi-
enced by a static current distribution in a static magnetic field is considered,
the potential energy is

Um = −
∫

J(r) ·A(r) d3r. (8.75)

However, since v×B is perpendicular to v, the magnetic field cannot change
the kinetic energy of the charges. Where does this potential energy come from
then? It turns out that Eq. (8.75) does not account for the total change of
energy, because it requires an external battery to maintain the static current
distribution. As a current is moved across a magnetic field, the Lorentz force
will generate an equivalent electromotive force as shown in Eq. (8.7). If the
electromotive force is anti-parallel to the current density, the external battery
must do extra work against this electromotive force. If the electromotive force
is parallel to the current density, the external battery can save work by using
the electromotive force as part of the driving force. Therefore, the extra
power delivered by the battery for a current density J(r′ − r) is

P (I)(r) = −
∫

E(I)(r′) · J(r′ − r) d3r′

= −
∫

[v ×B(r′)] · J(r′ − r) d3r′

=
∫

[J(r′ − r)×B(r′)] · v d3r′, (8.76)

where v is the velocity of the parallel-moving current density and E(I)(r′) is
the electric field induced by the Faraday’s law. The energy delivered within
a time dt by the battery is therefore

P (I)(r) dt = dr ·
∫

J(r′ − r)×B(r′) d3r′, (8.77)

where r is the parallel displacement of the current density distribution. In
other words, the energy Ub stored in the external battery has changed by

dUb = −dr ·
∫

J(r′ − r)×B(r′) d3r′, (8.78)

That is

∇Ub(r) = −
∫

J(r′ − r)×B(r′) d3r′, (8.79)

Comparing with Eq. (7.67), we see Um = Ub. The mechanical potential
energy Um is simply the energy stored in the external battery.
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Let us investigate how much energy is needed to build up a static magnetic
field. In this case we do not parallel-move the current density distribution.
Instead, we increase the magnetic field while keeping the current density
distribution fixed. The total power supplied by the external battery that
maintains the current density distribution is

P = −
∫

E(r) · J(r) d3r

=
∫ [

∇φ +
∂A

∂t

]
· J d3r

=
∫ [

∇ · (φJ)− φ∇ · J +
∂A

∂t
· J

]
d3r. (8.80)

Assuming there is no current on the boundary surface in the infinity, the first
term on the right-hand side is zero. The second term on the right-hand side
is also zero because ∇ · J = 0. Therefore

P =
∫

J · ∂A

∂t
d3r. (8.81)

The total energy supplied by the battery to build up A(r) while maintaining
J(r) fixed is

UB =
∫

J(r) ·A(r) d3r. (8.82)

To see more clearly the physical meaning of Eq. (8.82), let us rewrite
Eq. (8.76) in the following way.

P (I)(r) =
∫

v · [J(r′ − r)×B(r′)] d3r′

= −
∫

B(r′) · [J(r′ − r)× v] d3r′

= −
∫
∇′ ×A(r′) · [J(r′ − r)× v] d3r′

=
∫
∇′ · {[J(r′ − r)× v]×A(r′)} d3r′

−
∫
∇′ × [J(r′ − r)× v] ·A(r′) d3r′

=
∫

S
{[J(r′ − r)× v]×A(r′)} · da′

+
∫
∇× [J(r′ − r)× v] ·A(r′) d3r′. (8.83)

In the derivation we have used the facts that v does not depend on r or r′ and
∇′ operated on J(r′−r) is equal to −∇ operated on J(r′−r). Assuming there
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is no current on the boundary surface in the infinity, the surface integration
in Eq. (8.83) is zero. Using the identity

∇× (J× v) = −v(∇ · J) + (v · ∇)J, (8.84)

and noting that ∇ · J = 0, we obtain

P (I)(r) =
∫

[(v · ∇)J(r′ − r)] ·A(r′) d3r′. (8.85)

Because

dJ(r′ − r)

dt
=

∂J

∂t
+ (v · ∇)J(r′ − r) (8.86)

and ∂J/∂t = 0, Eq. (8.85) can be reduced to

P (I)(r) =
∫ dJ(r′ − r)

dt
·A(r′) d3r′. (8.87)

That is

P (I) =
∫ dJ(r′)

dt
·A(r′) d3r′. (8.88)

Combining Eqs. (8.81), (8.82), and (8.88), we see

dUB

dt
=

∫ [
dJ(r)

dt
·A(r) + J(r) · ∂A(r)

∂t

]
d3r

= P (I) + P. (8.89)

Therefore UB is the total energy supplied by the batteries to build up the
combination of J(r) and A(r). This energy can be thought of as the energy
stored in the configuration specified by J(r) and A(r).

Let us write J(r) = βj(r), where β is a scalar proportional constant.
If A(r) is established by the current distribution itself, then A(r) is also
proportional to β, namely A(r) = βa(r). The potential energy stored in the
current distribution is the energy spent in building up the distribution as we
let β increase from 0 to its final value.

UB =
∫ β

0
βdβ

∫
j(r) · a(r) d3r =

1

2

∫
J(r) ·A(r) d3r. (8.90)
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Using ∇ · (a× b) = b · (∇× a)− a · (∇× b) and Gauss’ theorem, we have

UB =
1

2

∫
J(r) ·A(r) d3r

=
1

2

∫
[∇×H(r)] ·A(r) d3r

=
1

2

∫
∇ · [H(r)×A(r)] d3r +

1

2

∫
H(r) · [∇×A(r)] d3r

=
1

2

∫

S
[H(r)×A(r)] · da +

1

2

∫
H(r) · [∇×A(r)] d3r

=
1

2

∫
H(r) ·B(r) d3r, (8.91)

where we assume the surface integral of H(r)×A(r) vanishes at infinity.

Let us consider now the energy density of time-varying electromagnetic
fields. The increase rate of the mechanical energy of a system of charged
particles can be written as

Pm =
∑

i

Fi · vi =
∑

i

qi [E(ri) + vi ×B(ri)] · vi

=
∫

E(r) · J(r) d3r. (8.92)

Replacing J by using the Ampere-Maxwell law,

Pm =
∫ [

E · (∇×H)− E · ∂D

∂t

]
d3r. (8.93)

Using the vector identity

∇ · (a× b) = b · (∇× a)− a · (∇× b) (8.94)

and Faraday’s law, we have

Pm = −
∫ [

∇ · (E×H)−H · (∇× E) + E · ∂D

∂t

]
d3r

= −
∫ [

∇ · (E×H) + H · ∂B

∂t
+ E · ∂D

∂t

]
d3r. (8.95)

Define

U ≡ 1

2
(E ·D + B ·H), (8.96)
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and

S ≡ E×H. (8.97)

For media with linear polarization and magnetization, we have

−E · J =
∂U

∂t
+∇ · S. (8.98)

This is known as the Poynting’s theorem, and S is called the Poynting
vector. Since the decrease of the mechanical energy must be equal to the
increase of the electromagnetic energy, Poynting’s theorem suggests that U
is the energy density of the electromagnetic field, and S is the energy flux
density.

8.7 Inductors and Transformers

Consider the interaction of two circuits fixed in space through Faraday’s law.
The electromotive forces in the circuits are induced by the total magnetic
fluxes that go through the surfaces enclosed by the circuits. For each circuit,
electromotive force arises from two contributions. One is the magnetic flux
generated by the current in the circuit itself, and the other is the magnetic
flux produced by the other circuit.

E1 = − d

dt

∫
(B1 + B2) · da1, (8.99)

where E1 is the electromotive force induced in circuit 1, da1 is the surface
element of the surface enclosed by circuit 1, and B1 and B2 are the mag-
netic flux densities generated by circuit 1 and circuit 2 respectively. Using
Eq. (7.27), we have

E1 = − d

dt

∫
∇× (A1 + A2) · da1. (8.100)

Applying the Stokes theorem, we have

E1 = − d

dt

∮
(A1 + A2) · ds1. (8.101)

Substituting Eq. (7.36) in for the vector potentials, we have

E1 = −µ0

4π

d

dt

∮ (∫ J1(r
′
1)

|r1 − r′1|
d3r′1 +

∫ J2(r2)

|r1 − r2| d
3r2

)
· ds1. (8.102)
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Note that J1(r
′
1) d3r′1 = I1ds

′
1 and J2(r2) d3r2 = I2ds2. The replacement

leads to

E1 = −µ0

4π

(
dI1

dt

∮ ∮ ds′1 · ds1

|r1 − r′1|
+

dI2

dt

∮ ∮ ds2 · ds1

|r1 − r2|

)
. (8.103)

The self-inductance of circuit 1 is defined by

L11 =
µ0

4π

∮ ∮ ds′1 · ds1

|r1 − r′1|
, (8.104)

and the mutual inductance between circuit 1 and circuit 2 is defined by

L12 =
µ0

4π

∮ ∮ ds2 · ds1

|r1 − r2| , (8.105)

In terms of self-inductance and mutual inductance, Eq. (8.103) can be written
as

E1 = −L11
dI1

dt
− L12

dI2

dt
. (8.106)

An inductor is a wire loop with a significant self-inductance. According
to Lenz’ law, the induced current works against the change of the magnetic
flux, therefore an inductor has a tendency of resisting the change of current
that flows through it. In contrast to a capacitor, which stores energy in the
electric field, an inductor can be thought as a device that stores energy in
the magnetic field. Let us “charge up” an inductor by turning on the current
gradually from 0 to I. As the current is increased, an electric field builds up
against the flow of the current. Between t and t + ∆t, the work done by the
external device that drives the current is simply

∆w = ∆q
∮

E · (−dl)

= I∆t

(
L

dI

dt

)
. (8.107)

The minus sign in the first equality means the charge is transported against
the E field. In other words, the motion of the charge is in the opposite
direction of the line element dl. In the limit of ∆t → 0,

dw = LI dI. (8.108)

Hence the energy stored in an inductor L is

w =
∫

LI dI =
LI2

2
. (8.109)
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We may also obtain the same result directly from Eq. (8.90). By replacing
Jd3r with Ids in Eqs. (8.90) and (7.36), Eq. (8.90) becomes

UB =
1

2

∫
J(r) ·A(r) d3r =

I

2

∮
ds ·

[
µ0

4π

∫ J(r′)
|r− r′| d

3r′
]

=
I2

2

µ0

4π

∮ ∮ ds · ds′
|r− r′| =

LI2

2
. (8.110)

Inductors are commonly made of solenoids. Let us calculate the induc-
tance of an infinitely long linear solenoid. Because inductance is related to the
magnetic flux enclosed by the wire loop, we only need to calculate the B-field
inside the solenoid. Let the axis of the solenoid be the z-axis. By Eq. (7.1) we
know that B can only have the z-component and the r-component, because
J is in the θ-direction. The symmetry between the +z and −z directions
makes all the contributions to the r-component cancel. Therefore we only
need to calculate Bz. By cylindrical symmetry and translational symmetry
in z, Bz can be a function of r only. Let us choose a rectangular loop of in-
tegration that goes up along the z-axis and comes back parallel to the z-axis
at a distance r from the z-axis. Ampere’s law yields Bz(0) = Bz(r), since
the loop does not enclose any current. Therefore inside the solenoid Bz is a
constant. Using Eq. (7.1) in cylindrical coordinates, we can calculate Bz(0).
Let R be the radius of the solenoid, we have

Bz =
µ0

4π

∫ ∞

−∞
Js2πR

R2 + z2

R√
R2 + z2

dz

=
µ0Js

2

∫ ∞

−∞
1

[1 + (z2/R2)]3/2
d

(
z

R

)
. (8.111)

By a change of variable tan θ = z/R, the integral can be evaluated.

Bz =
µ0Js

2

∫ ∞

−∞
1

(1 + tan2 θ)3/2
d (tan θ)

=
µ0Js

2

∫ +π/2

−π/2
cos θdθ

= µ0Js = µ0nI, (8.112)

where n is the number of turns per unit length. The electromotive force per
unit length is

E = − d

dt
(nBzA) = −µ0n

2A
dI

dt
, (8.113)
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hence the inductance per unit length is

L = µ0n
2A, (8.114)

Another example of inductor is a toroid of rectangular cross section. As-
sume the inner radius of the toroid is a and the outer radius is b, and the
height is h. Using Ampere’s law, the magnetic flux density at r is

Bθ(r)2πr = µ0NI, (8.115)

where N is the total number of turns. The magnetic flux is

φm =
∫ b

a

µ0NI

2πr
h dr =

µ0NIh

2π
ln

(
b

a

)
. (8.116)

Since each turn picks up an E = −dφm/dt, the inductance is

L =
µ0N

2h

2π
ln

(
b

a

)
. (8.117)

Similar to capacitors, the inductance of a solenoid or toroid can be greatly
increased by using a paramagnetic material of large µ as the core of the
solenoid or toroid. For the same current hence the same H, the magnetic
flux is proportional to µH instead of µ0H. Therefore the factor of increase
is µ/µ0 = κm.

A transformer is made of two inductors sharing the same magnetic flux.
Because the magnetic flux is the same, the ratio of the electromotive force
in the two inductors is equal to the ratio of the number of turns N2/N1. By
driving one inductor with an alternating voltage V1 cos ωt, one can induce
an electromotive force equal to (N2/N1)V1 cos ωt in the other inductor. Note
that this does not violate energy conservation, because to produce the same
magnetic flux the ratio of current is inversely proportional to the numbers of
turns. Therefore V1II = V2I2, which means the input power is equal to the
output power. In long-distance transmission of electricity it is important to
reduce the current, because the power loss due to resistance in the electric
cable is equal to I2R. By using a step-up transformer in the transmitting
end and a step-down transformer in the receiving end, the current can be
reduced. Without transformers the modern power distribution system we
are enjoying is impossible.
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8.8 Dipole Radiation

Let us consider the radiation field of an oscillating dipole p(t) = p0e
−iωt. The

current density corresponding to this oscillating dipole satisfies the following
equation:

∫
J(r′, t′) d3r′ =

∑

i

qivi = −iω
∑

i

qiri = −iωp = −iωp0e
−iωt′ , (8.118)

where vi and ri are the velocity and the displacement of the ith particle
respectively. If the location of the observation point is far away from the
dipole, we may replace |r− r′| by r in Eq. (8.71). Then we have

A(r, t) =
µ0

4πr

∫
J(r′, t′) d3r′ =

−iµ0ω

4πr
p0e

−iωt′

=
−iµ0ω

4πr
p0e

i(kr−ωt), (8.119)

where k = ω/c and the factor eikr comes from the relation t′ = t − r/c. E
and B can be obtained by

B = ∇×A

−iωµ0ε0E = ∇×B. (8.120)

Namely,

B =
−iµ0ω

4π

(
ik

r
− 1

r2

)
ei(kr−ωt)r̂× p0 (8.121)

≈ µ0ck
2

4π
r̂× p0

ei(kr−ωt)

r
, (8.122)

where we have assumed kr À 1. Under the same approximation

E ≈ − k2

4πε0

r̂× (r̂× p0)
ei(kr−ωt)

r
= −cr̂×B. (8.123)

If p is in the ẑ-direction, we have

B ≈ −µ0ck
2

4π

|p0|ei(kr−ωt)

r
sin θφ̂, (8.124)

and

E ≈ − k2

4πε0

|p0|ei(kr−ωt)

r
sin θθ̂. (8.125)



240 Chapter 8. Electrodynamics

By Eq. (8.98), the intensity of the radiation field at a faraway location is

|E×H| = ck4

32π2ε0

|p0|2 sin2 θ

r2
. (8.126)

The radiation intensity is maximum in the directions perpendicular to the
dipole, and zero in the direction parallel to the dipole. The total radiation
power is

∫
E×H · da =

∫
|E×H| sin θ dθdφ =

ck4|p0|2
12πε0

. (8.127)

8.9 Radiation from Relativistic Particles

According to Eq. (8.71), acceleration of charged particles will yield a time-
varying J, and consequently a time-varying A which represents the radiation
field. If the velocity of the particle v is not much smaller than c, it is not
possible to make the approximation |r− r′| ≈ r as we have done in deriving
the formulas for dipole radiation. This is because during the retardation time
t − t′ = |r − r′|/c the particle has moved a distance v(t − t′), which is not
much smaller than |r− r′| itself no matter how far the observation point is.
For a single particle the charge density and current density can be written
as

ρ(r, t) = qδ(r− r0(t)), (8.128)

J(r, t) = qv(t)δ(r− r0(t)), (8.129)

where r0(t) and v(t) are the position and velocity of the particle at time t
respectively. The vector potential can be written as

A(r, t) =
∫ µ0

4π

qv(t′)
|r− r′|δ(r

′ − r0(t
′)) d3r′. (8.130)

where

t′ = t− |r− r′|
c

. (8.131)

To evaluate A(r, t), we need to invert Eq. (8.131) and write t′ as a function
of t. This is a difficult task. Alternatively, we may impose the constraint of
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Eq. (8.131) by writing Eq. (8.130) as

A(r, t) =
∫ µ0

4π

qv(s)

|r− r′|δ(r
′ − r0(s))δ

(
s− t +

|r− r′|
c

)
d3r′ds

=
∫ µ0

4π

qv(s)

|r− r0(s)|δ
(
s− t +

|r− r0(s)|
c

)
ds. (8.132)

The δ-function in Eq. (8.132) is not of the usual form δ(x−x0). Instead it is
of the form δ(f(x) − f(x0)). To evaluate δ(f(x) − f(x0)), we note that the
δ-function is only sensitive to its argument around zero. Therefore we have

δ(f(x)− f(x0)) = δ(f ′(x0)(x− x0)) =
δ(x− x0)

f ′(x0)
. (8.133)

Let us calculate the derivative of s− t + |r− r0(s)|/c with respect to s.

d

ds

(
s− t +

|r− r0(s)|
c

)
= 1− [r− r0(s)] · v0(s)

|r− r0(s)|c , (8.134)

where v0(s) = dr0(s)/ds. Eq. (8.132) can then be written as

A(r, t) =
µ0

4π

∫ qv(s)

|r− r0(s)|
δ(s− t′)

[1− n(s) · β(s)]
ds

=
µ0

4π

qv(t′)
|r− r0(t′)|

1

[1− n(t′) · β(t′)]
(8.135)

where

n(t′) =
r− r0(t

′)
|r− r0(t′)| , (8.136)

and β(t′) = v0(t
′)/c. Similarly we have

φ(r, t) =
1

4πε0

q

|r− r0(t′)|
1

[1− n(t′) · β(t′)]
. (8.137)

The potentials in Eqs. (8.135) and (8.137) are known as the Liénard-Wiechert
potentials.
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Fig. 8.1: LC-transmission line.

Fig. 8.2: Fly-wheel circuit.

8.10 Exercises

Exercise 8.1. An infinite chain made of small inductors and capacitors is
shown in Fig. 8.1. The inductance of each inductor is εL and the capacitance
of each capacitor is εC. What is the impedance of this chain when ε →
0? Hint: Assume its impedance is Z. Because it is an infinite chain, its
impedance does not change when we remove a basic section enclosed in the
dashed box.

Exercise 8.2. Consider the circuit shown in Fig. 8.2. Capacitor C1 is charged
to a voltage V initially. Show that by manipulating switches S1 and S2 with
proper timing, the output can reach a peak voltage

√
nV , if C1/C2 = n.

Draw a diagram to show the timing sequence of S1 and S2. Hint: Consider
the energy stored in the inductor and the capacitor, and the analogy between
an LC circuit and a harmonic oscillator.

Exercise 8.3. We have shown that acceleration of charges generates electro-
magnetic wave. We have also shown that a static current generates only
a static B-field. Consider a static current in a ring. The current does
not change with time, therefore B is time-independent. However, electrons
in the circular trajectory experience centrifugal acceleration, therefore they
should generate electromagnetic wave. How would you explain this “para-
dox”? Hint: Compare the retarded vector potential for a ring current and a
single circulating charge.
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Exercise 8.4. An ideal battery of voltage V is employed to charge a capacitor
of capacitance C. The wire that connects the battery and the capacitor is
made of a superconducting material, namely a material of zero resistance.
The charge q stored in the capacitor is equal to CV and the energy stored in
the capacitor is CV 2/2. However, since the charge q comes from the battery,
the energy delivered by the battery is qV = CV 2. It looks like that half of
the energy delivered by the battery is missing. Where does it go?

Exercise 8.5. Most of the electronic appliances do not use the 110-VAC
source of electricity directly. Instead, transformers are used to lower the volt-
age to a level more compatible to semiconductor devices. Since a transformer
is made of two overlapping coils, it looks like that each coil of a transformer
can be treated as an inductor. Assume the input voltage is V (t) = V0 cos ωt,
by the relation V = LdI/dt, we have I(t) = V0 sin ωt/(ωL). The average
power delivered to the transformer is therefore

P =
1

T

∫ T

0

V 2
0 cos ωt sin ωt

ωL
dt = 0,

where T = 2π/ω. If this is true, how can a transformer deliver power to an
electronic appliance? If we assume the coils has no resistance, can you show
that the input power is equal to the output power?

Exercise 8.6. You are given two metal bars of identical appearance and
weight. One of them is made of permanent magnet, and the other is made
of unmagnetized iron. How do you tell which one is the bar-magnet without
using an external magnetic field? If the unmagnetized iron bar is replaced by
an alloy bar of identical appearance and weight that cannot be magnetized,
how do you distinguish them? You are only allowed to arrange the two bars
in various configurations and move them relative to each other and measure
the force between them.

Exercise 8.7. The electric current flowing in the high-tension wires that
deliver electricity from power plants is on the order of 1000 amperes. Consider
an infinitely long copper wire carrying 1000 amperes of 60-Hz AC current in
the z-axis. The diameter of the wire is 2 cm, and the conductivity of copper is
5.81×107/(Ω·m). Assume the current density is uniformly distributed in the
wire, what are the electric field and the magnetic field at a distance of 30m
from the wire? How does this electric field compare with the field required
to ionize the hydrogen atom and the field required to polarize water at room
temperature? How does this magnetic field compare with the magnetic field
of the earth at the earth surface (3× 10−5 T)?
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Hint: Solve this exercise in cylindrical coordinates.

Step 1: Use

A(r, t) =
µ0

4π

∫ J(r′, t′)
|r− r′| d3r′

and

E = −∇φ− ∂A

∂t

to show that E is in the z-direction and is only a function of r.

Step 2: Use B = ∇ ×A to show that B is in the θ-direction and is only a
function of r.

Step 3: Assume the second term on the right-hand side of the the Ampere-
Maxwell law shown below is negligible compared with the first term on the
right-hand side.

∇×B = µ0J + µ0ε0
∂E

∂t
.

Step 4: Since the displacement current in the Ampere-Maxwell law is as-
sumed to be negligible, you may now calculate B by using Ampere’s law.

Step 5: Calculate E by using Faraday’s law.

Step 6: Show that E satisfies the assumption in step 3 by integrating the
Ampere-Maxwell law over a surface of 30-m radius on the x-y plane.

Exercise 8.8. A coaxial cable of infinite length is made of a thin wire of
diameter d in the center and an outer cylindrical metal mesh of diameter D,
where d ¿ D. The space in between is filled with a polyethylene jacket of
dielectric constant κe. Derive the speed of the charge density wave propa-
gating in this cable. In this problem we assume both the center wire and the
outer mesh have no resistance. Note that the voltage across an inductor is

V = L
dI

dt
= L

d2q

dt
,

and the voltage across a capacitor is

V =
q

C
.
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If we treat V as the driving force and q as the response, then V acts like
a mechanical force, q acts like the displacement, L acts like the mass, and
1/C acts like the spring constant. Under this analogy, it is well known that
an RLC circuit is equivalent to a damped harmonic oscillator. Similarly, a
coaxial cable is equivalent to a elastic string, where the voltage difference
between the inner wire and the outer mesh at position x is equivalent to
the tension of the string at x and the difference in charge density at x is
equivalent to the string displacement at x. Further hints on this problem
can be obtained with a price.

Exercise 8.9. A coaxial cable of infinite length is made of a thin wire of
diameter d in the center and an outer cylindrical metal mesh of diameter D,
where d ¿ D. The space in between is filled with a polyethylene jacket of
dielectric constant κe. Derive the impedance of this cable. In this problem
we assume both the center wire and the outer mesh have no resistance.

Exercise 8.10. A cable of infinite length is made of two parallel thin wires
of diameter d. The separation between the wires is D, where d ¿ D. What
is the inductance per unit length? What is the capacitance per unit length?
In this problem we assume the wires have no resistance.

Exercise 8.11. Consider an inductor made of a long solenoid of N turns
of thin stiff wire. The radius of the solenoid is R. The separation between
adjacent coils is larger than the diameter of the wire, so that the solenoid
can be compressed or expanded like a spring. The question is whether this
spring will be compressed or expanded with a steady-state current I flowing
through it. Peter thinks the spring will be compressed. His argument is that
the currents that flow through the coils are parallel to each other, therefore
the force between the coils is attractive. Paul thinks the spring will be
expanded. His argument is that since the energy stored in the solenoid is
U = LI2/2, expanding the spring will reduce the inductance, thereby reduce
the stored energy. The reduced energy can be used to do work to the outside
world, therefore the spring will be expanded. Which argument is correct and
why? Do a thorough analysis to support your answer.

Exercise 8.12. An instrument shown in Fig. 8.3 is built to analyze the
charge-to-mass ratio of a group of particles. In the instrument, a uniform
electric field and a uniform magnetic field between x = 0 and x = L are set
up, both pointing to the z-direction. The charged particles fly across the
fields in the x-direction. Behind the region of the fields, a phosphor screen
at x = L facing the incoming particle is used to detect the deflection of the
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Fig. 8.3: The mass spectrometer used by J. J. Thomson to discover isotopes
of neon.

particles. Show that if the deflection is small, particles of the same charge-
to-mass ratio falls on the same parabola on the screen, regardless of their
velocity. Using this method, in 1913 J. J. Thomson observed two distinct
parabolas for ionized neon atoms and thus discovered that the neon gas was
composed of atoms of two different atomic masses (neon-20 and neon-22).

Exercise 8.13. In a rail gun the projectile is accelerated by passing a large
current through it in the direction transverse to an external static magnetic
field B that fills a gap of width w (see Fig. 8.4). Assume that both the
barrel frame and the projectile are made of conductors of negligible resistance,
then one might think the voltage needed to produce a large current can be
arbitrarily small. Hence no energy is needed to drive such a rail gun. What
is wrong with this argument? What is the voltage as a function of time to
make a constant acceleration a for a projectile of mass m? In this problem
we assume the magnetic field produced by the current is negligible comparing
to the external field.

Exercise 8.14. In Bohr’s model of hydrogen, the electron circulates the
proton and the centrifugal force is balanced by the Coulomb force. However,
the oscillatory motion of the electron will generate electromagnetic wave
and thus cause energy loss. Calculate the energy loss rate r for the n = 1
electron orbit. Let ∆t = E/r, where E is the kinetic energy of the electron
in the n = 1 orbit. What is the numerical value of ∆t? For simplicity, in
this problem we assume the proton has an infinitely large mass and v/c is
negligibly small, where v is the speed of the electron and c is the speed of
light.
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Fig. 8.4: The barrel frame and the projectile of a rail gun.



248 Chapter 8. Electrodynamics



Chapter 9

Special Relativity

9.1 The Mysterious Ether

In sections 3.5, 5.4, and 5.5 we have discussed the phenomena of string waves,
sound waves, and water waves. In these systems the evolution of small dis-
turbance is governed by the same wave equation that governs the electro-
magnetic waves. Therefore, it may seem that there is nothing special about
the electromagnetic waves. However, in all the wave phenomena people have
known previously, the wave equation is valid only in a reference frame in
which the average motion of the medium is zero. This can be seen by apply-
ing the Galilean transformation

r′ = r− vt

t′ = t (9.1)

to the wave equation

∇2ψ − 1

c2

∂2ψ

∂t2
= 0. (9.2)

Using Eq. (1.270), we have

∂

∂ri

=
∂

∂r′i
∂

∂t
=

∂

∂t′
− vi

∂

∂r′i
. (9.3)

249
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The wave equation becomes

∇′2ψ − 1

c2

(
∂

∂t′
− v · ∇′

)2

ψ = 0, (9.4)

which is by no means

∇′2ψ − 1

(c− v)2

∂2ψ

∂t′2
= 0. (9.5)

In the case of electromagnetic wave, what is the medium in which the electro-
magnetic disturbance propagates? Because the Maxwell equations agree well
with all kinds of experiments, if there is such a medium, we must happen to
be in a reference frame in which the medium is stationary. This hypothetical
medium was called “ether”.

Consider a long rod hanging in the center by a thread. One end of the
rod has charge +q and the other end has charge −q. In a reference frame
in which the rod is not moving, the rod experiences no torque, because the
attraction force between the charges is in the same direction as their relative
position vector. However, in a moving frame both charges are moving, so they
correspond to two parallel current elements of opposite directions. The two
current elements would repel each other by the magnetic force. By Eq. (7.22)
the force between the two current elements is

F =
µ0

4π
q2v × (v × L)

L3
, (9.6)

where L is the relative position vector. Therefore by measuring the torque
experienced by the rod, we will know the speed of our reference frame relative
to “ether”. This kind of measurement has been carried out by Trouton and
Noble, and the result is that v is much smaller than the orbital velocity of
earth (≈ 30 km/s).

Another famous experiment for determining v is the Michelson-Morley
experiment. In this experiment the two optical path lengths, one parallel to
v, the other perpendicular to v, are compared by an interferometer. The arm
parallel to v has a length l1, and the arm perpendicular to v has a length l2.
In the parallel arm, the time it takes for light to travel a round trip from the
beam splitter to the reflecting mirror and back is

t1 =
l1

c− v
+

l1
c + v

=
2l1

c(1− β2)
, (9.7)
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where β = v/c. In the perpendicular arm, the round trip time follows the
equation

t2 =
2

c

√
l22 +

(
vt2
2

)2

, (9.8)

or

t2 =
2l2

c
√

1− β2
. (9.9)

The optical path difference is

∆ = c(t1 − t2) =
2√

1− β2

(
l1√

1− β2
− l2

)
. (9.10)

If the interferometer is rotated by 90◦, the optical path difference changes to

∆′ = c(t′1 − t′2) =
2√

1− β2

(
l1 − l2√

1− β2

)
. (9.11)

The difference is

∆′ −∆ =
2(l1 + l2)√

1− β2

(
1− 1√

1− β2

)
. (9.12)

As the interferometer rotates, the detector should see n cycles of constructive
and destructive interference fringe shift, where

n =
∆′ −∆

λ
=

2(l1 + l2)

λ
√

1− β2

(
1− 1√

1− β2

)

≈ − l1 + l2
λ

β2 (9.13)

for small β. The experimental result again showed that v is much smaller
than the orbital velocity of earth.

It is possible to imagine that the ether is dragged by the earth, much
like that the air is dragged by a flying baseball. If that is the case, the
ether surrounding the earth is moving together with the earth. Then both
the Trouton-Noble experiment and the Michelson-Morley experiment will not
detect the relative velocity with respect to the ether. However, such an idea
is in direct conflict with the observation of star light aberration.

Let us imagine watching the rain fall in a rapidly moving train. The
rain drops fall vertically down, but because the train is moving, the tracks
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they leave on the window is not vertical. The angle follows tan θ = vt/vr,
where vt is the velocity of the train and vr is the velocity of the rain drops.
If the air surrounding the train is moving with the train, we will not see
this angle. We can imagine that after the rain drops fall into the train from
an opening on the roof, they will be dragged to move with the train in the
same horizontal velocity. Then as a passenger in the train, all one sees is the
vertical movement of the rain drops.

Similarly, when one watches a star in the zenith direction, the the star
light does not fall on us in the vertical direction, instead it comes in an angle
that follows tan θ = v/c ≈ 10−4, where v is the orbital velocity of the earth.
Every half year the angle is reversed because the velocity of the earth is
reversed. This phenomenon is called the star light aberration. If the ether
does not move with the earth, or there is no ether at all, one will see the
star light aberration. In contrast, if the ether is dragged by the earth, one
will not see star light aberration. Fizeau measured this aberration, and the
result showed that ether was not moving with the earth.

In summary, if we assume there is ether and it is the medium for the
propagation of electromagnetic wave, then the Trouton-Noble experiment
and the Michelson-Morley experiment showed that ether is dragged by the
earth, whereas Fizeau’s experiment showed that it is not. This is the difficult
situation nature forced on us, which fostered the invention of relativity.

9.2 Lorentz Transformation

Another approach to the problem of ether is to abandon altogether the idea
of ether as well as the Galilean transformation, and postulate that the speed
of light is the same in every reference frame. There is simply no “preferred”
frame for the electromagnetic wave. If we accept this postulate, then the
next question will be what to replace the Galilean transformation that will
make the Maxwell equations invariant.

Consider the case in which the relative velocity between two frames is in
the x-direction. For simplicity, let us assume the coordinate transformation
between different frames of different velocity is a linear transformation. Since
the relative velocity is in the x-direction, it is reasonable to assume that the
coordinates in the y- and z-directions are not affected.

x′ = α11x + α12t,
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y′ = y,

z′ = z,

t′ = α21x + α22t. (9.14)

The inverse transformation is

x =
α22x

′ − α12t
′

α11α22 − α12α21

,

y = y′,

z = z′,

t = − α21x
′ − α11t

′

α11α22 − α12α21

. (9.15)

The two frames have a relative velocity v in the x-direction means when
x′ = 0 we have x = vt, and when x = 0 we have x′ = −vt′. These conditions
yield

−α12

α11

= v,

α12

α22

= −v. (9.16)

Therefore

α11 = α22,

α12 = −vα11. (9.17)

The condition that the speed of light is c in both frames implies if x2 + y2 +
z2 − c2t2 = 0, then

x′2 + y′2 + z′2 − c2t′2 = 0. (9.18)

Substituting Eq. (9.14) into Eq. (9.18) and using the condition x2 +y2 +z2−
c2t2 = 0, we have

α12 = c2α21. (9.19)

We also note that swapping (x, y, z, t) and (x′, y′, z′, t′) is equivalent to re-
placing v by −v in the transformation between (x, y, z, t) and (x′, y′, z′, t′).
This gives

α11α22 − α12α21 = 1. (9.20)
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Eqs. (9.17), (9.19), and (9.20) yield

α11 = α22 =
1√

1− v2/c2
,

α12 = −α11v =
−v√

1− v2/c2
,

α21 = −α11v

c2
=

−v/c2

√
1− v2/c2

. (9.21)

Hence we have

x′ =
x− vt√
1− v2/c2

, (9.22)

y′ = y, (9.23)

z′ = z, (9.24)

t′ =
t− (v/c2)x√

1− v2/c2
. (9.25)

and

x =
x′ + vt′√
1− v2/c2

, (9.26)

y = y′, (9.27)

z = z′, (9.28)

t =
t′ + (v/c2)x′√

1− v2/c2
. (9.29)

Eqs. (9.22)–(9.25) are known as the Lorentz transformation and Eqs. (9.26)–
(9.29) are its inverse transformation. Note that by swapping (x, y, z, t) and
(x′, y′, z′, t′) and changing v to −v we obtain Eqs. (9.26)–(9.29) directly from
Eqs. (9.22)–(9.25) as expected. Because space-time coordinates must be real
numbers, we have v < c. In other words, an observer cannot move faster
than the speed of light.

It is customary to use the coordinate (x, y, z, ct) and write the Lorentz
transformation as

x′ = γx− βγct, (9.30)

y′ = y, (9.31)

z′ = z, (9.32)

ct′ = −βγx + γct, (9.33)
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where

β =
v

c
, (9.34)

γ =
1√

1− v2/c2
. (9.35)

From Eq. (1.270), we have

∂

∂x
= γ

∂

∂x′
− βγ

(
1

c

∂

∂t′

)
, (9.36)

∂

∂y
=

∂

∂y′
, (9.37)

∂

∂z
=

∂

∂z′
, (9.38)

1

c

∂

∂t
= −βγ

∂

∂x′
+ γ

(
1

c

∂

∂t′

)
, (9.39)

Inverting the transformation matrix, we have

∂

∂x′
= γ

∂

∂x
+ βγ

(
1

c

∂

∂t

)
, (9.40)

∂

∂y′
=

∂

∂y
, (9.41)

∂

∂z′
=

∂

∂z
, (9.42)

1

c

∂

∂t′
= βγ

∂

∂x
+ γ

(
1

c

∂

∂t

)
, (9.43)

The transformation for the derivatives is the inverse Lorentz transformation.
Hence we can see immediately

∇2 − 1

c2

∂2

∂t2
= ∇′2 − 1

c2

∂2

∂t′2
. (9.44)

In summary, the Lorentz transformation makes the speed of light and the
Maxwell equations invariant. If we wish to make sense out of the experi-
mental results, we are forced to adopt this transformation for the space-time
coordinates between reference frames. This does not mean we were wrong
to use the Galilean transformation before. In the limit β → 0, the Lorentz
transformation is the same as the the Galilean transformation. Hence the
Galilean transformation is a good approximation when v ¿ c.
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9.3 Simultaneity and Causality

In non-relativistic physics, time is a common parameter shared by all ref-
erence frames. In contrast, Lorentz transformation tells that each reference
frame has its own time. Two events that are simultaneous in frame 1 may
not be simultaneous in frame 2. For instance, consider two events in frame
1. One occurred at (x1, 0, 0, ct) and the other at (x2, 0, 0, ct). They were
simultaneously because both of them occurred at time t. By Eqs. (9.30)–
(9.33), in frame 2 they occurred at (γx1 − βγct, 0, 0,−βγx1 + γct) and
(γx2 − βγct, 0, 0,−βγx2 + γct) respectively. The time difference in frame
2 is

c∆t′ = t′2 − t′1 = βγ(x1 − x2). (9.45)

To understand this nonintuitive result, we must inspect what we mean by
simultaneity more carefully. Consider a simple experiment in which a per-
son O1 at the origin sends out light signals in both the x-direction and the
−x-direction simultaneously to two detectors at equal distance. For O1 the
coordinates of the detectors are (d1, 0, 0) and (−d1, 0, 0). Obviously, from
O1’s point of view the two light signals will arrive at the two detectors si-
multaneously. However, to another person O2 who is passing by O1 in the
x-direction with a speed v when O1 is sending out the signals, the two light
signals cannot arrive the two detectors simultaneously. From O2’s point of
view both detectors are moving in the −x-direction with a speed v, therefore
one detector is moving toward the light and the other is moving away from
the light. Assume for O2 the coordinates of the detectors are (d2, 0, 0) and
(−d2, 0, 0). Since the speed of light is constant, the difference in the arrival
time will be

∆t =
d2

(c + v)
− d2

(c− v)
= −2d2

βγ2

c
. (9.46)

We see simultaneity cannot be a common fact to be agreed by observers
with relative motion. Because there is no “preferred” reference frame, we
cannot say O1 is more correct than O2 or vice versa. The lack of universal
simultaneity is a direct consequence of the fact that light speed is a constant
in all frames.

Let us consider the communication between two events separated in space-
time. Event 1 occurred at (x1, 0, 0, t1) and event 2 occurred at (x2, 0, 0, t2).
Let us also assume that the fastest signal one can use for communication has
the speed of light. If t2 > t1 and |x2− x1| < c|t2− t1|, we could send a signal
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from (x1, 0, 0) at t1 to (x2, 0, 0) such that the signal arrived (x2, 0, 0) before
t2, when event 2 occurred. Since the signal can carry information, it may
have caused event 2 to occur, therefore we say event 1 may have a causal
influence on event 2. From Eq. (9.33), the time interval between these two
events seen in a different frame is

∆t′ = γ∆t
(
1− β

∆x

c∆t

)
, (9.47)

where ∆t′ = t′2 − t′1, ∆t = t2 − t1 and ∆x = x2 − x1. Since ∆t > 0, if
∆t′ < 0 we have a contradiction, because for observers in this frame event
1 occurred later than event 2, hence it cannot have a causal influence on
event 2. Instead, for observers in this frame event 2 may have caused event
1 to occur. To avoid this contradiction we must have ∆t′ > 0. For |β| < 1
this is indeed the case. As long as |∆x| < c|∆t|, ∆t′ and ∆t in Eq. (9.47)
have the same sign. Therefore Lorentz transformation preserves the causal
relation if there is no means of communication faster than the speed of light.
Conversely, if there is a way to communicate faster than light with a speed
u, than the causal condition in one frame will be |x2−x1| < u|t2− t1|, where
u > c. In this case reversal of causal relation may occur in a different frame
when u > c/β. To avoid this contradiction, we must rule out the possibility
of communication faster than the speed of light.

9.4 Proper Length and Proper Time

In the relativistic regime, even things as simple as measuring the length
of a rod or the time interval between two events can be tricky. Because
the Lorentz transformation mixes up space and time coordinates, one must
define clearly the conditions under which a measurement is carried out. The
simplest measurements are the length of a rod and the time interval between
two events where the observer has no relative velocity with respect to the rod
or the events. In the case we say the observer is in the rest frame of the events.
Under this condition, the measured length is called the proper length lp of
the rod, and the time interval is called the proper time tp between two events.
If the observer has a relative velocity, the most reasonable measurement for
the length of a rod is to measure the space coordinates of the two ends of
the rod simultaneously. In this case, by Eq. (9.26) we have

lp = γl, (9.48)

where l is the difference in the space coordinates of the two ends of the rod.
Because γ > 1, we see that l < lp. Namely a rod appears shorter than its
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proper length to a moving observer. Because motion is relative, it is equally
well to say that a moving rod appears shorter than its proper length. This
effect is called length contraction.

For the measurement of the time interval τ between two events, if the
observer has a relative velocity, we know the result will depend on the dis-
tance between the two events in the rest frame. If the two events occur at
the same location in the rest frame, by Eq. (9.25) we have

τ = γtp. (9.49)

Because γ > 1, we see that τ > tp. Namely the period of a clock appears
longer to a moving observer. This effect is called time dilation.

A confusion that often occurs to beginners in this field is that if we imagine
two observers each carrying a standard meter passing by each other with
high speed, Eq. (9.48) says that each of them will see the meter carried by
the other is shorter. Is this a contradiction? If there existed an instant
common to both observers at which the two ends of one meter matched the
two ends of the other meter, it would be a contradiction. But as we have
explained in Section 9.3, such a common instant does not exist. For the two
observers, a common simultaneity is possible only if the two events occur at
the same place. When observer 1 measures the length of the meter carried
by observer 2, the only meaningful measurement for him is to measure the
space coordinates of the two ends of the meter simultaneously, then subtract
the coordinates to obtain the length. However, when observer 1 does so,
observer 2 does not agree that observer 1 measured the meter simultaneously.
He thinks that observer 1 measured the space coordinates of the two ends
of his meter at two instants with a time interval ∆t′ between the instants.
Replacing 2d2 in Eq. (9.46) by the proper length of the meter lp, we know
that observer 2 thinks ∆t′ is

∆t′ = −lp
βγ2

c
. (9.50)

Within this time interval observer 1 should have moved −v∆t in his own
coordinate, where ∆t = ∆t′/γ. Without taking into account of the effect of
this movement, observer 2 anticipates that observer 1 would have measured
the length to be γlp, because after length contraction this quantity should
be lp. However, because the measurements are carried out at different times,
the measured length should be

γlp − (−v∆t) = γlp − β2γlp =
lp
γ

. (9.51)
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From observer 1’s point of view, by Eq. (9.22) he would measured the length
of observer 2’s meter to be lp/γ. From observer 2’s point of view, by Eq. (9.51)
he would also think that observer 1 would get the same value lp/γ. Therefore
there is no contradiction. The important point to realize is that simultaneity
for observer 1 does not imply simultaneity for observer 2. This resolves the
apparent contradiction.

Similarly, if observer 1 and observer 2 both carry a standard clock, each of
them would see the other’s clock runs slower. There is no contradiction either,
because to each observer the other’s clock is moving, and it is not possible
to measure the time intervals of both clocks at the same place. Let the clock
interval be tp. As observer 1 measures observer 2’s clock interval, observer
2 knows that observer 1 has moved a distance ∆x′ = −vtp between the
two measurements. Without taking into account the effect of this distance,
observer 2 anticipates that observer 1 would have measured the time interval
to be tp/γ, because after time dilation this quantity should be tp. However,
because from observer 2’s point of view the measurements are carried out at
two different locations separated by ∆x′, we must add the extra time interval
that arises from the difference in simultaneity between the two observers as
a result of ∆x′ 6= 0. This extra time interval can be obtained by replacing
2d2 in Eq. (9.46) with ∆x′. Therefore the measured time interval should be

1

γ

[
tp − (−vtp)

βγ2

c

]
=

tp
γ

(1 + β2γ2) = γtp. (9.52)

Again there is no contradiction.

9.5 Addition of Velocity

For a reference frame moving in the x-direction with velocity v, the trans-
formation of velocities can be obtained directly from Eqs. (9.22)–(9.25).

u′x =
dx′

dt′
=

dx− vdt

dt− (v/c2)dx
=

ux − v

1− (v/c2)ux

, (9.53)

or equivalently

ux =
u′x + v

1 + (v/c2)u′x
. (9.54)

u′y =
dy′

dt′
=

1

γ

[
dy

dt− (v/c2)dx

]
=

1

γ

[
uy

1− (v/c2)ux

]
. (9.55)
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u′z =
dz′

dt′
=

1

γ

[
dz

dt− (v/c2)dx

]
=

1

γ

[
uz

1− (v/c2)ux

]
. (9.56)

By straightforward algebra, it can be shown that

1− u′2

c2
=

(
1− v2

c2

) (
1− u2

c2

)

(
1− vux

c2

)2 . (9.57)

Because the right-hand side is always positive, we see u′2 < c2, which means
the sum of two velocities will not exceed the speed of light, no matter how
close to the speed of light they are.

9.6 Energy and Momentum

In the non-relativistic regime, v ¿ c, the momentum conservation law can
be expressed as

∑

i

miui = constant. (9.58)

before and after collisions. In other words,
∑

i miui is invariant under colli-
sions. The Galilean transformation does not change the momentum conser-
vation law, because in a moving frame Eq. (9.58) becomes

∑

i

miu
′
i =

∑

i

mi(ui − v) =
∑

i

miui −
(∑

i

mi

)
v, (9.59)

and the second term on the right-hand side is also a constant invariant under
collisions. In the relativistic regime, Eq. (9.58) is not compatible with the
formula for the addition of velocity. Assuming all the velocities are in the
x-direction, in a frame moving also in the x-direction, Eq. (9.58) changes to

∑

i

miu
′
i =

∑

i

mi(ui − v)

1− (v/c2)ui

. (9.60)

This equation shows that
∑

i miui and
∑

i miu
′
i cannot be both invariant

under collisions.

Similarly, under the Galilean transformation the kinetic energy becomes

∑

i

mi

2
u′2i =

∑

i

mi

2
(u2

i − 2uiv + v2) =
∑

i

mi

2
u2

i + constant, (9.61)
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which means if
∑

i miu
2
i /2 is invariant under collisions, so is

∑
i miu

′2
i /2.

Again, the formula for the addition of velocity ruins this invariance.

A way to maintain the energy and momentum conservation laws is to
redefine the kinetic energy and momentum so that they are compatible with
the Lorentz transformation. Let us consider a two-particle collision. Before
the collision, the momenta of the two particles are p1 and p2, and after the
collision p3 and p4. Similarly, before the collision the kinetic energy of the
two particles are T1 and T2, and after the collision T3 and T4. To maintain
the energy and momentum conservation laws, we demand

p1 + p2 = p3 + p4,

T1 + T2 = T3 + T4. (9.62)

In order to satisfy the above relations, we must make the generalization that
the mass a particle depends on its velocity. In other words, a particle has
different masses in different reference frames. In addition, the form of the
kinetic energy must also be modified accordingly. Let us postulate that

p = m(u)u,

T = T (u), (9.63)

where the exact form of m(u) and T (u) will be determined by considering
energy and momentum conservation in an event of two-particle collision.

Imagine the collision of two identical particles in their center-of-mass
frame. In this frame, the two particles move in opposite directions with
velocity v, and the energy and momentum conservation laws are

m(v)v −m(v)v = m(v′)v′ + m(v′′)v′′,

T (v) + T (v) = T (v′) + T (v′′), (9.64)

where v′ and v′′ are the velocities after the collision. Because the two particles
are identical, we must have v′′ = −v′. Let us assume v is in the x-direction
and the angle between v′ and v is θ. After collision, the velocities are

v′x = v cos θ,

v′y = v sin θ,

v′′x = −v cos θ,

v′′y = −v sin θ. (9.65)

Let us now look at the event in a reference frame moving with velocity −v.
Before collision, one particle is at rest and the other particle moves with
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velocity

u =
2v

1 + v2

c2

. (9.66)

After collision, the velocities u′ and w′ can be obtained from Eq. (9.65) and
the formula for the addition of velocity.

u′x =
cβ(1 + cos θ)

1 + β2 cos θ
,

u′y =
cβ sin θ

γ(1 + β2 cos θ)
,

w′
x =

cβ(1− cos θ)

1− β2 cos θ
,

w′
y = − cβ sin θ

γ(1− β2 cos θ)
. (9.67)

Momentum conservation in the y-direction demands

m(u′)
cβ sin θ

γ(1 + β2 cos θ)
−m(w′)

cβ sin θ

γ(1− β2 cos θ)
= 0. (9.68)

which reduces to

m(u′) = m(w′)
1 + β2 cos θ

1− β2 cos θ
. (9.69)

On the other hand, by straightforward calculation, it can be shown

√
1− u′2

c2
=

1− β2

1 + β2 cos θ
,

√
1− w′2

c2
=

1− β2

1− β2 cos θ
. (9.70)

Hence

m(u′)

√
1− u′2

c2
= m(w′)

√
1− w′2

c2
. (9.71)

Since this equation holds for all possible pairs of v′ and w′, and the range of
them can vary from 0 to c, we must have

m(v) =
m0√
1− v2

c2

, (9.72)
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where v is the velocity of the particle and m0 is the mass of the particle at
rest. Conventionally m0 is called the rest mass of the particle. Eq. (9.72)
shows that as the velocity of the particle approaches the speed of light, its
mass approaches infinity. This is why we cannot accelerate a particle of finite
mass to the speed of light.

Let us go back to check if Eq. (9.72) also preserve the momentum in the
x-direction. Using Eq. (9.66), before the collision we have

px =
m0u√
1− u2

c2

=
2m0v

1− β2
. (9.73)

Using Eqs. (9.70) and (9.67), after the collision we have

px =
m0√

1− u′2
c2

u′x +
m0√

1− w′2
c2

w′
x

=
2m0v

1− β2
. (9.74)

With the formula Eq. (9.72), the momentum in the x-direction is also con-
served.

To derive the expression for the kinetic energy, we note that in addition
to Eq. (9.70), from Eq. (9.66) we have

√
1− u2

c2
=

1− β2

1 + β2
. (9.75)

Let w = 0, we have

1√
1− w2

c2

+
1√

1− u2

c2

=
1√

1− u′2
c2

+
1√

1− w′2
c2

. (9.76)

This gives a hint that

T (v) ∝ 1√
1− v2

c2

+ constant. (9.77)

Dimensional consideration yields

T (v) =
m0c

2

√
1− v2

c2

+ constant. (9.78)



264 Chapter 9. Special Relativity

Because T (0) = 0, we have

T (v) =
m0c

2

√
1− v2

c2

−m0c
2. (9.79)

We may define

E(v) =
m0c

2

√
1− v2

c2

= m(v)c2, (9.80)

so that T (v) = E(v) − E(0). The interpretation of this relation is that
a particle carries an intrinsic amount of energy m0c

2 even when it is not
moving. This is conventionally called the rest energy, and in general the
energy of a particle is E = mc2. From the relation

p =
m0v√
1− v2

c2

(9.81)

we have

v2

c2
=

p2

m2
0c

2 + p2
. (9.82)

Substituting Eq. (9.82) back into

E =
m0c

2

√
1− v2

c2

, (9.83)

we have

E2 = m2
0c

4 + p2c2. (9.84)

This is the relativistic energy-momentum relation.

From the definitions of the relativistic energy and momentum, we may
define the relativistic force as

F =
dp

dt
. (9.85)

The conversion of work to kinetic energy can be seen by considering the
following integral:

∫
F · ds =

∫ dp

dt
· ds

=
∫

v · dp. (9.86)



9.7. Four-Vectors 265

Substituting Eq. (9.82) back into Eq. (9.81), we have

v =
pc√

m2
0c

2 + p2
. (9.87)

∫
v · dp =

∫ cp√
m2

0c
2 + p2

dp

= ∆
√

m2
0c

4 + p2c2 = ∆E. (9.88)

9.7 Four-Vectors

The Lorentz transformation tells us how to transform the 3-dimensional po-
sition vector r that marks the relative space coordinates of two events to-
gether with the time coordinates. Because the transformation is linear, we
may imagine that (r, t) is a vector in the 4-dimensional space-time, in which
time is the fourth component. By convention, we denote a vector in the
4-dimensional space-time xi (i = 0, 1, 2, 3), where (x1, x2, x3) are the usual
space components, and the time component ct is denoted by x0. To derive the
general Lorentz transformation where v is in any direction, let us decompose
r into the parallel component and the perpendicular component.

r = rl + rt, (9.89)

where

rl =
(r · β)

β2
β, (9.90)

rt = r− (r · β)

β2
β, (9.91)

(9.92)

and β = v/c. Using Eqs. (9.30)–(9.33), we have

x′0 = γ(x0 − β · r),
r′l = γ

(
r · β
β2

β − βx0

)
,

r′t = r− r · β
β2

β. (9.93)
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In terms of (x0, x1, x2, x3), we have

x′0 = γ(x0 − β · x),

x′ = r′l + r′t = x +
γ − 1

β2
(β · x)β − γβx0. (9.94)

In the matrix notation, Eq. (9.94) is




x′0
x′1
x′2
x′3


 =




γ −γβ1 −γβ2 −γβ3

−γβ1 1 +
(γ−1)β2

1

β2
(γ−1)β1β2

β2
(γ−1)β1β3

β2

−γβ2
(γ−1)β1β2

β2 1 +
(γ−1)β2

2

β2
(γ−1)β2β3

β2

−γβ3
(γ−1)β1β3

β2
(γ−1)β2β3

β2 1 +
(γ−1)β2

3

β2







x0

x1

x2

x3


 . (9.95)

A scalar in the 4-dimensional space-time is a physical quantity that is
invariant under a change of reference frame. Similarly, a vector quantity
in the 4-dimensional space-time that transforms according to the Lorentz
transformation is called a 4-vector. We have shown (ct, r) is a 4-vector, what
about other physical quantities such as momentum, energy, charge density,
current density, scalar potential, vector potential, etc?

To begin with, let us consider Ji (i = 0, 1, 2, 3), where (J1, J2, J3) is the
3-dimensional current density and J0 is the charge density times the speed
of light cρ. Because

∂

∂xi

=

(
1

c

∂

∂t
,∇

)
, (9.96)

the continuity equation for the charge reads

∂Ji

∂xi

= 0. (9.97)

Because charge cannot be created or annihilated by a change of reference
frame, we have

∂J ′i
∂x′i

= 0 (9.98)

in another reference frame. According to Eqs. (1.263) and (1.270),

∂

∂x′i
= MT

ik

∂

∂xk

, (9.99)
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where M−1
ik is the matrix in Eq. (9.95). If we choose

J ′i = M−1
im Jm, (9.100)

we have

∂J ′i
∂x′i

= MT
ikM

−1
im

∂Jm

∂xk

= MkiM
−1
im

∂Jm

∂xk

= δkm
∂Jm

∂xk

=
∂Jk

∂xk

. (9.101)

Hence the invariance of the continuity equation demands that Ji transforms
in the same way as xi. Namely we should use the same Lorentz transform
on (cρ,J) to obtain (cρ′,J′) in another reference frame. Hence (cρ,J) is a
4-vector.

Similarly, the phase of a wave k ·x−ωt measures the cycles of oscillation
the wave has gone through. Hence it is a quantity that is invariant under a
change of reference frame. Let us define k0 ≡ −ω/c. Because

x′i = M−1
im xm, (9.102)

if we choose

k′i = MT
il kl, (9.103)

we have

x′ik
′
i = MT

il M
−1
im xmkl = MliM

−1
im xmkl = xmkm. (9.104)

Hence the invariance of the phase demands that ki transforms the same
way as ∂/∂xi. Note that M(−β) = M−1(β), and from Eq. (9.95) we see
MT(−β) = M(−β). Hence MT is also a Lorentz transformation. This
means both (−ω/c,k) and [∂/(c∂t),∇] are 4-vectors.

Let consider the vector potential A and the scalar potential φ together.
If we define A0 ≡ φ/c, Eqs. (8.27) and (8.28) can be written as

(
∇2 − 1

c2

∂2

∂t2

)
Ai = −µ0Ji. (9.105)

Since

∇2 − 1

c2

∂2

∂t2
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is invariant under Lorentz transformation, Ai must transform in the same
way as Ji. Hence (φ/c,A) is also a 4-vector. The condition we imposed on
A, Eq. (8.26), becomes

∂Ai

∂xi

= 0. (9.106)

This is automatically satisfied for all reference frames, in view of Eq. (9.101)
and the same transformation for Ji and Ai.

The velocity transformation in Eqs. (9.53),(9.55), and (9.56) is different
from the Lorentz transform. Therefore velocity itself is not part of a 4-vector.
To construct a relativistic form of the velocity that is a 4-vector, we note that

1− u′2

c2
=

(
1− v2

c2

) (
1− u2

c2

)

(
1− vux

c2

)2 . (9.107)

Therefore by defining

γu ≡
√√√√ 1

1− u2

c2

Eqs. (9.53),(9.55), and (9.56) can be written as

γu′u
′
x = γv(γuux − βcγu),

γu′u
′
y = γuuy,

γu′u
′
z = γuuz, (9.108)

and

cγu′ = γv(−βγuux + cγu) (9.109)

follows directly from Eq. (9.57). These equation shows that (cγu, γuu) is a
4-vector. By Eqs. (9.81) and (9.83), we see that (E/c,p) is also a 4-vector.

At this point you must have noticed that there are two kinds of 4-vectors.
The first kind is called contravariant vectors. They are written as Ai (i =
0, 1, 2, 3) from now on, and transform according to

A′i = M−1
im (v)Am. (9.110)

The second kind is called covariant vectors. They are written as Ai (i =
0, 1, 2, 3) from now on, and transform according to

A′
i = MT

il (v)Al. (9.111)
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Because MT
il (v) = M−1

il (−v), we have

A′
i = M−1

il (−v)Al. (9.112)

Here is a list of contravariant vectors and covariant vectors we have learned.
Contravariant vectors: (ct, r), (cρ,J), (φ/c,A), (cγu, γuu), (E/c,p). Covari-
ant vectors: (−ω/c,k), [∂/(c∂t),∇].

Because

A′
iB

′i = MT
il (v)M−1

im (v)AlB
m = δlmAlB

m = AmBm, (9.113)

we see that the inner product between a contravariant vector Bm and a
covariant Am is a scaler, which is invariant under Lorentz transformation.
Examples are:

k · r− ωt = φ,

∇ · J +
∂ρ

∂t
= 0,

∇ ·A +
∂φ

c2∂t
= 0.

(9.114)

Note that Eq. (9.95) can be written as




−x′0
x′1
x′2
x′3




=




γ γβ1 γβ2 γβ3

γβ1 1 +
(γ−1)β2

1

β2
(γ−1)β1β2

β2
(γ−1)β1β3

β2

γβ2
(γ−1)β1β2

β2 1 +
(γ−1)β2

2

β2
(γ−1)β2β3

β2

γβ3
(γ−1)β1β3

β2
(γ−1)β2β3

β2 1 +
(γ−1)β2

3

β2







−x0

x1

x2

x3


 .(9.115)

Hence we see that a contravariant vector can be converted to a covariant
vector and vice versa by reversing the sign of the 0th component. For
example, since (−ω/c,k) is a covariant vector, (ω/c,k) is a contravariant
vector. For the same reason the inner product between (A0, A1, A2, A3) and
(−A0, A1, A2, A3) is a scaler. Similarly, the inner product between (B0, B1, B2, B3)
and (−B0, B1, B2, B3) is a also scaler. Examples are:

|r|2 − c2t2 = −c2τ 2,
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|p|2 − E2

c2
= −m2

0c
2,

|k|2 − ω2

c2
= −m2

0c
2

h̄2 ,

J ·A− ρφ,

∇2 − ∂2

c2∂t2
.

9.8 Transformation of Electromagnetic Fields

We may work out the transformation of electromagnetic fields by transform-
ing (φ/c,A) first and then use the relations

E = −∇φ− ∂A

∂t
,

B = ∇×A. (9.116)

Assuming the relative velocity is in the x-direction, we have

E ′
x = −∂φ′

∂x′
− ∂A′

x

∂t′

= −
(
γ

∂

∂x
+

βγ

c

∂

∂t

)
(−cβγAx + γφ)−

(
cβγ

∂

∂x
+ γ

∂

∂t

) (
γAx − βγ

φ

c

)

= −∂φ

∂x
− ∂Ax

∂t
= Ex. (9.117)

E ′
y = −∂φ′

∂y′
− ∂A′

y

∂t′

= − ∂

∂y
(−cβγAx + γφ)−

(
cβγ

∂

∂x
+ γ

∂

∂t

)
Ay

= γ(Ey − cβBz). (9.118)

E ′
z = −∂φ′

∂z′
− ∂A′

z

∂t′

= − ∂

∂z
(−cβγAx + γφ)−

(
cβγ

∂

∂x
+ γ

∂

∂t

)
Az

= γ(Ez + cβBy). (9.119)
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B′
x =

∂A′
z

∂y′
− ∂A′

y

∂z′

=
∂Az

∂y
− ∂Ay

∂z

= Bx. (9.120)

B′
y =

∂A′
x

∂z′
− ∂A′

z

∂x′

=
∂

∂z

(
γAx − βγ

φ

c

)
−

(
γ

∂

∂x
+

βγ

c

∂

∂t

)
Az

= γ

(
By +

β

c
Ez

)
. (9.121)

B′
z =

∂A′
y

∂x′
− ∂A′

x

∂y′

=

(
γ

∂

∂x
+

βγ

c

∂

∂t

)
Ay − ∂

∂y

(
γAx − βγ

φ

c

)

= γ

(
Bz − β

c
Ey

)
. (9.122)

These equations can be combined into two vector equations:

E′ = γ(E + cβ ×B)− γ2

γ + 1
(β · E)β, (9.123)

B′ = γ

(
B− β

c
× E

)
− γ2

γ + 1
(β ·B)β. (9.124)
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9.9 Exercises

Exercise 9.1. Consider two identical space ships of length L, one moving in
the x-direction and the other in the −x-direction. They pass by each other
at a negligible distance. At the tail of each space ship there is a gunner
controlling a gun that can be pointed to any direction perpendicular to the
x-axis. To maintain the peace of the galaxy, the rule of engagement set by
the congress is that the gunner can only fire the gun before the time when the
tail of the opponent ship is aligned with the head of his own ship. By length
contraction, at this time the head of the opponent ship has not reached the
tail position of his own ship yet. Therefore from his point of view, the gun
will not hit the opponent ship. However, thinking in the opponent’s position,
he becomes worried. When the head of the opponent ship is aligned with
the tail of his own ship, by length contraction the tail of the opponent ship
has already passed the head of his own ship. In that case, the opponent’s
gun will hit his ship. How can this be right? After all, the two ships are in
symmetric positions. Can you explain what went wrong?

Exercise 9.2. The wavelength λ0 of light emitted by hydrogen atoms as a
result of transition from state 3p to state 2s is 656 nm. By measuring the
optical spectrum of a distant star, one finds that this line emission is red-
shifted by 50%. Namely, (λ − λ0)/λ0 = 0.5. How fast is that star moving
away from us?

Exercise 9.3. A photon with 1.5-eV energy propagating in the z-direction
collides with an electron moving in the x-direction. The electron energy is
1.5 GeV. After the collision, what is the photon energy and at what angle
does it propagate with respect to the x-axis?

Exercise 9.4. Two gamma-ray photons of the same energy E collide to
create an electron-position pair. The rest mass of the electron or the position
is me. The angle between the k-vectors of the gamma-ray photons is θ. What
is the minimum of E for this process to occur?

Exercise 9.5. A smart student proposes to build a spaceship that can move
by itself without propellant. In the proposal two identical atoms are fixed at
the two ends of a spaceship. One atom makes a transition from the state E2

to the state E1 and emits a photon in the x-direction at t = 0, and the photon
is absorbed by the other atom at t = L/c by making a transition from the
state E1 to the state E2 , where L is the length of the spaceship. Between
t = 0 and t = L/c, the spaceship moves toward the −x-direction due to
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recoil. The velocity is v = h/(λM), where λ is the wavelength of the photon
and M is the mass of the spaceship. At t = L/c the spaceship has moved
a distance D = hL/(λMc). After that the astronaut on board swaps the
two atoms quickly enough, so that the atom that has absorbed the photon
before can now emit also in the x-direction, and the atom that has emitted
before can now absorb the photon. By repeating this process many times, the
spaceship will move in the −x-direction as far as the astronaut wants. You
may wonder how one can control the direction of photon emission. This is a
technical problem that in principle can be solved, for example by putting the
two atoms at the two foci of an ellipsoid. Light emitting from one focus will
always propagate to the other one. Explain what is wrong in this proposal,
and show by correct calculation that the spaceship cannot move by itself this
way.

Exercise 9.6. A stationary charged test particle is at a distance d from a
straight long conducting neutral wire. In the wire the positive charges are
stationary and the negative charges moving at velocity vx̂ produce a current
I. Since the test particle is not moving, and the wire is charge-neutral, there
is no force between the wire and the particle, hence d does not change with
time. For an observer moving at the same velocity as the negative charges in
the wire, the current is still I, except that from his/her point of view it is the
positive charges that are moving. However, from his/her point of view the
test particle is moving at −vx̂, therefore it feels the magnetic force produced
by the wire. In that case d changes with time. How do you resolve this
apparent paradox?

Exercise 9.7. Consider a long rod hanging in the center by a thread. The
thread is parallel to the y-axis and the rod is in the x-y plane making an
angle θ 6= 0 with respect to the x-axis. One end of the rod has charge +q
and the other end has charge −q. In a reference frame in which the rod
is not moving, the rod experiences no torque, because the attraction force
between the charges is in the same direction as their relative position vector.
However, in a moving frame both charges are moving, so they correspond
to two parallel current elements of opposite directions. In addition to the
attractive Coulomb force between them, there should be a repulsive magnetic
force F between the two current elements given by

F =
µ0

4π
q2v × (v × L)

L3
,

where L is the relative position vector. Because the direction of F is in the
+y-direction for one charge and in the −y-direction for the other charge, one
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Fig. 9.1: A detector for moving charge.

might think that this force will produce a torque to rotate the rod. Use your
knowledge of relativity to show that actually there is no torque in the moving
frame.

Exercise 9.8. A light source of 632.8-nm wavelength is mounted on the
edge of a rotating disk. The radius of the disk is 1 m, and z-axis is the axis
of rotation. An observer at a far-away place on the z-axis with no motion
relative to the center of the disk finds the wavelength to be 650.2 nm. What
is the angular velocity of the disk?

Exercise 9.9. A detector for moving charges is shown in Fig. 9.1. As a
charged particle flies through the center of the ring of radius r and cross
section A, which is made of a material with a large permeability µ, a changing
magnetic field is induced in the ring. The changing magnetic field then
induces a voltage V (t) in the N -turn pick-up coil. For a particle of charge q
moving at a velocity v, passing the center of the ring in the normal direction
of the plane of the ring, what is V (t)? For simplicity we assume the thickness
of the ring is negligibly small compared with the radius of the ring, and v is
also negligibly small compared with the speed of light. Since one can use the
induced V (t) to do work, where does this energy come from?
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Optics

10.1 Refraction and Reflection of Plane Waves

In section 3.6 we have shown the general solutions of the 1-dimensional wave
equation can be written as

a(x, t) =
∑

k

α(k) exp i(kx− ωt + φk), (10.1)

where v = ω/k is the phase velocity. By the same procedure, the general
solutions for the 3-dimensional wave equation can be written as

a(r, t) =
∑

k

α(k) exp i(k · r− ωt + φk), (10.2)

and the phase velocity is still ω/k. Therefore the general electromagnetic
waves have the following form:

E(r, t) =
∑

k

a(k) exp i(k · r− ωt + φk),

B(r, t) =
∑

k

b(k) exp i(k · r− ωt + φ′k). (10.3)

For a particular k, because

∇× E = −∂B

∂t
. (10.4)

275
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we have

k× E = ωB, (10.5)

φ′k = φk. (10.6)

Therefore B is perpendicular to both E and k. The equation ∇·E = 0 leads
to

k · E = 0. (10.7)

Therefore k is also perpendicular to E. Eqs. (10.6) and (10.7) lead to k|a| =
ω|b|. These solutions are called plane waves because in the 3-dimensional
space the surface of constant phase is a plane. Namely the equation

k · r− ωt + φk = constant (10.8)

represents a plane perpendicular to k.

Since for each k there are two possible directions of E, there are two plane
waves associated with each k. We use the variable α = 1, 2 to distinguish
these two waves.

E(r, t) =
∑

k,α

aα(k) exp i(k · r− ωt + φk,α),

B(r, t) =
∑

k,α

k

ω
× aα(k) exp i(k · r− ωt + φk,α). (10.9)

For a particular k, if φk,1 = φk,2 or φk,1 = φk,2 + π we call the plane wave
linearly polarized, because the electric field and the magnetic field oscillate
along a fixed direction in the plane perpendicular to k. In contrast, if φk,1 =
φk,2±π/2, we call the plane wave circularly polarized, because the directions
of the electric field and the magnetic field change with time in the same way as
the position vector of a particle moving in a circle. In general φk,1 = φk,2 +θ,
if θ is not 0, π, or ±π/2, we call the plane wave elliptically polarized, because
the electric field and the magnetic field follow an elliptical trajectory.

Let us consider a plane wave propagating through the interface between
two media. Because the phase velocities are different in these two media,
part of the wave will be reflected and part will be transmitted. If the wave
vector k of the incident wave is not normal to the interface, the transmitted
wave does not follow the same direction as the incident wave. The change of
propagation direction for the transmitted wave is called refraction. Similar
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to the case of string waves, refraction and reflection are required by the
boundary conditions at the interface.

For an incident wave of a particular k, we may write the incident wave,
the refracted wave, and the reflected wave as

Ei(r, t) = ai exp [i(ki · r− ωt + φi)],

Bi(r, t) =
ki

ω
× ai exp [i(ki · r− ωt + φi)]. (10.10)

Et(r, t) = at exp [i(kt · r− ωt + φt)],

Bt(r, t) =
kt

ω
× at exp [i(kt · r− ωt + φt)]. (10.11)

Er(r, t) = ar exp [i(kr · r− ωt + φr)],

Br(r, t) =
kr

ω
× ar exp [i(kr · r− ωt + φr)]. (10.12)

Assume the interface is the x-y plane. The plane defined by the incident
wave and the reflected wave is call the incidence plane. Let us decompose Ei

into two components. The α = 1 mode, which is conventionally called the
s-wave, is the one in which Ei is perpendicular to the incidence plane. On
the other hand, the α = 2 mode, which is conventionally called the p-wave,
is the one in which Ei is in the incidence plane.

When there is no free charge or current, the boundary conditions at the
interface are that the tangential components of E and H are continuous, and
the normal components of D and B are continuous. The first condition can
be seen by imagining a rectangular loop for line integration. The length of
the rectangle is l and the width is w. Let us put the loop in such a way that
one of the long sides is in medium 1 and the other in medium 2, and both
sides are parallel to the interface. Because

∮
E · ds = − ∂

∂t

∫
B · da, (10.13)

if we let w → 0 the right-hand side becomes zero, and the left-hand side
becomes E‖1l − E‖2l, where E‖1 and E‖2 are the components of E that are
parallel to the interface in medium 1 and medium 2 respectively. Hence we
have E‖1 = E‖2. For the same reason, because

∮
H · ds =

∂

∂t

∫
D · da, (10.14)
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we have H‖1 = H‖2. The second condition can be seen by imagining a
rectangular box for surface integration. The length and width of the box are
l and the height is h. Because

∫
∇ ·D d3r =

∫
D · da = 0, (10.15)

when h → 0 we have D⊥1l
2 −D⊥2l

2 = 0, that is D⊥1 = D⊥2 where D⊥1 and
D⊥2 are the components of D that are normal to the interface in medium 1
and medium 2 respectively. Similarly, from ∇ ·B = 0 we have B⊥1 = B⊥2.

Let us consider the reflection and refraction of the s-wave first. Applying
these boundary conditions to the s-wave, we have

as
i exp [i(ki · r− ωt + φi)] + as

r exp [i(kr · r− ωt + φr)]

= as
t exp [i(kt · r− ωt + φt)], (10.16)

where the superscript s in the amplitudes denotes s-waves. This condition
must be satisfied at the whole plane of z = 0, therefore we have

as
i + as

r = as
t , (10.17)

φi = φr = φt,

k‖i = k‖r = k‖t. (10.18)

In terms of the angle between k and the surface normal, Eq. (10.18) reads

ki sin θi = kr sin θr = kt sin θt. (10.19)

Since ki = kr, ki/ni = kt/nt, where ni/c =
√

ε1µ1 is the index of refraction
of medium 1, and nt/c =

√
ε2µ2 is that of medium 2, we have

θi = θr, (10.20)

ni sin θi = nt sin θt. (10.21)

Eq. (10.21) is known as the Snell’s law.

For the s-wave, the boundary condition for the normal components of D
is satisfied automatically, because ai, ar, and at have no normal components.
The boundary condition for the normal components of B reads

ki sin θia
s
i + kr sin θra

s
r = kt sin θta

s
t . (10.22)
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From Eqs. (10.17) and (10.19), we see it is also automatically satisfied. The
last condition left is for the tangential components of H, which reads

1

µ1

(kia
s
i cos θi − kra

s
r cos θr) =

1

µ2

(kta
s
t cos θt), (10.23)

For dielectric media that are not magnetizable, we have µ1 = µ2 = µ0. In
this case Eq. (10.23) is reduced to

k⊥ia
s
i − kra

s
r = k⊥ta

s
t , (10.24)

where the subscript ⊥ denotes the component normal to the interface. That
is

k⊥i(a
s
i − as

r) = k⊥ta
s
t . (10.25)

Eqs. (10.17) and (10.25) lead to

as
t

as
i

=
2k⊥i

k⊥i + k⊥t

,

as
r

as
i

=
k⊥i − k⊥t

k⊥i + k⊥t

, (10.26)

or

as
t

as
i

=
2ni cos θi

ni cos θi + nt cos θt

,

as
r

as
i

=
ni cos θi − nt cos θt

ni cos θi + nt cos θt

. (10.27)

Note that Eq. (10.26) is the same as Eq. (3.112) for the string waves.

Now we shall consider the reflection and refraction of the p-wave. As
before, we consider the case in which µ1 = µ2 = µ0. Continuity of the
tangential components of H leads to

ki × ap
i exp [i(ki · r− ωt + φi)] + kr × ap

r exp [i(kr · r− ωt + φr)]

= kt × ap
t exp [i(kt · r− ωt + φt)], (10.28)

which yields

ni(a
p
i + ap

r) = nta
p
t , (10.29)

φi = φr = φt,

k‖i = k‖r = k‖t. (10.30)
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Eq. (10.30) again leads to the Snell’s law. Continuity of the tangential com-
ponents of E leads to

cos θi(a
p
i − ap

r) = cos θta
p
t . (10.31)

The condition for the normal components of B is automatically satisfied
because B is parallel to the interface, and the condition for the normal com-
ponents of D leads to the Eq. (10.29) again. Eqs. (10.29) and (10.31) leads
to

ap
t

ap
i

=
2ni cos θi

nt cos θi + ni cos θt

, (10.32)

ap
r

ap
i

=
nt cos θi − ni cos θt

nt cos θi + ni cos θt

. (10.33)

If nt > ni, by Snell’s law we have cos θt > cos θi, and vice versa. Therefore
it is seen from Eq. (10.27) that the reflection of the s-wave cannot be zero.
In contrast, for a special incidence angle θB the reflection of the p-wave can
be zero. This angle is called Brewster’s angle. The equation for Brewster’s
angle is

nt cos θB = ni

√√√√1− n2
i sin2 θB

n2
t

. (10.34)

Let r = nt/ni and solve for cos2 θB, we have

cos2 θB =
1

r2 + 1
. (10.35)

That is

tan θB =
nt

ni

. (10.36)

For example, the index of refraction for ordinary glass is ≈ 1.5. When a plane
wave propagates from air into glass, the condition for no p-wave reflection at
the interface is θB ≈ 56◦.

If ni > nt and sin θi > nt/ni, from Snell’s law we see it is not possible
to have refraction. The interface functions as a perfect mirror. This phe-
nomenon is called total reflection. But how can the boundary conditions
be satisfied if there is no refraction? The answer lies in the transition from
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Eq. (10.18) to Eq. (10.19). If we use Eq. (10.18) in conjunction with the
following equations

k2
⊥i + k2

‖i = n2
i k

2
0,

k2
⊥t + k2

‖t = n2
t k

2
0, (10.37)

where k⊥ is the z-component of k and k0 = ω/c, we have

k2
⊥t = (n2

t − n2
i )k

2
0 + k2

⊥i. (10.38)

Because k⊥i = nik0 cos θi,

k2
⊥t = k2

0(n
2
t − n2

i sin2 θi). (10.39)

when sin θi > nt/ni, that is when total reflection occurs, k2
⊥t < 0. This means

when the refracted wave is written as

Et(r, t) = at exp [i(kt · r− ωt)],

Bt(r, t) =
kt

ω
× at exp [i(kt · r− ωt)], (10.40)

the z-component of kt is imaginary. Namely

kt = (kxi, kyi, ik0

√
n2

i sin2 θi − n2
t ). (10.41)

Hence both Et and Bt decay exponentially in the z-direction. That is

Et(r, t) = at exp
[
−ηz + i(k‖t · r− ωt)

]
,

Bt(r, t) =
kt

ω
× at exp

[
−ηz + i(k‖t · r− ωt)

]
, (10.42)

where η = k0

√
n2

i sin2 θi − n2
t . This exponential decaying waves leaking out

of the interface are called evanescent waves.

In the above discussions we have assumed the media are polarizable but
not magnetizable. This assumption is generally valid in the optical frequency
range for the following reason. A medium is polarized by the displacement of
electrons in response to the external field. In the optical frequency range, the
displacement occurs in a time scale shorter than the period of light. Therefore
a dense transparent medium is generally polarizable in the optical frequency
range. In contrast, magnetization involves the rotation of atoms or molecules
so that their magnetic dipole moment can be aligned with the external field.
In the optical frequency range, the rotation occurs in a much longer time scale
than the period of light, therefore the medium can be considered effectively
non-magnetizable.
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10.2 Huygen’s principle

Consider a scalar wave of a fixed frequency ω, ψ(r, t) = φ(r)e−iωt. We may
write φ(r) as a superposition of plane waves.

φ(r) =
∑

k=ω/c

u(k)eik·r, (10.43)

where the summation is over all the k that satisfies the condition k = ω/c.
Multiplying both sides by e−ik′·r and integrating over a large box with length,
width and height all equal to L, we see the integration on the right-hand side
is zero for all the k except when k = k′. Therefore we have

u(k) =
1

L3

∫
φ(r′)e−ik·r′ d3r′. (10.44)

Combining Eqs. (10.43) and (10.44), we have

φ(r) =
1

L3

∑

k=ω/c

∫
φ(r′)eik·(r−r′) d3r′. (10.45)

Because k satisfies the periodic boundary conditions, we have

kxL = 2nxπ,

kyL = 2nyπ,

kzL = 2nzπ, (10.46)

where nx, ny, and nz are integers. The interval between consecutive k is

∆ki =
2π

L
. (10.47)

Since |k| is fixed to ω/c, in the continuous limit the summation over k can
be changed to integration over the surface of a sphere in the k-space with a
radius of ω/c by the following replacement.

∑

k=ω/c

=
L2

4π2

∫ π

0

∫ 2π

0
k2dφ sin θ dθ, (10.48)

where θ is the angle between k and r− r′. Hence we have

φ(r) =
1

L3

∑

k=ω/c

∫
φ(r′)eik·(r−r′) d3r′

=
1

2πL

∫ ∫ π

0
φ(r′)eik|r−r′| cos θk2 sin θ dθ d3r′

=
1

2πL

∫
φ(r′)

sin k|r− r′|
k|r− r′| 2k2 d3r′. (10.49)
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In terms of ψ(r, t), we have

ψ(r, t) =
1

2πL

∫
ψ(r′, t′)

sin k|r− r′|
k|r− r′| e−iω(t−t′)2k2 d3r′

=
−ik

2πL

∫
ψ(r′, t′)

ei[k|r−r′|−ω(t−t′)]

|r− r′| d3r′

+
ik

2πL

∫
ψ(r′, t′)

e−i[k|r−r′|+ω(t−t′)]

|r− r′| d3r′. (10.50)

This equation shows that the wave at r can be constructed from the wave at
r′. The fields at these two positions are linked by an outgoing spherical wave
as well as an incoming spherical wave.

If the source of the wave is at distance much larger than L, within the
box of integration the phase front will be close to a plane. Let us choose the
normal vector of the phase front to be the z-direction and decompose r′ into
r′ = r′t + z′ẑ, where r′t is perpendicular to ẑ. In this case we have

ψ(r′, t′) ≈ Φ(r′t)e
i(kz′−ωt′). (10.51)

If the angle θ between r− r′t and the z-axis is small, we have

|r− r′| =
√
|r− r′t|2 − 2|r− r′t|z′ cos θ + z′2 ≈ |r− r′t| − z′. (10.52)

Substituting Eqs. (10.51) and (10.52) into Eq. (10.50), we obtain

ψ(r, t) =
−ik

2πL

∫
Φ(r′t)

ei(k|r−r′t|−ωt)

|r− r′t|
d2r′tdz′

+
ik

2πL

∫
Φ(r′t)

e2ikz′e−i(k|r−r′t|+ωt)

|r− r′t|
d2r′tdz′, (10.53)

where we have replaced d3r′ by d2r′tdz′. In the first term on the right-hand
side the integrand is independent of z′ and the second term averages to zero
because of the fast oscillating factor e2ikz′ . Hence we have

ψ(r, t) =
−ik

2π

∫
Φ(r′t)

ei(k|r−r′t|−ωt)

|r− r′t|
d2r′t. (10.54)

The wave amplitude at (r, t) is the superposition of all the spherical waves
whose sources are Φ(r′t). This is a form of the Huygen’s principle that
most commonly appears in its application.
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10.3 Paraxial Approximation and Fresnel’s Diffraction

Consider a scalar wave φ(r)e−iωt of a fixed frequency ω = ck propagating
essentially in the z-direction. The wave can be written as a superposition
of plane waves, and each of its plane-wave components ei(k·r−ωt) has a wave
vector pointing close to the z-direction. If k points close to the z-direction,
we must have |kx| ¿ kz and |ky| ¿ kz. Under these conditions, we have

kz =
√

k2 − k2
x − k2

y ≈ k − k2
x + k2

y

2k
. (10.55)

This is called the paraxial approximation. Under the paraxial approximation
kz is a function of kx and ky as shown above, hence in the expansion of φ(r)
we only use the two independent variables kx and ky.

φ(r) =

(
1√
2π

)2 ∫
u(kx, ky)e

ik·r dkxdky

≈ eikz

(
1√
2π

)2 ∫
u(kx, ky)e

i

(
kxx+kyy− k2

x+k2
y

2k
z

)

dkxdky. (10.56)

At z = 0, this equation becomes

φ(x, y, 0) =

(
1√
2π

)2 ∫
u(kx, ky)e

i(kxx+kyy) dkxdky

(10.57)

Using the inverse Fourier transform, we may express u(kx, ky) in terms of the
field in the z = 0 plane.

u(kx, ky) =

(
1√
2π

)2 ∫
φ(x′, y′, 0)e−i(kxx′+kyy′) dx′dy′. (10.58)

Put this back into Eq. (10.56), we have

φ(r) =
eikz

4π2

∫ ∫
φ(x′, y′, 0)e

i

[
kx(x−x′)+ky(y−y′)− k2

x+k2
y

2k
z

]

dkxdky dx′dy′.(10.59)

By using the formula

∫ ∞

−∞
e−x2

e−ikx dx =
∫ ∞

−∞
e−x2

cos kx dx =
√

πe−k2/4, (10.60)
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we can reduce Eq. (10.59) to

φ(r) =
−ikeikz

2πz

∫
φ(x′, y′, 0)e

ik
2z

[(x−x′)2+(y−y′)2] dx′dy′. (10.61)

This is known as Fresnel’s diffraction integral. Since in the paraxial
approximation we have x − x′ ¿ z, y − y′ ¿ z, for z′ = 0 we may expand
|r− r′| as

√
(x− x′)2 + (y − y′)2 + z2 ≈ z +

(x− x′)2 + (y − y′)2

2z
. (10.62)

Therefore we have

eik|r−r′|

|r− r′| ≈
e

ik

[
z+

(x−x′)2+(y−y′)2
2z

]

z
. (10.63)

Eq. (10.61) can be written as

φ(r) =
−ik

2π

∫
φ(x′, y′, 0)

eik|r−r′|

|r− r′| dx′dy′. (10.64)

For z′ = 0 we can write r′ as r′t, then Eq. (10.64) is the same as Eq. (10.54).
We see under the paraxial approximation Fresnel’s diffraction integral is an
equivalent expression of Huygen’s principle.

10.4 Index of Refraction

Consider the displacement of electrons in a medium caused by external fields.
If the medium is not a conductor, we may assume the electrons are bounded
by a potential well V (x). Let us expand V (x) in Taylor series and assume
x = 0 is the equilibrium point.

V (x) = V (0) + V ′(0)x +
V ′′(0)

2
x2 · · · (10.65)

Because at the equilibrium point the force is zero, we have V ′(0) = 0. There-
fore in the first-order approximation, we may treat the motion of the electrons
as a harmonic oscillator. The equation of motion is

r̈ + γṙ + ω2
0r =

eE + ev ×B

me

, (10.66)
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where E and B are the external fields and me is the electron mass. For plane
waves |B| = |E|/c, hence the contribution from the magnetic force ev×B is
much smaller than that of the electric force eE when v ¿ c. In this case the
electron displacement is

r =
eE0e

−iωt

me(ω2
0 − ω2 − iγω)

. (10.67)

If the electron density is ne, the polarization is

P =
nee

2E0e
−iωt

me(ω2
0 − ω2 − iγω)

. (10.68)

Hence

ε0χe =
nee

2

me(ω2
0 − ω2 − iγω)

. (10.69)

In the optical frequency range we may assume µ = µ0. From Eqs. (6.43) and
(6.44), we have

n =

√
ε

ε0

=

√√√√1 +
nee2

ε0me(ω2
0 − ω2 − iγω)

. (10.70)

This formula is valid only when the electron density is small. If the electron
density is large, the displacement of the electrons will generate an additional
E-field. In that case, the E-field on the right-hand side of Eq. (10.66) must
include this additional field. In this Section we shall consider only the case
of small ne. The general case will be discussed in Section 10.5. Therefore we
have

n ≈ 1 +
nee

2

2ε0me(ω2
0 − ω2 − iγω)

. (10.71)

We may separate n into the real part and the imaginary part:

Re[n] = 1 +
nee

2(ω2
0 − ω2)

2ε0me[(ω2
0 − ω2)2 + γ2ω2]

, (10.72)

Im[n] =
nee

2γω

2ε0me[(ω2
0 − ω2)2 + γ2ω2]

, (10.73)

and correspondingly,

k =
nω

c
= β + i

α

2
. (10.74)
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The plane wave propagating in the z-direction becomes

E(z, t) = E0e
−α

2
zei(βz−ωt). (10.75)

We see that if γ 6= 0, the electromagnetic wave will be absorbed by the
medium. Both the E-field and the B-field decay exponentially in the prop-
agation direction, and α is called the absorption coefficient. The absorption
is maximum at resonance, i.e., when ω = ω0. Near the resonance, we may
write

ω2
0 − ω2 ≈ 2ω(ω0 − ω). (10.76)

Then we have

kIm[n] =
α

2
≈ nee

2γ

8ε0mec[(ω0 − ω)2 + γ2

4
]
. (10.77)

The width of the resonance ∆ω is defined by the frequency range within
which the absorption drops to half. Hence ∆ω = γ/2, which means the
smaller the γ, the sharper the resonance. At resonance,

α

2
≈ nee

2

2ε0mecγ
, (10.78)

which means the smaller the γ, the stronger the absorption at resonance.
The total absorption coefficient integrated over all the frequencies is

αt ≈
∫ nee

2γ

4ε0mec[(ω0 − ω)2 + γ2

4
]
dω =

nee
2π

2ε0mec
, (10.79)

which is independent of ω0 and γ.

If the medium has many resonance frequencies, Eq. (10.70) becomes

n =

√√√√1 +
∑

i

nie2

ε0me(ω2
i − ω2 − iγiω)

, (10.80)

where ωi and γi are the resonance frequency and the damping factor respec-
tively for the ith oscillator, and ni is the density of the electron associated
with the ith oscillator. For most small molecules, resonance frequencies are in
the ultraviolet range. They are much larger than optical frequencies. This is
why materials made of small molecules are mostly transparent in the optical
region.
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Because each atom or molecule has its own characteristic resonance fre-
quencies, by measuring the locations of the absorption peaks, it is possible
to identify the composition of an unknown material, or to determine the
structure of a molecule of known chemical composition. Such techniques are
known as optical spectroscopy.

The real part of the index of refraction also shows a resonance structure.
If there is only a single resonance, Re[n] = 1 at resonance, Re[n] > 1 when
ω < ω0 and vice versa. In general, atoms and molecules have many resonance
frequencies. Most of them are in the ultraviolet range, and all of them con-
tribute to Re[n]. As can be seen in Eq. (10.80), because optical frequencies
are much smaller than most of the resonance frequencies, even if there are
some resonance frequencies happen to be in the optical region, their contri-
bution to Re[n] are outweighed. Therefore the index of refraction for most
materials in the optical region is larger than 1.

In conductors the electrons can move freely, hence ω0 = 0. In most con-
ductors continuous acceleration of electrons does not occur. This is because
the electrons suffers from many collisions. Therefore the motion is a random
walk with drift. The average drift velocity is the acceleration times the mean
free time. Let us define the conductivity σ by J = σE. Because J = neev
we have

v =
σ

nee
E, (10.81)

r =
iσ

ωnee
E. (10.82)

From Eq. (10.67) we may write σ as

σ =
inee

2

me(ω + iγ)
. (10.83)

Since in general the conducting electrons are not the only contribution to
polarization; there are contributions from other bound electrons, we have

P =
(
ε0χb +

iσ

ω

)
E, (10.84)

where χb is the susceptibility of the bound electrons. Consequently, the index
of refraction for a conductor is

n =

√
1 + χb +

iσ

ε0ω
. (10.85)
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We see that electromagnetic waves suffer from an exponential decay in the
direction of propagation. The depth of 1/e amplitude attenuation is called
the skin-depth δ, which is equal to 2/α. Eqs. (10.83) and (10.85) show that
the skin depth increases with frequency. For a good conductor

σ

ε0ω
À 1 + χb, (10.86)

we have

n ≈ (1 + i)

√
σ

2ε0ω
, (10.87)

and the skin-depth is

δ =
2

α
=

√
2ε0

ωσ
c (10.88)

If we coat the surface of glass with silver or aluminum to make a mirror,
the thickness of coating must be several times larger than the skin-depth,
otherwise part of the light will be transmitted. Similarly if we wish to shield
an electromagnetic wave with a metal box, the thickness of the wall must
be several times larger the skin-depth, otherwise the shielding will not be
effective. For example, the density of free electron in aluminum is 1.8 ×
1029 m−3, and the DC-conductivity is 3.64× 107 Ω−1m−1. Substituting them
into Eq. (10.83) yields γ = 1.39 × 1014 s−1. Therefore, for frequency much
smaller than 1014 Hz, we may ignore the frequency dependence of σ. For a
60-Hz wave the skin-depth is 1.1 cm, therefore it is not possible to shield the
magnetic field leaked out from a power transformer with a thin aluminum
box. In contrast, for a 1.8-GHz wave the skin-depth is 2.0 µm, therefore the
radio wave from a GSM mobile phone can be easily shielded with aluminum
foil.

Finally let us consider the case in which both the damping and the res-
onance effects are negligible. This is the case of dilute plasma, in which
the electrons move freely and the collision rate is low, or the case of very
high frequency light in which the contribution from ω2

0 and γω are negligible
compared with that from ω2. The polarization is

P = −nee
2E0e

−iωt

meω2
, (10.89)

and the index of refraction is

n =

√
1− ω2

p

ω2
, (10.90)
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where

ω2
p =

nee
2

ε0me

(10.91)

is called the plasma frequency. For ω > ωp, electromagnetic waves can prop-
agate with an index of refraction less than 1, namely with a phase velocity
larger than c. For ω < ωp, n has an imaginary part, and the wave will be
attenuated. At the surface of such a medium, electromagnetic waves will be
reflected completely because transmission into such a medium is not possible.
An important application of this effect was radio communication beyond hori-
zon. Before the advent of satellite communication, reflection of radio waves
below 7MHz by the ionosphere was a key technique for long distance radio
communication.

10.5 Clausius-Mossotti Equation

Eq. (10.68) is derived under the assumption that the medium is dilute, so
that we can use the external E in the right-hand side of Eq. (10.66). In a
dense medium atoms and molecules do not experience directly the external
field. Instead, they are driven by the local field that is a combination of the
external field Ee and the field Ep produced by the polarization. Therefore
Eq. (10.67) should be changed to

r =
e

me(ω2
0 − ω2 − iγω)

(Ee + Ep). (10.92)

Consider a test charge in a medium of polarization P. The charge will expe-
rience an electric field in the opposite of the direction of P. For simplicity,
let us consider the charge distribution of a polarized sphere of radius R. The
polarized sphere can be treated as two uniformly charged spheres of opposite
sign separated by a small distance 2d ¿ R. Let the center of the positively
charged sphere be at (d, 0, 0) and that of the negatively charged sphere be
at (−d, 0, 0). By the Shell theorem, a test charge placed at the origin will
experience an electric field as if all the positive charge within a radius d from
(d, 0, 0) is concentrated at (d, 0, 0) and all the negative charge within a ra-
dius d from (−d, 0, 0) is concentrated at (−d, 0, 0). Therefore the test charge
experiences a field equal to

Ep =
2

4πε0

ρ
(

4π
3

d3
)

d2
=

2ρd

3ε0

=
P

3ε0

. (10.93)
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Let us define the atomic or molecular polarizability γp by

p = γp(Ee + Ep), (10.94)

where p is the dipole induced by the local field. We have

P = Nγp(Ee + Ep) = Nγp

(
Ee +

P

3ε0

)
, (10.95)

where N is the atomic or molecular density. Because P = (ε − ε0)Ee, we
have

ε = ε0


1 +

Nγp

ε0

1− Nγp

3ε0


 , (10.96)

or conversely

Nγp

3ε0

=
κe − 1

κe + 2
, (10.97)

where κe = ε/ε0 = n2. This is known as the Clausius-Mossotti equation.
With γp given by

∑

i

e2fi

me(ω2
i − ω2 − iγiω)

, (10.98)

where fi is the number of electrons in the ith potential well per atom or
molecule, we obtain

n2 − 1

n2 + 2
=
N e2

3ε0

∑

i

fi

me(ω2
i − ω2 − iγiω)

. (10.99)

10.6 Light Propagating in Dispersive Media

If the index of refraction of a medium is frequency dependent, we say the
medium is dispersive. In fact, all the media are dispersive, it is only a matter
of degree. Because the index of refraction is frequency dependent, so is the
refraction angle. This is how a prism splits white light into a band of rainbow
colors.

Consider the propagation of a time-dependent waveform in a dispersive
medium and assume the propagation is along the z-direction. Define the
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propagation constant β ≡ n(ω)k, where n(ω) is the frequency-dependent
index of refraction and k = ω/c. A general waveform can be written as
a superposition of plane waves in the z-direction, where each plane-wave
component has a different frequency.

A(z, t) =
1√
2π

∫
Ã(ω)eiβ(ω)z−iωt dω. (10.100)

Within the bandwidth of the pulse, if β depends weakly on ω, one may expand
β around the central frequency ω0 in Taylor series up to the quadratic term,

A(z, t) =
1√
2π

∫
Ã(ω)e

i

[
β0+β′(ω−ω0)+β′′

2
(ω−ω0)2

]
z
e−iωt dω. (10.101)

To simplify the mathematics, let us consider the amplitude of A(z, t) de-
fined by A(z, t) = a(z, t)ei(β0z−ω0t), where β0 = β(ω0). a(z, t) varies with
z and t much slower than A(z, t), because ei(β0z−ω0t) is the rapidly varying
component.

a(z, t) =
1√
2π

∫
Ã(ω)e

i

[
β′(ω−ω0)+β′′

2
(ω−ω0)2

]
z
e−i(ω−ω0)t dω

=
1√
2π

∫
Ã(ω)e

i

[
(β′z−t)(ω−ω0)+β′′

2
(ω−ω0)2z

]
dω. (10.102)

By a change of variables

t′ = t− z

vg

, (10.103)

where vg = 1/β′, we have

i
β′′

2

∂2a(z, t′)
∂t′2

+
∂a(z, t′)

∂z
= 0. (10.104)

Eqs. (10.103)–(10.104) reveals that the pulse travels as a group with a
velocity vg. Even though each component travels with a different phase
velocity, the envelope of the waveform moves with velocity vg. Hence vg is
called the group velocity. If β′′ = 0, a(z, t′) is independent of z, which means
the pulse will not change its shape during propagation.

If β′′ 6= 0, the pulse will change shape as it propagates. A particular
solution of Eq. (10.104) is the Gaussian pulse

a(z, t′) =
e−iθ(z)

√
τ

exp

(
− t′2

2τ 2
− iηt′2

2

)
, (10.105)
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where

b = − τ 2
0

β′′
, (10.106)

τ 2(z) = τ 2
0

(
1 +

z2

b2

)
, (10.107)

η(z) =
1

β′′
z

z2 + b2
, (10.108)

θ(z) =
1

2
arctan

z

b
. (10.109)

We see the pulse duration τ has a minimum at z = 0 and increases according
to Eq. (10.107). For any initially given τ and η, we can use Eqs. (10.107)
and (10.108) to determine τ0 and z, then the waveform at any other z and t′

is determined by Eqs. (10.106)–(10.109).

10.7 Scattering

In Section 10.4 we have seen that charge oscillation driven by the external
field is the origin of the index of refraction. In this Section we shall see
that charge oscillation is also the origin of scattering. Consider an oscillat-
ing charge driven by the external field. According to Eq. (8.71), the oscil-
lating charge will also radiate electromagnetic wave at the same frequency.
The dipole moment associated with the oscillating charge can be written as
p(t) = p0e

−iωt, where ω is the angular frequency of the external field. The
radiation fields from this oscillating dipole are given by Eqs. (8.122) and
(8.123). According to Eq. (10.67), if the frequency of the driving wave is
much smaller than the resonance frequencies, the electron oscillation ampli-
tude is insensitive to ω. In other words, p0 is nearly independent of ω. This
is the case when the scatters are small molecules that comprise the air and
ω is in the optical frequency range. In this case Eq. (8.126) shows that the
intensity of the scattered wave is proportional to ω4. In the daylight if we
look into the sky not in the direction of the Sun, we see scattered light. This
explains why the color of the sky is blue. It is not purple because our eyes
are much more sensitive to green than purple. For the same reason, as we
look at the Sun at sunset, the dominant color is orange. This is because at
sunset sunlight travels through much thicker atmosphere than at noon. Con-
sequently light of higher frequencies suffer from more scattering, and what is
left is the orange light. Again, it is not red because our eyes are much more
sensitive to yellow than red.
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Scattering is not only related to the charge oscillation in individual atoms
and molecules, but also to the density fluctuation. In a completely uniform
medium, the scattered waves from different spatial locations have different
phases. If all the wave have equal amplitude, they tend to cancel each other.
Density fluctuation breaks the uniformity, hence makes the cancelation in-
complete. This is why density fluctuation enhances scattering. Let us con-
sider an oscillating charge distribution driven by a plane wave E0e

i(k·r−ωt).
According to the generalized version of Eq. (10.67), the electron displacement
at r′ is

d(r′, t′) =

[∑

i

eE0

me(ω2
i − ω2 − iγiω)

]
ei(k·r′−ωt′) (10.110)

≡ d0e
i(k·r′−ωt′). (10.111)

Hence at a location r À r′, the vector potential is

A(r, t) =
µ0

4π

∫ J(r′, t′)
|r− r′| d3r′ =

µ0

4π

∫ ρ(r′)v(r′, t′)
|r− r′| d3r′

=
(

µ0

4π

)
(−iωd0)

∫ ei(k·r′−ωt′)ρ(r′)
|r− r′| d3r′

=
(

µ0

4π

)
(−iωd0)e

−iωt
∫ ei(k·r′+k|r−r′|)ρ(r′)

|r− r′| d3r′, (10.112)

where in the last step we have used the relation t′ = t− |r− r′|/c. Using the
approximations |r− r′| ≈ r and eik|r−r′| ≈ eik(r−r̂·r′), we have

A(r, t) ≈ µ0

4π

[−iωd0e
i(kr−ωt)

r

] ∫
ei(k·r′−kr̂·r′)ρ(r′) d3r′. (10.113)

The integral in the right-hand side of Eq. (10.113) will be very small if the
integration volume is larger than λ3 and ρ(r′) is uniform. In the case of
scattering by air, we may write the integral as a sum of the contribution
from each molecule at random position.

∫
e−i∆k·r′ρ(r′) d3r′ =

∑

i

e−i∆k·ri , (10.114)

where ∆k = kr̂ − k. Note that kr̂ is the wave vector of the outgoing
wave, whereas k is that of the incoming wave. Comparing Eq. (10.113) with
Eq. (8.119), we can see that the intensity of the scattered wave is proportional
to |∑i e

−i∆k·ri|2.
|∑

i

e−i∆k·ri|2 =
∑

i

∑

j

e−i∆k·(ri−rj)

=
∑

i

∑

j

δij +
∑

i

∑

j 6=i

e−i∆k·(ri−rj). (10.115)
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If the integration volume is larger than λ3 and there are many molecules in
the integration volume, the summation over j 6= i yields a number near zero
because −∆k · (ri − rj) is a random distribution. In this case

|∑
i

e−i∆k·ri|2 ≈ N, (10.116)

where N is the total number of molecule in the integration volume. Therefore
the intensity of the wave scattered from a localized region is proportional to
the total number of molecules in that region. In other words, the scattering
intensity is proportional to the molecular density.

If the electron density is not uniform, Eq. (10.113) shows that the vector
potential of the scattered wave is proportional to the Fourier coefficient of
the electron density for the component ei∆k·r′ . Therefore, in principle by
measuring A(r) for all ∆k, one can determine ρ(r′), which gives essential
information about the structure of the scattering material. The wavelength
employed for the scattering experiments must be comparable to the length
scale of the density variation. If the wavelength is much longer, we get only
the averaged structure information. If the wavelength is much shorter, the
integral in Eq. (10.113) will be averaged out, and the scattering amplitude
will be small. For optical frequencies and higher, it is very difficult to measure
the phase of A(r, t), therefore the information obtained from the scattering
intensity alone, which is proportional to |A(r, t)|2, does not provide complete
information of ρ(r′). How to determine the phase of the scattering wave for
x-ray scattering is currently an active research topic. The phase information
in x-ray scattering is essential for determining the structures of large complex
molecules such as proteins.

10.8 Diffraction of X-Ray

Consider 3-dimensional crystal whose charge density distribution is periodic
in three directions. Namely

ρ(r) = ρ(r + a) = ρ(r + b) = ρ(r + c), (10.117)

where a, b, and c are three basis vectors that represent the translation in-
variance of the lattice cells. Because of the translation invariance, we have

ρ(r + ma + nb + lc) = ρ(r), (10.118)
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for any integers m, n, and l. Note that these lattice basis vectors are not
necessarily orthogonal to each other. We may define the basis vectors of the
reciprocal lattice by

ar =
2π

vc

b× c,

br =
2π

vc

c× a,

cr =
2π

vc

a× b, (10.119)

where vc = a · (b× c) is the volume of the basic lattice cell. A general vector
g in the reciprocal lattice is

g = mar + nbr + lcr. (10.120)

In terms of g, we have

ρ(r′) =
∑
g

nge
ig·r′ . (10.121)

Substituting into Eq. (10.113), we have

A(r, t) =
µ0

4π

−iωd0e
i(kr−ωt)

r

∑
g

ng

∫
e−i(∆k−g)·r′ d3r′. (10.122)

We see that A is not close to zero only when ∆k = g. Therefore the scattered
waves point to discrete directions in space. The condition |kr̂|2 = |k + g|2
leads to

−2k · g = g2. (10.123)

For a particular g = nar, we have g = 2πn/d, where d is the spacing between
two parallel layers of lattice cells normal to ar. The condition in Eq. (10.123)
becomes

nλ = 2d sin θ, (10.124)

where θ is the angle between k and the layers. This is Bragg’s condition.
Hence Bragg’s condition is a special case of the general scattering condition
in Eq. (10.123).



10.9. Exercises 297

10.9 Exercises

Exercise 10.1. The refractive index of glass can be changed by doping of
heavy metals. The more the doping concentration is, the larger the refractive
index. If the doping is not uniform in space, the refractive index can be a
function of position. A graded-index lens is made of a thin slab of glass of
radius R and thickness d in which the index of refraction varies with position
according to n(r) = n0 − hr2/2, where h is a small positive constant and
r is the distance from the center. The constant h is small enough such
that hR2/2 ¿ n0. The thickness of the slab is also small enough such that
hRd/2 ¿ 1. What is the focal length of this device?

Exercise 10.2. Calculate the reflectivity of a glass slab for incident light of
600-nm wavelength. The index of refraction is 1.5, and the thickness of the
slab is 300 µm. Show that the reflectivity depends on the polarization of the
incident light. Calculate the reflectivity for both s-wave and p-wave for an
incidence angle of 60◦. Note that both surfaces of the slab reflect. Do not
forget to consider multiple reflection.

Exercise 10.3. An interferometer is shown in Fig. 10.1. The intensity of
each input beam is I, which means the amplitude of each input beam is

E =
√

I/(cε0). The power reflectivity and transmittance of the beam splitter
are R and T respectively. Because the beam splitter is made of a glass
that does not absorb light, we have R + T = 1. However, if the power
reflectivity is R, the amplitude reflectivity R should be

√
R. Similarly, the

amplitude transmittance T should be
√

T . Therefore, one might derive that
the amplitude of each output beam is (

√
R +

√
T )E, and the total intensity

of both output beams is 2I + 4
√

RTI. But energy conservation requires the
total intensity of both output beams to be equal to that of the input beams,
namely 2I. Therefore such a derivation violates the energy conservation
law. Explain what is wrong in the above argument and derive the correct
amplitudes of both output beams.

Exercise 10.4. Show that the group velocity of light in plasma is smaller
than c even though the phase velocity is larger than c. Here we consider
only the case when the frequency of the light wave is larger than the plasma
frequency, otherwise the light wave cannot propagate.

Exercise 10.5. In radio communication the ionosphere of the earth is used
as the reflector to bounce the radio wave over the horizon. This technique
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Fig. 10.1: An interferometer with two input beams.

can only be used for frequencies below 7MHz. From this number can you
estimate the electron density in the ionosphere? In this exercise we assume
the electron density in the ionosphere is uniform and ignore the effect of the
magnetic field of the earth.

Exercise 10.6. The electric field of an x-polarized plane wave propagating
in the z-direction can be written as

E(r, t) = E0e
i(k·r−ωt) x̂,

where k = kẑ. A transmission grating is made of parallel gold lines coated
on glass. The spacing between the lines is d and the width of the lines is
also d, where kd À 1. After this plane wave propagates through the grating,
the amplitude E0 becomes spatially modulated such that the electric field
becomes

E(r, t) = h(x)E0e
i(k·r−ωt) x̂,

where

h(x) =

{
1 if (2n− 1)d < x− d

2
≤ 2nd, n is an integer

0 otherwise

Show that the plane wave is split into many plan waves and each of them
propagates in an angle θm with respect to the z-axis that satisfies the follow-
ing condition.

2d sin θm = mλ,

where m is an integer.
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Fig. 10.2: Transmission of evanescent wave across a gap.

Exercise 10.7. A pair of polarizers can block the transmission of a plane
wave propagating in the z-direction when one is aligned in the x-direction
(θ = 0) while the other in the y-direction (θ = π

2
). However, if a third

polarizer aligned in the θ = π
4

is inserted between the two polarizers, 1/4 of
the intensity that has passed the first polarizer can go through the rest two.
Hence we see inserting one more polarization filter may actually increase
transmission. Consider inserting N polarizers between the two cross-aligned
filters. The angle of the kth filter is set at kπ

2(N+1)
. If the intensity after the

first polarizer is I0 and the intensity after the last polarizer is IN+1, show
that as N →∞, IN+1/I0 → 1.

Exercise 10.8. A light beam of wavelength λ propagates through two prisms
separated by a gap of thickness d as shown in Fig. 10.2. The polarization of
the incident beam is normal to both k-vectors of the incident and the reflected
beams. In other words, the incident beam is an s-wave with respect to the gap
surfaces. The refractive index of the prisms is 2.0 with permeability µ = µ0,
and the beam incidents on the gap at an angle of 45◦. By considering the
boundary conditions at the two surfaces of the gap, calculate the reflectivity
and transmission coefficients of intensity as functions of d and λ. Note that
you cannot assume that d À λ. In this exercise we assume all the surfaces
except the two of the gap are anti-reflection coated.

Exercise 10.9. The surface temperature of the Sun is 5780 K. The radius
of the Sun is 6.96 × 108 m. Estimate the surface temperature of the Earth
by using the Stefan-Boltzmann law. The Stefan-Boltzmann law is given by

I = σT 4,
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where I is the total power emitted at all wavelengths per unit surface area,
T is the absolute temperature, and

σ =
2π5k4

15c2h3
.

In this problem we assume both the Sun and the Earth are blackbodies,
and the Earth has no atmosphere and thus there is no need to consider
the greenhouse effect. In reality 30% of the radiation energy from the Sun is
reflected back to the space, and the greenhouse effect also reduces the Earth’s
loss of energy due to blackbody radiation.

Exercise 10.10. When the Earth was formed many many years ago, it was
a ball of molten rock. Let t1 be the time when the surface temperature of
the Earth was 1500 K, and t2 be the time when the surface temperature was
300 K. Assuming the Earth is a blackbody, use the Stefan-Boltzmann law to
estimate how long it takes for the Earth to cool down from 1500 K to 300 K
(i.e., t2− t1) if the Earth does not receive the radiation energy from the Sun.
For simplicity we assume the temperature of the Earth is uniform during the
cool-down process, and the specific heat of the Earth is 0.8 J/(g· K).

Exercise 10.11. An optical fiber made by a thin thread of graded-index glass
can be used to guide the propagation of light. The action of the graded-index
glass as a continuous distribution of lens balances the diffraction, so that light
can be confined in a thin thread without leaking out by diffraction. Because
in the optical fiber the light can only propagate in the z-direction, we may
assume the light has the following waveform

A(x, y, z, t) = a(x, y)ei(kz−ωt).

Show that a(x, y) satisfies the following equation:

[
∂2

∂x2
+

∂2

∂y2
− k2 +

n(x, y)2ω2

c2

]
a(x, y) = 0,

where

n(x, y) = n0 − h

(
x2 + y2

2

)
.

For small h one can make the following approximation:

n(x, y)2 =

[
n0 − h

(
x2 + y2

2

)]2

≈ n2
0 − n0h(x2 + y2).
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Now the equation looks like a two-dimensional time-independent Schrödinger
equation for the harmonic oscillator. The equation can be solved by assuming
that

a(x, y) = ax(x)ay(y).

Show that the equation for ax(x) and ay(y) is the one-dimensional time-
independent Schrödinger equation. Copy the solution from the lecture notes,
and show that there are different modes for the light propagating in the
fiber. The modes can be labeled by two integers m and n, just like the
wavefunctions of the two-dimensional harmonic oscillator. For each mode
labeled by (m, n), what is the dispersion relation k(ω)?

Exercise 10.12. The structure of gold is a cubic crystal in which the struc-
ture repeats itself every 0.40788 nm in all the three directions of x̂, ŷ, and ẑ.
Consider the scattering of a 10-keV x-ray beam by a powder sample of gold
crystal. Because the sample is in the powder form, each grain of the gold
crystal in the powder has a random orientation with respect to the direction
of the x-ray beam. An x-ray film normal to the x-ray beam is placed at 1 m
behind the sample. Show that the scattering pattern on the x-ray film forms
concentric rings. Determine the radii of the first four rings, starting from the
smallest ring.
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Chapter 11

Quantum Phenomena

11.1 Rayleigh-Jeans Formula for Blackbody Radiation

How matter radiates light has been an intriguing problem in physics for a
long time. In the beginning of the 20th century, Rayleigh and Jeans at-
tempted to understand the spectrum of blackbody radiation from classical
statistical mechanics. Treating light as classical electromagnetic waves, they
first calculated the mode density of light waves, then assigned each mode an
average energy kT as one would do for mechanical waves. This way they
obtained a formula for the power spectrum of blackbody radiation.

Assume light waves exist only in an isolated space with length, width
and height all equal to L. Then only light waves which satisfy the following
boundary condition exist.

kiL = 2niπ i = x, y, z. (11.1)

where ki are the components of the wave vector and ni are integers. The
condition for light waves with frequency smaller than νm is

c

2π

√
k2

x + k2
y + k2

z ≤ νm. (11.2)

or √
n2

x + n2
y + n2

z ≤
Lνm

c
. (11.3)

The total number of modes with frequency lying between 0 and νm is

2× 4π

3

(
Lνm

c

)3

=
8π

3

L3ν3
m

c3
. (11.4)
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The factor 2 in the above expression accounts for the two polarization of light.
The number of modes per unit volume in the frequency interval between ν
and ν + dν is therefore

1

L3

d

dν

(
8π

3

L3ν3

c3

)
dν =

8πν2

c3
dν. (11.5)

From Boltzmann distribution the average energy per mode is

1

Z

∫ ∫ (
p2

2m
+

kq2

2

)
e
− 1

kT

(
p2

2m
+ kq2

2

)
dp dq = kT, (11.6)

where

Z =
∫ ∫

e
− 1

kT

(
p2

2m
+ kq2

2

)
dp dq. (11.7)

Multiplying Eqs. (11.5) and (11.10), the power spectrum of the light is

P (ν)dν =
8πν2kT

c3
dν. (11.8)

One can immediately recognize a serious problem in Eq. (11.8). If the
equation were correct, then any matter at any finite temperature would emit
much more X-ray than visible light, not to mention the γ-rays! The power
spectrum diverges at high frequency. Needless to say, such a spectrum does
not agree with experimental observations. But Eq. (11.8) is derived from
very fundamental principles, it was hard to understand what went wrong.
It turned out that the quantum nature of light has a subtle but important
effect on the blackbody spectrum. The problem was solved by Max Planck
with his revolutionary hypothesis of quantized light energy.

11.2 Planck’s Theory of Blackbody Radiation

Planck showed that if light energy is not continuously variable, instead, if
the energy level spacing for light with frequency ν is

∆E = hν, (11.9)

then a blackbody spectrum which is free of divergence and agrees with ex-
perimental observations can be derived using the same idea of statistical
mechanics. Using Eq. (11.9), the average energy per mode becomes

∑∞
n=0nhν e−

nhν
kT

∑∞
n=0e

−nhν
kT

=
hν

e
hν
kT − 1

. (11.10)
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The spectrum of light is then

P (ν) dν =
8πν2

c3

hν

e
hν
kT − 1

dν. (11.11)

The rapid decrease of average mode energy with increasing frequency saves
the spectrum from diverging at high frequency.

11.3 Photoelectric Effect

When light is shined on the surface of metal, it can kick out electrons. This
is called the photoelectric effect. Experimentally it is found that the kinetic
energy T of the electrons follows the following equation.

T = h̄ω −W, (11.12)

where W is a material-dependent constant called the work function. Great
difficulties are encountered when one tries to explain this experimental obser-
vation by classical electromagnetic theories. First of all, in classical theories
the intensity of light is cε0|E|2, which does not depend on ω. Since the ki-
netic energy of the electron must come from the energy of light, why does
it depend on ω instead of |E|2? If one increase the intensity of light, more
electrons are kicked out, but their kinetic energy still follows Eq. (11.12).
Second, according to classical theories, there should be a delay before the
electron can be kicked out, because it takes time to accumulate the energy.
Therefore the weaker the light is, the longer delay it should take. However,
experimentally one finds that weaker light only reduce the probability of
kicking out an electron. There is no delay between the arrival of the light
and the departure of the electrons.

Einstein showed that by thinking light as particles, the photoelectric ef-
fect can be easily explained. Following Planck’s suggestion, the energy of
a photon is h̄ω, therefore Eq. (11.12) is simply an instance of the energy
conservation law. Clearly we need a theory to describe light as particles.

11.4 Taylor’s Interference Experiment

If light is made of particles after all, can a single particle of light interfere with
itself? Using the same experimental set-up as the Young’s interference ex-
periment except an extremely weak light source, in 1909 G. I. Taylor proved
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that a single photon does interfere with itself. The light source was attenu-
ated to the extent that on the average less than one photon existed in the
experimental set-up. In other words, on the average a photon did not leave
the light source until the previous photon had arrived at the photographic
plate which served as the detector. In a short time, only individual random
dots appeared on the photographic plate. However, in a long time as one
accumulated many dots, it became clear that the dots prefer to appear at
certain positions and never appear at some other positions. The density dis-
tribution of dots follows exactly as the classical interference pattern. Taylor’s
interference experiment forces us to treat light as both wave and particle.

11.5 Emission Spectrum of the Hydrogen Atom

Using grating spectrometry, one can analyze the frequency spectrum of a
light source with great resolution. Experimentally is was found that the
wavenumber of the emission is given by the following formula:

k = R
(

1

m2
− 1

n2

)
, (11.13)

where R is a constant and m, n are positive integers. The series of lines
corresponding to m = 1 is called the Lyman series. The m = 2 series is
called the Balmer series, and the m = 3 series is called the Paschen series. J.
J. Thomson explained the discrete atomic lines by the harmonic oscillation
of electrons at the bottom of each potential well. However, the α-particle
scattering experiment by Rutherford disagree with this picture seriously.

Under the inspection of spectroscopy with even higher resolution, the
emission lines of hydrogen atoms are found to have a fine structure described
by

k = R [f(m,mθ)− f(n, nθ)] , (11.14)

where

f(m,mθ) =
1

m2

[
1 +

α2

m

(
1

mθ

− 3

4m

)]
, (11.15)

and

mθ − nθ = ±1. (11.16)

The dimensionless constant α is called the fine structure constant. No classi-
cal theory was able to explain these mysterious rules for the hydrogen spec-
trum.
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11.6 Franck-Hertz Experiment

When measuring the voltage-current relation for a vacuum tube filled with
mercury vapor, J. Franck and G. Hertz discovered in 1913 that the differen-
tial conductivity dI/dV showed resonant structures. It appeared that when
electrons collided with the mercury atoms, the loss of electron kinetic energy
is discrete. This is in agreement with the hypothesis that atomic energy
levels are discrete.

11.7 Problem of Specific Heat

Boltzmann’s invention of statistical mechanics turns out to be a tremendous
achievement in physics. However, at the time Boltzmann proposed the idea
of energy equipartition, he faced strong objection. One of the objections is
that statistical mechanics was not able to explain the specific heat of even
the simplest systems. Consider a polyatomic molecule made of n atoms. The
degree of freedom is 3n, and among them 3 are the translational motion, three
are the rotational motion, and the rest are the vibrations. From Eq. (11.6),
the specific heat for each vibrational degree of freedom is k, therefore for a
diatomic molecule such as H2, the specific heat should be

cV =
3k

2
+

3k

2
+ k = 4k. (11.17)

If the two atoms are treated as points of zero radius, one may argue that
there is no rotation along the axis connecting the two atoms. In this case we
have

cV =
3k

2
+

2k

2
+ k =

7

2
k. (11.18)

However, at room temperature the experimental result is close to 5k/2. As
the number of atoms in the molecule increases, the discrepancy becomes more
significant. Experimentally the specific heat is a function of temperature, but
Boltzmann’s prediction is independent of temperature. Worst of all, because
atoms have internal degrees of freedom, for instance the neon atom contains
10 electrons, if all these internal degrees of freedom contribute to the specific
heat, even the ideal gas made of neon atoms will have a specific heat much
larger than the experimental value 3k/2.

The solution of this contradiction comes from quantum mechanics. By
the analogy between waves and harmonic oscillators shown in Section 3.5, the
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energy levels of simple harmonic oscillators must also be ∆E = hν, the same
as the energy of light. From Eq. (11.10), we see that a vibrational degree of
freedom contributes to the specific heat only if hν ¿ kT . For hν ¿ kT , we
have

cV =
d

dT

[
hν

e
hν
kT − 1

]
≈ k. (11.19)

In contrast, for hν À kT ,

cV ≈ k

(
hν

kT

)2

e−
hν
kT , (11.20)

which is negligibly small. For diatomic molecules hν/k is in the range of
thousands K, therefore at room temperature the vibrational motion of di-
atomic molecules contributes little to the specific heat. The internal degrees
of freedom of atoms have even larger energy. For instance, the energy of the
first excited state of hydrogen is 10.2 eV. At room temperature it contributes
only about 10.2 × e−392 eV to the internal energy and (392)2 × e−392 k to
the specific heat. It was a pity that Boltzmann did not know the problem of
specific heat was not in statistical mechanics, but in using classical mechanics
to describe atoms and molecules. He was unduely bothered by this problem
only because he was truly a genius ahead of his time.

11.8 Wilson-Sommerfeld Quantization Rule

In 1911 Rutherford showed by α particle scattering that most of the positive
charge in an atom is concentrated in the center, called the nucleus. But
such an atomic model cannot explain the stability of atoms. According to
classical mechanics, the only way for the electrons not to fall into the nu-
cleus is by circulating. However, according to the classical electromagnetic
theory, circulating electrons lose energy by emitting a continuous spectrum
of electromagnetic wave, therefore cannot maintain their orbits. Even more
puzzling is the experimental fact that atomic spectra consist of sharp discrete
ordered lines that no theory was able to explain. In 1913 Bohr discovered a
rule for the quantization of electron orbits,

L =
nh

2π
, (11.21)

where L is the angular momentum n is a positive integer. This simple rule
accurately describes the hydrogen spectrum. But why the electron orbits
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follow this rule was still not explained. In 1916 Wilson and Sommerfeld
found a more general quantization condition,

∮
p(r) · dr = nh, (11.22)

where p is the momentum and r is the coordinate. For the hydrogen atom,
the Wilson-Sommerfeld quantization rule yields

∮
p(r) · dr =

∮
pr dθ = 2πL = nh, (11.23)

which is the same as Bohr’s rule. For the harmonic oscillator the same rule
yields

nh =
∮

p(r) · dr =
∮ √

2mE −mkx2 dx = 2πE

√
m

k
, (11.24)

which gives Planck’s rule E = nhν. The Wilson-Sommerfeld quantization
rule not only unifies Planck’s quantization rule for the harmonic oscillator and
Bohr’s for the hydrogen atom, it can also be applied to any integrable system
in which p can be solved as a function of r. An important achievement of the
Wilson-Sommerfeld quantization rule is that when combined with relativity,
it explained accurately the fine structure of the hydrogen spectrum.

11.9 Exercises

Exercise 11.1. In textbooks the calculation of the heat capacity at room
temperature (300 ◦K) of hydrogen gas is done by including only 3 transla-
tional degrees of freedom and two rotational degrees of freedom to obtain
the value 5k/2. Let us call the axis connecting the two protons the z-axis.
Assuming the mass distribution of proton is a uniform sphere with a diame-
ter equal to 10−15 m, and on the average the two electrons circulate around
the z-axis at a radius of 0.5× 10−10 m, what is the moment of inertia of the
hydrogen molecule with respect to the z-axis? By the Wilson-Sommerfeld
rule the angular momentum along a particular axis is quantized according
to L = nh̄. How much does the rotation along the z-axis contribute to the
heat capacity at room temperature? Hint: It is sufficient to estimate the
contribution from the first few energy levels.

Exercise 11.2. In the lecture note we have derived the total number of
modes for an isolated space with length, width and height all equal to L.
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Use this result to derive the formula for the Fermi energy of free electrons in
a box,

EF =
h̄2

2me

(
3π2ne

) 2
3 ,

where ne is the electron density and me is the electron mass.

Exercise 11.3. Heisenberg’s uncertainty principle can be used to estimate
the radii of electron orbits in atoms. If the 3-dimensional root-mean-square
position of an electron is r, show that by Heisenberg’s uncertainty principle
the minimum 3-dimensional root-mean-square momentum of the electron is
3h̄/(2r). Consider the inner most electron of an atom of atomic number
Z. Write down the total energy of the electron when it is at a distance r
from the nucleus. For simplicity you may treat all the electrons around the
nucleus as independent particles and ignore the contribution of other elec-
trons in potential energy. Use Heisenberg’s uncertainty principle to estimate
the minimum kinetic energy of the electron. Find the radius r0 that gives
the lowest total energy for the electron under consideration for Z = 1 and
Z = 100. Show that when Z is larger than a certain number, no minimum
energy can be found, and in that case the inner most electron will fall into
the nucleus. This sets an upper bound for the number of elements in the
universe. Note that when the kinetic energy T of the electron is small com-
paring with the rest energy m0c

2, we have T ≈ p2/(2m0), otherwise we have

T =
√

m2
0c

4 + p2c2 −m0c
2.

Exercise 11.4. Bohr obtained the radii of electron orbits in the hydrogen
atom from the following equation

e2

4πε0r2
=

mev
2

r
,

with the quantization condition L = mvr = nh̄. The equation can be written
as

e2

4πε0r
=

L2

mer2
=

p2

me

,

with the quantization condition p = L/r = nh̄/r. We may understand these
equations in the following way. Consider the total energy of the electron as
a function of r. The potential energy is −e2/(4πε0r) and the kinetic energy
is p2/(2me) = L2/(2mer

2). Since L is a conserved quantity, we may find the
radius r0 for the electron orbit by minimizing the total energy while keeping
L constant. This yields the above equations. Now consider the inner most
electron of an atom of atomic number Z in the ground (n = 1) state. Write
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down the total energy of the electron when it is at a distance r from the
nucleus. For simplicity you may treat all the electrons around the nucleus
as independent particles and ignore the contribution of other electrons in
potential energy. Find the radius r0 that gives the lowest total energy for
the electron under consideration for Z = 1 and Z = 100. Show that when
Z is larger than a certain number, no minimum energy can be found, and
in that case the inner most electron will fall into the nucleus. This sets an
upper bound for the number of elements in the universe.

Exercise 11.5. In exercises 11.3 and 11.4, we estimated the radii of electron
orbits in two different ways. The results do not completely agree with each
other. Show that the results can be made to agree with each other by chang-
ing the dimension from 3 to 2 in exercise 11.3. Explain why such a change
is reasonable when we compare with exercise 11.4?

Exercise 11.6. The Fermi energy of copper is 7.0 eV that corresponds to a
temperature of 8.12× 104 K. At 0 K the maximum energy of the electrons is
the Fermi energy. When we touch the surface of copper at 0 K, why don’t
we feel hot?

Exercise 11.7. In applying the Wilson-Sommerfeld quantization rule to the
hydrogen model, one may restrict the motion of the electron to be circular
to get a simple result: 2πL = nh. However, since the electron trajectory can
be an ellipse, one should consider the motion in the r̂-direction as well as in
the θ̂-direction. The quantization rules become

∮
µ(rθ̇)(rdθ) = nθh

and ∮
µṙ dr = nrh,

where µ is the reduced mass of the electron-proton pair. Show that the
energy levels are determined by the following equation

E = − µe4

2(4πε0)2h̄2n2
,

where n = nr +nθ is the principal quantum and nθ is the azimuthal quantum
number. For each n, nθ can go from 1 to n.

Exercise 11.8. At low temperature the main contribution of the specific heat
of a solid is lattice vibration. Show that the specific heat is proportional to
T 3 by using Planck’s quantization rule E = nhν.
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Chapter 12

Matter Waves

12.1 Schrödinger Equation

In 1924, De Broglie presented the idea of matter wave. De Broglie noted
that if an electron moves like a wave, with wavelength λ = h/p, then the
Wilson-Sommerfeld quantization rule is simply the common periodic condi-
tion for waves, and the photon quantization rule E = hν is just a special
case. Finally, one saw a good reason behind the Wilson-Sommerfeld quan-
tization rule. This astonishing idea was soon verified by electron diffraction
experiments in 1927 (Davisson and Germer, G. P. Thomson), in which the
effect of constructive and destructive interference can only be explained by
wave and not by particle motion. In 1925 Schrödinger derived the matter
wave equation by replacing p with −ih̄∇ and E with ih̄∂/∂t in the classical
relation p2/(2m) + V (r) = E. The result is the Schrödinger equation

− h̄2

2m
∇2ψ + V (r)ψ = ih̄

∂ψ

∂t
. (12.1)

The replacement was based on the obvious fact that when −ih̄∇ operates
on a wave of wave number k, it multiplies the wave by h̄k = p, and when
ih̄∂/∂t operates on a wave of angular frequency ω, it multiplies the wave by
h̄ω = E. This can be seen clearly by representing the wavefunction in terms
of its Fourier components, namely

−ih̄∇∑

k

ake
i(k·r−ωkt) = h̄

∑

k

kake
i(k·r−ωkt), (12.2)
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ih̄
∂

∂t

∑

k

ake
i(k·r−ωkt) = h̄

∑

k

ωkake
i(k·r−ωkt). (12.3)

In fact, the first quantum wave equation Schrödinger derived was the rela-
tivistic wave equation, now known as the Klein-Gordon equation,

−h̄2∂2ψ

∂t2
= −h̄2c2∇2ψ + m2c4ψ, (12.4)

which was based on the relativistic energy-momentum relation E2 = p2c2 +
m2c4. However, when he added the electromagnetic potential (φ,A) to
Eq. (12.4) to take into account the interaction between the charges, it did
not give the correct fine structure of the hydrogen spectrum. This forced
Schrödinger to fall back to the non-relativistic approximation Eq. (12.1).
Now we know the reason Eq. (12.4) does not work is because the electron
has spin, therefore its wavefunction cannot be a scalar. It was Dirac who
derived the correct relativistic wave equation for electrons. In the Dirac
equation the wavefunction of an electron has four components. Two of the
components represent the spin components of the positive-energy states, and
the other two represent that of the negative-energy states. Now we know the
negative-energy states actually represent the states of the positron, which is
the anti-particle of the electron.

12.2 Probabilistic Interpretation of Wavefunction

Although the Schrödinger equation looks not particularly different from other
wave equations in classical physics, we must note that matter wave is very
different from classical waves. For classical waves, it is possible to separate
the wave into small pieces and measure the intensity of them independently.
For example, the sound wave produced by a loudspeaker can be measured
at different corners of a music hall. The measurement made at one corner
will not affect the result made at another corner. However, if the matter
wave represents the state of a single microscopic object, it is not possible to
detect the matter wave at the same time at different locations. Otherwise
one would say that the object has been split into pieces. It is an experimental
fact that one cannot split an electron into several fractional electrons. Even
though the wavefunction can spread all over the space, it still represents a
single nonsplitable electron. Therefore, we must interpret the wavefunction
differently from classical waves.

Whether there is a satisfactory interpretation of the wavefunction is still
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an unsettled issue, but from the experimental point of view, the probability
interpretation is consistent with all the experiments so far. Under the proba-
bility interpretation, ψ(x, t) is called the probability amplitude and |ψ(x, t)|2
is the probability density. If ψ(x, t) describes the state of a particle at time
t, then the probability of finding the particle in the space interval (x, x+ dx)
at time t is

P (x, t) dx = |ψ(x, t)|2 dx. (12.5)

Such an interpretation allows us to explain why an electron can behave like
wave in diffraction experiments, yet only one detector will receive the scat-
tered electron at one of the diffraction peaks. The diffraction pattern will not
show up until we repeat the scattering event many times and accumulate the
result. For a single scattering event, we do not know how to predict which
direction the electron will go. We only know the probability distributions of
the electron’s position and momentum.

One of the most strange result of the probability interpretation is that
the detectors seem to be able to “collaborate” over a large distance in the
measurement. Imagine we put several detectors each at one diffraction peak.
By placing the detectors far away from the scattering site, it is possible to
make the spatial separation of the detectors arbitrarily large. Yet, if one
detector detects the electron, the other detectors must not, even though the
matter wave has similar intensity at each detector. How does the detectors
know how to act in perfect correlation? Or has the electron already decided
which way to go, only we don’t know?

Some early physicists (possibly including Einstein) believed that there
are hidden variables in quantum mechanics. Similar to statistical mechanics,
these hidden variables determine which way the electron will go, only we
don’t know. If this is true, the Schrödinger equation cannot be the full
story because it leaves no room for the “hidden variables”. However, modern
experiments have provided strong evidences to rule out the possibility of
hidden-variable theories. Therefore, how does a group of detectors turn the
wavefunction into a measurement result is still a mystery.

A more fundamental picture of the quantum measurement process comes
from treating the detector as another quantum system. This is possible the-
oretically, but extremely difficult practically because the detector must be
made of a large number of particles with many degrees of freedom in order
to amplify the small change produced by the incoming electron. For instance,
the detector may be a inert-gas tube under high voltage. The incoming elec-
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tron collides with the gas atoms and knocks off a few electrons from the
atoms. These electrons are accelerated by the high voltage and then knock
off more electrons from the atoms that collide with them subsequently. Af-
ter such an avalanche process, finally there is enough electrons to turn the
needle of an ampere meter for us to see. If we describe all the atoms and
electrons in the detector also by matter waves, we make the problem much
more complicated. Worst of all, doing so does not help to understand why
the matter waves in different detectors separated far apart are correlated.
However, without doing so, it is not even possible to define clearly what is
a measurement, because eventually one must define what kind of change to
occur in the detector means “detecting” an incoming electron. Ironically, if
the wavefunction of the electron is in a superposition state of “arriving at
this detector” and “not arriving at this detector”, which is perfectly mean-
ingful in quantum mechanics, will the needle of the ampere meter also in a
superposition state of “turning” and “not turning”? Would our brain, which
processes the visual signals of watching the needle, also be in a superposition
state of “seeing the needle turn” and “not seeing the needle turn”?

Such questions cannot be answered experimentally yet, because in prac-
tice the detectors are not free from the interference of the thermal environ-
ment. There are always random fluctuations coming from the environment.
Therefore experimentally we can only relate the reading of the ampere meter
with the incoming electrons in a statistical way. Even if one could isolate
the environment to a satisfactory degree, one would still need a quantum
amplifier that is completely free of noise to amplify the state of the incom-
ing electron truthfully. It seems that quantum mechanics itself would not
allow such an amplifier, because in quantum mechanics even the vacuum is
full of zero-point fluctuation. There is simply no quiet amplifier in quantum
mechanics.

12.3 Stationary States and State Evolution

Each solution of the Schrödinger equation describes a state of the quantum
system. If a quantum state has a probability density that is independent of
t, it is called a stationary state. Obviously, a solution of the form Ψ(r, t) =
ψ(r)eiφ(t) describes a stationary state. To find out the form of φ(t), let us
assume the solution can be written as

Ψ(r, t) = ψ(r)f(t). (12.6)
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Substituting into the Schrödinger equation, we have
[
− h̄2

2m
∇2ψ(r) + V (r)ψ(r)

]
f(t) = ih̄

∂f

∂t
ψ(r). (12.7)

Dividing both sides by ψ(r)f(t), we have

− 1

ψ(r)

h̄2

2m
∇2ψ(r) + V (r) = ih̄

1

f

∂f

∂t
. (12.8)

Since the left-hand side is a function of r and the right-hand side is a function
of t, they must be equal to a constant E. Therefore we have

[
− h̄2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (12.9)

and

f(t) = e−iEt/h̄. (12.10)

The Hamiltonian operator H is defined as

H =
p2

2m
+ V (r) = − h̄2

2m
∇2 + V (r). (12.11)

Since H is a linear operator operated on ψ, if ψ satisfies Eq. (12.9), it is an
eigenfunction of H with eigenvalue E. In general H has a set of eigenfunc-
tions ψi with corresponding eigenvalues Ei, where all the ψi form a complete
orthonormal set. Therefore the general solution of the Schrödinger equation
can be written as

Ψ(r, t) =
∑

i

aiψi(r)e
−iEit/h̄. (12.12)

Set t = 0, multiply both sides by ψ∗k(r) and integrate, we have
∫

ψ∗k(r)Ψ(r, 0) d3r =
∑

i

ai

∫
ψ∗k(r)ψi(r) d3r. (12.13)

Because ψk(r) and ψi(r) are orthonormal eigenfunctions, we have
∫

ψ∗k(r)ψi(r) d3r = δik. (12.14)

Therefore, the coefficients ai can be determined by the initial wavefunction
Ψ(r, 0).

ai =
∫

ψ∗i (r)Ψ(r, 0) d3r. (12.15)
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Since the Schrödinger equation is a first-order differential equation in t, the
time evolution of its solution Ψ(r, t) is completely determined by the initial
value Ψ(r, 0). Now that ai is completely determined by the initial value
Ψ(r, 0) through Eq. (12.15), we see that Eq. (12.12) is not only a general
solution, but also the unique solution after ai is set by the initial value Ψ(r, 0).

12.4 Uncertainty Relation of Position and Momentum

One of well-cited statements in quantum mechanics is that one cannot mea-
sure both the position and the momentum of a particle accurately. This is one
instance of the uncertainty principle. To see why this is true, let us consider
an important inequality in linear algebra, the Cauchy-Schwartz inequality.

|a|2|b|2 ≥ |a∗ · b|2, (12.16)

where a and b are complex vectors. To prove this inequality, we decompose
a into a vector parallel to b and a vector perpendicular to b. That is

a = αb + h, (12.17)

where h is perpendicular to b. Multiplying both sides from the left by b∗

and remembering that b∗ · h = 0, we have

b∗ · a = α|b|2. (12.18)

The Cauchy-Schwartz inequality comes directly from the following one.

|h|2 =

∣∣∣∣∣a−
(b∗ · a)

|b|2 b

∣∣∣∣∣
2

≥ 0. (12.19)

Let ψ(x) be the wavefunction of a particle. From the probabilistic interpre-
tation of wavefunction we have

x =
∫

ψ∗(x)xψ(x) dx, (12.20)

where x is the expectation value of x. The variance of x is

(∆x)2 =
∫

ψ∗(x)(x− x)2ψ(x) dx. (12.21)

If |ψ(x)|2 is the probability density of finding the particle at position x, what
is the probability density of finding the particle having a momentum h̄k? To
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answer this question, we need to expand the wavefunction ψ(x) into a linear
combination of its Fourier components, each having a definite k.

ψ(x) =
1√
2π

∫
φ(k)eikx dk. (12.22)

Because of the one-to-one correspondence between ψ(x) and φ(k), the quan-
tum state of the particle is equally well described by φ(k). The symmetric
roles played by ψ(x) and φ(k) yield the interpretation of |φ(k)|2 as the prob-
ability density of finding the particle having a momentum h̄k. Therefore we
have

k =
∫

φ∗(k)kφ(k) dk, (12.23)

where k is the expectation value of k. The variance of k is

(∆k)2 =
∫

φ∗(k)(k − k)2φ(k) dk. (12.24)

Using the inverse Fourier transform, in terms of ψ(x) Eq. (12.23) can be
written as

k =
1

2π

∫ [∫
ψ∗(x′)eikx′ dx′

]
k

[∫
ψ(x)e−ikx dx

]
dk,

=
1

2π

∫ [∫
ψ∗(x′)eikx′ dx′

] [∫
ψ(x)

(
i

∂

∂x
e−ikx

)
dx

]
dk,

=
1

2π

∫ [∫
ψ∗(x′)eikx′ dx′

] {∫ [
−i

∂

∂x
ψ(x)

]
e−ikx dx

}
dk, (12.25)

where in the last step we have used integration by parts and the boundary
condition that ψ(x) → 0 when x → ±∞. Since

1

2π

∫
eik(x′−x) dk = δ(x′ − x), (12.26)

we have

k =
∫

ψ∗(x)

[
−i

∂

∂x
ψ(x)

]
dx. (12.27)

By the same procedure it can be shown that

k2 =
∫

φ∗(k)k2φ(k) dk =
∫

ψ∗(x)

(
−i

∂

∂x

)2

ψ(x) dx. (12.28)
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Define fa(x) and fb(x) by

fa(x) = (x− x)ψ(x), (12.29)

fb(x) =

(
−i

∂

∂x
− k

)
ψ(x), (12.30)

we have

|fa(x)|2 =
∫

ψ∗(x)(x− x)2ψ(x) dx = (∆x)2, (12.31)

|fb(x)|2 =
∫ (

i
∂

∂x
− k

)
ψ∗(x)

(
−i

∂

∂x
− k

)
ψ(x) dx

=
∫

ψ∗(x)

(
−i

∂

∂x
− k

)2

ψ(x) dx, (12.32)

where in the last step we have used again integration by parts and the bound-
ary condition that ψ(x) → 0 when x → ±∞. Expressing ψ(x) in terms of
φ(k) by Eq. (12.22), we have

|fb(x)|2 =
1

2π

∫ [∫
φ∗(k′)e−ik′x dk′

] (
−i

∂

∂x
− k

)2 [∫
φ(k)eikx dk

]
dx

=
1

2π

∫ ∫
φ∗(k′)(k − k)2φ(k)

[∫
ei(k−k′)x dx

]
dk′dk

=
∫

φ∗(k)(k − k)2φ(k) dk = (∆k)2. (12.33)

The inner product between fb(x) and fa(x) is defined by
∫

f ∗b (x)fa(x) dx

=
1

2

[∫
f ∗b (x)fa(x) dx +

∫
f ∗a (x)fb(x) dx

]

+
1

2

[∫
f ∗b (x)fa(x) dx−

∫
f ∗a (x)fb(x) dx

]

=
1

2

[∫
f ∗b (x)fa(x) dx +

∫
f ∗a (x)fb(x) dx

]

+
1

2

∫ (
i

∂

∂x
− k

)
ψ∗(x)(x− x)ψ(x) dx

−1

2

∫
ψ∗(x)(x− x)

(
−i

∂

∂x
− k

)
ψ(x) dx. (12.34)

The first term on the right-hand side is a real number, and let us denote it
by F . Using integration by parts, the second and the third terms on the
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right-hand side can be reduced to

1

2

∫
ψ∗(x)

[(
−i

∂

∂x
− k

)
(x− x)− (x− x)

(
−i

∂

∂x
− k

)]
ψ(x) dx

= − i

2

∫
ψ∗(x)ψ(x) dx

= − i

2
. (12.35)

By the Cauchy-Schwartz inequality, we have

|fa(x)|2|fb(x)|2 ≥ F 2 +
1

4
. (12.36)

Since F 2 ≥ 0, we have

(∆k)2(∆x)2 ≥ 1

4
. (12.37)

In other words,

∆p∆x ≥ h̄

2
. (12.38)
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Chapter 13

Bound States in Quantum Models

13.1 Method of Power Expansion

Power expansion is the most conventional method for solving the Schrödinger
equation analytically. The basic idea of the power-expansion method is to
assume that the solutions of the Schrödinger equation are of the following
form:

ψnx = hn(x)g(x), (13.1)

where g(x) is the asymptotic solution of the Schrödinger equation at the
boundaries that may include x → ±∞, and hn(x) is a polynomial of order n.
The reason for this separation is that while g(x) is an asymptotic solution, it
does not satisfy the Schrödinger equation except at the boundaries. Therefore
we correct it with a polynomial. The order of the polynomial must be finite,
otherwise it may change g(x) too much at the boundaries. By substituting
ψn(x) into the Schrödinger equation, we obtain another equation for hn(x).
In the solvable cases hn(x) can be found for a particular energy En, then En

is the quantized energy for the nth energy level. Otherwise ψn(x) diverges
at the boundaries, then it is not an acceptable solution. For almost all the
potential functions V (x), it is not possible to find such hn(x) regardless of
the choice of En. There are only a handful of V (x) for which analytical
solutions in the form of power series have been found. These are known as
the solvable models. Just like there are only a finite number of functions that
can be integrated analytically, we must live with the fact that there are only

323
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a small number of V (x) for which the Schrödinger equation can be solved
analytically.

In the following sections, we shall use the method of power expansion
to obtain the solutions for four distinctive types of potential, namely the
harmonic oscillator V (x) = kx2/2, which has infinite walls on both sides,
the Morse oscillator V (x) = A(e−2αx − 2e−αx), which has a finite wall on
one side and an infinite wall on the other side, the Pöschl-Teller oscillator
V (x) = −A sech2(αx), which has finite walls on both sides, and the Coulomb
potential V (x) = −Ze2/r, in which the wall is finite but there is an infinitely
deep hole in the center. These potentials serve as illuminating models in
atomic and molecular physics. Much insight can be gained by studying their
solutions carefully. In the process of obtaining the solutions, one can also see
clearly why energy is quantized for bound states.

13.2 Harmonic Oscillator

Any small-amplitude oscillation around a potential minimum can be approx-
imated by a harmonic oscillator, because V (x) = kx2/2 is simply the first
term in the Taylor expansion of the potential function around the equilibrium
point. To solve the Schrödinger equation

− h̄2

2m

d2

dx2
ψ(x) +

1

2
kx2ψ(x) = Eψ(x), (13.2)

we first define the following parameters and change variables:

α =

(
mk

h̄2

) 1
4

, λ =
2E

h̄

√
m

k
, ξ = αx.

Eq. (13.2) becomes

d2ψ

dξ2
+ (λ− ξ2)ψ = 0. (13.3)

To find the solutions, a standard approach is to factor out the asymptotic
solutions before doing the power expansion. As ξ → ±∞, Eq. (13.3) is no
different from

d2ψ

dξ2
+ (1− ξ2)ψ =

(
d

dξ
− ξ

) (
d

dξ
+ ξ

)
ψ = 0. (13.4)
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From
(

d

dξ
+ ξ

)
ψ = 0 (13.5)

we find that the asymptotic solution is ψ(ξ) ≈ e−ξ2/2. Then we can focus on
the function v(ξ) defined by

ψ(ξ) = e−ξ2/2v(ξ). (13.6)

The equation for v(ξ) is

d2v

dξ2
− 2ξ

dv

dξ
+ (λ− 1)v = 0. (13.7)

Substitute λ = 2n + 1 and v =
∑∞

k=0 akξ
k into Eq. (13.7), one obtains

∞∑

k=2

akk(k − 1)ξk−2 −
∞∑

k=1

ak(2k)ξk +
∞∑

k=0

ak(2n)ξk = 0,

(13.8)

or equivalently

∞∑

k=0

ak+2(k + 2)(k + 1)ξk −
∞∑

k=0

ak(2k)ξk +
∞∑

k=0

ak(2n)ξk = 0. (13.9)

The solution demands

ak+2 = − 2(n− k)

(k + 2)(k + 1)
ak. (13.10)

Namely

v(ξ) = a0

[
1 +

∞∑

k=1

(−1)k2k n(n− 2) · · · (n− 2k + 2)

(2k)!
ξ2k

]
(13.11)

+ a1

[
ξ +

∞∑

k=1

(−1)k2k (n− 1)(n− 3) · · · (n− 2k + 1)

(2k + 1)!
ξ2k+1

]
.(13.12)

Unless n is a nonnegative integer, ak+2/ak → 2/k when k very large, then the
first series is asymptotically exp(2ξ2) and the second series is asymptotically
ξ exp(2ξ2). These solutions of v(ξ) will make ψ(ξ) diverge as ξ → ±∞, hence
are not acceptable. Therefore n must be a nonnegative integer and a1 = 0 if
n is even, a0 = 0 if n is odd.

vn(ξ) = C
[n/2]∑

k=0

(−1)k [n/2]!

(n− 2k)!k!
(2ξ)n−2k. (13.13)
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This is the Hermite polynomial vn(ξ) = Hn(ξ). In summary, the solutions
are

ψn(ξ) = C e−ξ2/2Hn(ξ), (13.14)

En =
h̄

2

√
k

m
(2n + 1) = h̄ω

(
n +

1

2

)
. (13.15)

13.3 Morse Oscillator

When a chemical bond is weakly stretched or compressed, it behaves like
a spring. However, if the bond is stretched too much, the restoring force
becomes weaker and weaker. At a certain point the bond will break, then
there is no more restoring force. On the contrary, when the bond is strongly
compressed, the restoring force becomes larger and larger due to the strong
repulsion between the nuclei. Such an asymmetric spring can be modeled by
the Morse oscillator.

To solve the Schrödinger equation

− h̄2

2m

d2

dx2
ψ(x) + A

(
e−2αx − 2e−αx

)
ψ(x) = Eψ(x), (13.16)

we first define the following parameters and change variables:

ε =

√−2mE

αh̄
, n =

√
2mA

αh̄
−

(
ε +

1

2

)
, ξ =

2
√

2mA

αh̄
e−αx. (13.17)

Eq. (13.16) becomes

d2ψ

dξ2
+

1

ξ

dψ

dξ
+

(
−1

4
+

n + ε + 1/2

ξ
− ε2

ξ2

)
ψ = 0. (13.18)

To find the solutions, a standard approach is to factor out the asymptotic
solutions before doing the power expansion. Since ψ ≈ e±ξ/2 as ξ → ∞,
ψ ≈ ξ±ε as ξ → 0, and ψ must be finite as ξ → 0 and ∞, we can focus on
the function v(ξ) defined by

ψ(ξ) = e−ξ/2ξεv(ξ). (13.19)

The equation for v(ξ) is

ξ
d2v

dξ2
+ (2ε + 1− ξ)

dv

dξ
+ nv = 0. (13.20)
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Set

a = −n, c = 2ε + 1, (13.21)

then

ξ
d2v

dξ2
+ (c− ξ)

dv

dξ
− av = 0. (13.22)

Substitute v(ξ) =
∑∞

k=0 akξ
k into Eq. (13.22), one obtains

∞∑

k=2

akk(k − 1)ξk−1 +
∞∑

k=1

akckξk−1 −
∞∑

k=1

akkξk −
∞∑

k=0

akaξk = 0, (13.23)

or equivalently

∞∑

k=0

ak+1k(k + 1)ξk +
∞∑

k=0

ak+1c(k + 1)ξk −
∞∑

k=0

akkξk −
∞∑

k=0

akaξk = 0.(13.24)

The solution demands

ak+1 =
a + k

(k + 1)(c + k)
ak. (13.25)

Namely

v(ξ) = a0

[
1 +

a

c
ξ +

a(a + 1)

2!c(c + 1)
ξ2 +

a(a + 1)(a + 2)

3!c(c + 1)(c + 2)
ξ3 + · · ·

]
.(13.26)

This is the confluent hypergeometric function v(ξ) = C 1F1(a, c ; ξ). Set

v(ξ) = ξ1−cw(ξ), (13.27)

then the equation for w(ξ) is

ξ
d2w

dξ2
+ (2− c− ξ)

dw

dξ
− (a− c + 1)w = 0. (13.28)

The solution is

w(ξ) = C 1F1(a− c + 1, 2− c ; ξ), (13.29)

or

v(ξ) = C ξ1−c
1F1(a− c + 1, 2− c ; ξ). (13.30)
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This is another independent solution. If a is not zero or a negative integer,
ak+1/ak → 1/k when k very large, then the series v ∝ eξ, hence ψ ∝ eξ/2ξε.
This divergence is not acceptable. Therefore a must be a nonpositive integer.
In addition, c cannot be a nonpositive integer, otherwise the denominator of
one of the terms in the series becomes zero. In summary,

vn(ξ) = C 1F1(−n, 2ε + 1 ; ξ),

ψn(ξ) = C e−ξ/2ξε
1F1(−n, 2ε + 1 ; ξ). (13.31)

This solution satisfies the boundary conditions

lim
x→∞ψn = lim

ξ→0
ψn = 0, (13.32)

lim
x→−∞ψn = lim

ξ→∞
ψn = 0. (13.33)

The other independent solution,

vn(ξ) = C ξ−2ε
1F1(−n− 2ε, 1− 2ε ; ξ),

ψn(ξ) = C e−ξ/2ξ−ε
1F1(−n− 2ε, 1− 2ε ; ξ), (13.34)

does not satisfy Eq. (13.32), hence is excluded. From Eq. (13.17),

En = −A

[
1− αh̄√

2mA

(
n +

1

2

)]2

. (13.35)

13.4 Pöschl-Teller Oscillator

The Pöschl-Teller potential V (x) = −A sech2(αx) represents a soft-edged
quantum well with finite depth. Quantum wells can be made by sandwiching
together semiconductors of different compositions. Unlike atoms, the energy
levels of quantum wells can be engineered by adjusting the width and depth
of the well. Therefore they are often considered as “artificial atoms”. To
solve the Schrödinger equation

− h̄2

2m

d2

dx2
ψ(x)− A sech2(αx)ψ(x) = Eψ(x), (13.36)

we first define the following parameters

ε =

√−2mE

αh̄
, s =

1

2


−1 +

√
1 +

8mA

α2h̄2


 , (13.37)
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and change variable

ξ = tanh(αx). (13.38)

Eq. (13.36) becomes

d

dξ

[
(1− ξ2)

dψ

dξ

]
+

[
s(s + 1)− ε2

1− ξ2

]
ψ = 0. (13.39)

Set

ψ = (1− ξ2)ε/2v(ξ), (13.40)

the equation for v(ξ) is

(1− ξ2)
d2v

dξ2
− 2(1 + ε) ξ

dv

dξ
− (ε− s)(ε + s + 1)v = 0. (13.41)

Change the variable once again

u =
1

2
(1− ξ), (13.42)

Eq. (13.41) becomes

u(1− u)
d2v

du2
+ (1 + ε)(1− 2u)

dv

du
− (ε− s)(ε + s + 1) v = 0. (13.43)

Set

a = ε− s, b = ε + s + 1, c = 1 + ε, (13.44)

then

u(1− u)
d2v

du2
+ [c− (a + b + 1)u]

dv

du
− ab v = 0. (13.45)

Substitute v(u) =
∑∞

k=0 aku
k into Eq. (13.45), one obtains

∞∑

k=2

akk(k − 1)uk−1 −
∞∑

k=2

akk(k − 1)uk +
∞∑

k=1

akckuk−1

−
∞∑

k=1

akk(a + b + 1)uk −
∞∑

k=0

akabuk = 0, (13.46)
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or equivalently

∞∑

k=0

ak+1k(k + 1)uk −
∞∑

k=0

akk(k − 1)uk +
∞∑

k=0

ak+1c(k + 1)uk

−
∞∑

k=0

akk(a + b + 1)uk −
∞∑

k=0

akabuk = 0. (13.47)

The solution demands

ak+1 =
(a + k)(b + k)

(k + 1)(c + k)
ak. (13.48)

Namely

v(u) = a0

[
1 +

ab

c
ξ +

a(a + 1)b(b + 1)

2!c(c + 1)
ξ2+

a(a + 1)(a + 2)b(b + 1)(b + 2)

3!c(c + 1)(c + 2)
ξ3 + · · ·

]
(13.49)

This is the hypergeometric function v(u) = C 2F1(a, b, c ; u). Set

v(u) = u1−cw(u), (13.50)

then the equation for w(u) is

u(1− u)
d2w

du2
+ (c− a− b + 1)u

dw

du
− (a− c + 1)(b− c + 1) w = 0.(13.51)

The solution is

w(u) = C 2F1(a− c + 1, b− c + 1, 2− c ; u), (13.52)

or

v(u) = C u1−c
2F1(a− c + 1, b− c + 1, 2− c ; u). (13.53)

This is another independent solution. If c is not zero or a negative integer
and a or b is a nonpositive integer, the series is finite. Since b = ε+s+1 > 0,
a = ε− s must be a nonpositive integer. Let ε− s = −n,

vn(u) = C 2F1(−n, ε + s + 1, 1 + ε ; u), (13.54)

ψn(ξ) = C (1− ξ2)ε/2
2F1

[
−n, ε + s + 1, 1 + ε ;

1

2
(1− ξ)

]
. (13.55)
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This solution satisfies the boundary conditions

lim
x→±∞ψn = lim

ξ→±1
ψn = 0. (13.56)

The other independent solution,

vn(u) = C u−ε
2F1(−s, s + 1, 1− ε ; u), (13.57)

ψn(ξ) = C (1 + ξ)ε/2(1− ξ)−ε/2
2F1

[
−s, s + 1, 1− ε ;

1

2
(1− ξ)

]
,(13.58)

does not satisfy Eq. (13.56), hence is excluded. From Eq. (13.37),

En = −α2h̄2

8m


−(1 + 2n) +

√
1 +

8mA

α2h̄2




2

. (13.59)

13.5 Hydrogen Atom

As the simplest atom in the universe, the hydrogen atom is undoubtably
the first step to understand atoms. Since the hydrogen atom has a spherical
symmetric potential, the radial part of its solution can be separated with
the angular part. Before we discuss specifically the Coulomb potential, we
shall consider the general case of spherical symmetric potentials V = V (r),
in which the angular part is the focus of our discussion.

The Schrödinger equation is

− h̄2

2m
∇2ψ + V (r)ψ = Eψ. (13.60)

In spherical coordinates it can be written as

− h̄2

2m

[
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2

]

+V ψ = Eψ. (13.61)

Since

r = rr̂, (13.62)

∇ = r̂
∂

∂r
+ φ̂

1

r sin θ

∂

∂φ
+ θ̂

1

r

∂

∂θ
, (13.63)
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we have

L = −ih̄r×∇ = −ih̄

(
−θ̂

1

sin θ

∂

∂φ
+ φ̂

∂

∂θ

)
. (13.64)

From

r = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ, (13.65)

φ̂ = − sin φx̂ + cos φŷ, (13.66)

θ̂ = cos θ cos φx̂ + cos θ sin φŷ − sin θẑ, (13.67)

we have

∂θ̂

∂θ
= −r̂, (13.68)

∂φ̂

∂θ
= 0, (13.69)

∂θ̂

∂φ
= cos θφ̂, (13.70)

∂φ̂

∂φ
= −(sin θr̂ + cos θθ̂). (13.71)

Therefore

L2 = −h̄2

(
−θ̂

1

sin θ

∂

∂φ
+ φ̂

∂

∂θ

)
·
(
−θ̂

1

sin θ

∂

∂φ
+ φ̂

∂

∂θ

)

= −h̄2

(
1

sin2 θ

∂2

∂φ2
+

cos θ

sin θ

∂

∂θ
+

∂2

∂θ2

)
(13.72)

= −h̄2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
, (13.73)

and Eq. (13.61) can be written as

− h̄2

2mr2

[
∂

∂r

(
r2∂ψ

∂r

)
− 1

h̄2L2ψ

]
+ V ψ = Eψ, (13.74)

Multiply both sides of Eq. (13.74) by −2mr2/h̄2, it becomes

∂

∂r

(
r2∂ψ

∂r

)
− 2mr2

h̄2 (V − E)ψ =
1

h̄2L2ψ. (13.75)

Substitute

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (13.76)
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into Eq. (13.75), then divide both sides by R(r)Θ(θ)Φ(φ), one has

1

R

d

dr

(
r2dR

dr

)
− 2mr2

h̄2 (V − E) =
1

ΘΦ

1

h̄2L2(ΘΦ). (13.77)

Note that the left hand side is a function of r, whereas the right hand side is
a function of θ and φ, therefore both sides must be equal to a constant. Let
the constant be λ, then

1

R

d

dr

(
r2dR

dr

)
− 2mr2(V − E)

h̄2 = λ, (13.78)

and

1

ΘΦ

1

h̄2L2(ΘΦ) = λ. (13.79)

We solve Eq. (13.79) first. From Eq. (13.73), Eq. (13.79) becomes

− 1

ΘΦ

{
1

sin2 θ

∂2(ΘΦ)

∂φ2
+

1

sin θ

∂

∂θ

[
sin θ

∂(ΘΦ)

∂θ

]}
= λ. (13.80)

Multiply both sides by − sin2 θ, one obtains

1

Φ

d2Φ

dφ2
= − sin2 θ

[
λ +

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
. (13.81)

Again, the left hand side is a function of φ, whereas the right hand side is
a function of θ, therefore both sides must be equal to a constant. Let the
constant be −m2, the left hand side is

1

Φ

d2Φ

dφ2
= −m2, (13.82)

therefore

Φ(φ) = e±imφ, (13.83)

where m must be an integer to satisfy the periodic boundary condition
Φ(φ) = Φ(φ + 2π). The right hand side is

λ +
1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= 0. (13.84)

Set

x = cos θ, (13.85)
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Eq. (13.84) becomes

(1− x2)
d2Θ

dx2
− 2x

dΘ

dx
+

(
λ− m2

1− x2

)
Θ = 0. (13.86)

This is the associated Legendre equation. Set

Θ(x) = (1− x2)m/2 dmv

dxm
, (13.87)

then v(x) satisfy the Legendre equation

(1− x2)
d2v

dx2
− 2x

dv

dx
+ λv = 0. (13.88)

Substitute v(x) =
∑∞

k=0 akx
k into Eq. (13.88), one obtains

∞∑

k=2

akk(k − 1)xk−2 −
∞∑

k=2

akk(k − 1)xk

−
∞∑

k=1

ak(2k)xk +
∞∑

k=0

akλxk = 0, (13.89)

or equivalently

∞∑

k=0

ak+2(k + 2)(k + 1)xk −
∞∑

k=0

akk(k − 1)xk

−
∞∑

k=1

ak(2k)xk +
∞∑

k=0

akλxk = 0. (13.90)

If λ = l(l + 1), the solution demands

ak+2 = −(l − k)(k + l + 1)

(k + 2)(k + 1)
ak. (13.91)

If l is not an integer, ak+2/ak → 1 when k very large, then the series diverges.
This divergence is not acceptable, hence l must be an integer. Since change
l = n to l = −n− 1, λ = l(l + 1) will stay unchanged, we can assume l ≥ 0.
Eq. (13.87) then implies m ≤ l. Set a1 = 0 if l is even, and a0 = 0 if l is odd,

vl(x) = C
[l/2]∑

k=0

(−1)k (2l − 2k)!

2lk!(l − k)!(l − 2k)!
xl−2k. (13.92)

This is the Legendre polynomial vl(x) = Pl(x), and

Θ(x) = (1− x2)m/2dmPl(x)

dxm
. (13.93)



13.5. Hydrogen Atom 335

Now the only equation left to be solved is Eq. (13.78). From this point
we specify the potential function to be V = −Ze2/r. Eq. (13.78) becomes

d

dr

(
r2dR

dr

)
+

2mr2Ze2

h̄2r
R +

2mr2E

h̄2 R = l(l + 1)R. (13.94)

Set

R(r) =
v(r)

r
, (13.95)

the equation for v(r) is

d2v

dr2
+

[
− l(l + 1)

r2
+

2mZe2

h̄2r
+

2mE

h̄2

]
v = 0. (13.96)

Since v(r) → rl+1 or r−l as r → 0, and v(r) → e±(
√−2mE/h̄)r as r → ∞, in

addition R = v/r must at least be finite as r → 0 and ∞, we can set

v = ρl+1e−ρw(ρ), (13.97)

where

ρ = (
√
−2mE/h̄)r. (13.98)

The equation for w(ρ) is then

ρ
d2w

dρ2
+ 2(l + 1− ρ)

dw

dρ
+ [ρ0 − 2(l + 1)]w = 0, (13.99)

where

ρ0 =

√
2m

−E

Ze2

h̄
. (13.100)

Set

z = 2ρ, (13.101)

Eq. (13.99) becomes

z
d2w

dz2
+ (2l + 2− z)

dw

dz
+

[
ρ0

2
− (l + 1)

]
w = 0. (13.102)

As shown in the case of Morse Oscillator, the solution for Eq. (13.102) is

wN(z) = C 1F1(−N, 2l + 2; z), (13.103)
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therefore

RN(ρ) = C ρle−ρ
1F1(−N, 2l + 2; 2ρ), (13.104)

where

N ≡ ρ0

2
− (l + 1) (13.105)

must be a nonnegative integer. This solution satisfies the boundary condi-
tions

lim
r→0

RN = lim
ρ→0

RN = 0, (13.106)

lim
r→∞RN = lim

ρ→∞RN = 0. (13.107)

The other independent solution,

vN(z) = C z−2l−1
1F1(−N − 2l − 1,−2l; z),

RN(ρ) = C ρ−l−1e−ρ
1F1(−N − 2l − 1,−2l; 2ρ), (13.108)

does not satisfy Eq. (13.106), hence is excluded. From Eqs. (13.100) and
(13.105),

En = −mz2e4

2h̄2n2
, (13.109)

where n = ρ0/2 = N + l + 1. Note that l can take values between 0 and
n − 1, and m can take values between −l and l, therefore for each set of n
and l there are m eigenstates of the same energy, and for each n there are∑n−1

l=0 (2l + 1) = n2 eigenstates of the same energy. Together with the fact
that each eigenstate can accommodate two electrons of opposite spins, these
levels of degeneracy form the basis of our understanding of the periodic table.

13.6 Exercises

Exercise 13.1. Consider the Schrödinger equation for a spherical potential
well of depth −V and radius R, as shown in Fig. 13.1. Calculate the energy
level and the wavefunction of the ground state. You may assume the wave-
function ψ is only a function of r, namely ψ(r) = ψ(r). Hint: The Laplacian
operator in the spherically symmetric case is

∇2u =
1

r2

∂

∂r

(
r2∂u

∂r

)
. (13.110)

The Schrödinger equation equation can be solved by changing variable to
φ(r) = ψ(r)/r. At the boundary r = R, the wavefunction and its derivative
must be continuous.
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Fig. 13.1: A spherical potential well.
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Chapter 14

Operator Algebra in Quantum Mechanics

14.1 Linear Space and Representation

Consider a general normalized matter wave u(x, t) which is a linear combi-
nation of monochromatic waves eikx. Each of the component waves has a
definite wavenumber k.

u(x, t) =
1√
2π

∫
ũ(k, t)eikx dk, (14.1)

where
∫

u∗(x, t)u(x, t) dx =
∫

ũ∗(k, t)ũ(k, t)dk = 1. (14.2)

Because the relative strength of the wave component eikx is represented by
|ũ(k, t)|2, the expectation value of p = h̄k is simply

p =
∫

h̄kũ∗(k, t)ũ(k, t) dk. (14.3)

If we write p in terms of u(x, t),

p =
∫

u∗(x, t)p̂u(x, t) dx, (14.4)

the following equations identify that p̂ = −ih̄∂/∂x.

∫
u∗(x, t)

[
−ih̄

∂

∂x
u(x, t)

]
dx

339
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=
1

2π

∫ [∫
ũ∗(k, t)e−ikx dk

] [∫
h̄k′ũ(k′, t)eik′x dk′

]
dx

=
∫ ∫

ũ∗(k, t)δ(k − k′)h̄k′ũ(k′, t) dkdk′

=
∫

h̄kũ∗(k, t)ũ(k, t) dk. (14.5)

By the symmetric roles of x and k in Fourier analysis, the expectation value
of x is

x =
∫

ũ∗(k, t)
i∂

∂k
ũ(k, t) dk

=
1

2π

∫ [∫
u∗(x, t)eikx dx

] [∫
x′u(x′, t)e−ikx′ dx′

]
dk

=
∫ ∫

u∗(x, t)δ(x− x′)x′u(x′, t) dxdx′

=
∫

u∗(x, t)xu(x, t) dx. (14.6)

Therefore if we agree that the probability distribution function of k is ũ∗(k)ũ(k),
then the probability distribution function of x is u∗(x, t)u(x, t). Eqs. (14.3)
and (14.6) point out a general rule: the expectation value of a physical quan-
tity O(x, p) is

O =
∫

u∗(x, t)Ôu(x, t) dx, (14.7)

where Ô = O(x,−ih̄∂/∂x). Alternatively, If we use ũ(k, t) to describe the
matter wave, the expectation value of a physical quantity O(x, p) is

O =
∫

ũ∗(k, t)Ôũ(k, t) dk, (14.8)

where Ô = O(ih̄∂/∂x, h̄k). If one expands u(x, t) with respect to an or-
thonormal basis set made of eigenfunctions of Ô, i.e. u(x, t) =

∑
i ai(t)si(x)

and Ôsi(x) = Oisi(x), then

O =
∑

i

Oi|ai|2. (14.9)

Eq. (14.9) points out that the physical quantity O can have values O1, O2, O3, . . .
with probability |a1|2, |a2|2, |a3|2, . . . respectively. If a basis vi(x) which is not
a set of Ô’s eigenfunctions is used, u(x, t) =

∑
i bi(t)vi(x), the expectation

value becomes

O =
∑

i,j

b∗i bj

∫
v∗i (x)Ôvj(x) dx

≡ ∑

i,j

b∗i Oijbj, (14.10)
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where Oij is a matrix representation of the operator Ô with respect to the
basis vi(x). Because O must be a real number, we have

∑

i,j

b∗i Oijbj =
∑

i,j

biO
∗
ijb

∗
j . (14.11)

Interchanging the dummy index on the right-hand side, we have

∑

i,j

b∗i (Oij −O∗
ji)bj = 0 (14.12)

for any set of bi. Therefore

Oij = O∗
ji. (14.13)

An operator satisfying this condition is called a Hermitian operator. The
requirement that the expectation value of a physical quantity must be a real
number is equivalent to the requirement that the corresponding operator
must be Hermitian.

Now it should be clear that in wave mechanics the state of a physical
system is represented by the wavefunction u(x, t), which is a solution of the
Schrödinger equation, and the value of a physical quantity is represented
by its spectrum Oi and probability distribution |ai|2. The wavefunction can
have different forms, such as u(x, t), ũ(k, t), ai(t), depending on which basis
is used, so can physical quantities. For instance, p̂ can be written as h̄k or
−ih̄∂/∂x), depending on whether ũ(k, t) or u(x, t) is used to describe the
matter wave. Because in most cases of formal discussion it is not necessary
to specify the basis, one can simply represent a wavefunction by |s〉, its
complex conjugate by 〈s|, the expectation value of an operator by 〈s|Ô|s〉,
and the matrix element linking |s′〉 and |s〉 by 〈s′|Ô|s〉. This is called the
Dirac notation.

In the Dirac notation, the Schrödinger equation can be written as

ih̄
d

dt
|t〉 = Ĥ|t〉, (14.14)

where |t〉 represents the state at time t and

Ĥ =
p̂2

2m
+ V (r̂) = − h̄2

2m
∇2 + V (r̂) (14.15)

is the energy operator. Obviously the the Schrödinger equation describes how
a state evolves with time. In this picture the state changes with time, and the
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operators such as p̂, r̂ do not. This is called the Schrödinger representation.
Alternatively, one can think the states are static, and instead the operators
are changing with time. This is called the Heisenberg representation. In the
Heisenberg representation the equation of motion for the operators is

ih̄
dÔ(t)

dt
=

[
Ô, Ĥ

]
+ ih̄

∂Ô

∂t
, (14.16)

where [Ô, Ĥ] ≡ ÔĤ − ĤÔ. Eq. (14.16) can be obtained from Eq. (14.14) in
the following way.

ih̄
d

dt
〈t|Ô|t〉 =

(
ih̄

d

dt
〈t|

)
Ô|t〉+ 〈t|

(
ih̄

∂

∂t
Ô

)
|t〉+ 〈t|Ô

(
ih̄

d

dt
|t〉

)

= 〈t|
[
Ô, Ĥ

]
+ ih̄

∂Ô

∂t
|t〉. (14.17)

It does not matter which representation we choose to describe the motion
of the quantum systems, because what is important are the matrix elements
〈s′|Ô|s〉 that represent the probability of states. Whether we attribute the
time evolution to the operators or the states does not change the time evo-
lution of the matrix elements.

14.2 Uncertainty Principle

In linear algebra it is known that if two operators A and B do not commute,
they do not share the same set of eigenvectors. Therefore if |s〉 is an eigenstate
of A, it cannot be an eigenstate of B. This means if a state corresponds a
precise value of A, its value of B must be a probability distribution with
some uncertainty. In other words, A and B cannot both have precise values.
This is known as the uncertainty principle.

To derive a precise mathematical expression of the uncertainty principle,
consider three Hermitian operators A, B, and C that satisfy the relation

[A,B] ≡ AB −BA = iC. (14.18)

Let |a〉 = (A− A)|s〉, |b〉 = (B −B)|s〉. We have

〈a|a〉 = 〈s|(A− A)2|s〉 = (∆A)2,

〈b|b〉 = 〈s|(B −B)2|s〉 = (∆B)2,

〈a|b〉 = 〈s|(A− A)(B −B)|s〉. (14.19)
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By the Cauchy-Schwartz inequality, we have

(∆A)2(∆B)2 ≥ |〈s|(A− A)(B −B)|s〉|2. (14.20)

We may rewrite (A− A)(B −B) as

(A− A)(B −B) =
1

2
[(A− A)(B −B) + (B −B)(A− A)] +

i

2
C

≡ F +
i

2
C. (14.21)

Since both F and C are Hermitian, 〈s|F |s〉 and 〈s|C|s〉 are real numbers.
This means

(∆A)2(∆B)2 ≥ F
2
+

1

4
C

2 ≥ 1

4
C

2
. (14.22)

Namely

(∆A)(∆B) ≥ 1

2
C. (14.23)

14.3 Eigenvalues of the Angular Momentum

The commutator between operators A and B is defined by AB − BA and
denoted by [A,B]. Some commonly used rules for commutators are:

[A,B + C] = [A,B] + [A,C], (14.24)

[A + B,C] = [A,C] + [B,C], (14.25)

[A,BC] = [A,B]C + B[A,C], (14.26)

[AB, C] = A[B, C] + [A,C]B, (14.27)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (14.28)

From the following relation,

p = −ih̄∇, (14.29)

we have

[pi, rj] = −ih̄δij, (14.30)

[pi, pj] = 0, (14.31)

[ri, rj] = 0, (14.32)
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where p = (p1, p2, p3) and r = (r1, r2, r3).

The angular momentum operator is defined by

L = (ypz − zpy, zpx − xpz, xpy − ypx).

From the definition we have

[Lx, y] = [ypz − zpy, y] = −z[py, y] = ih̄z. (14.33)

[Lx, py] = [ypz − zpy, py] = [y, py]pz = ih̄pz. (14.34)

[Lx, x] = 0. (14.35)

[Lx, px] = 0. (14.36)

From these commutation relations we can derive the commutation relations
between components of L.

[Lx, Ly] = [Lx, zpx − xpz] = [Lx, z]px − x[Lx, pz]

= −ih̄ypx + ih̄xpy = ih̄Lz, (14.37)

and similarly

[Ly, Lz] = ih̄Lx, (14.38)

[Lz, Lx] = ih̄Ly. (14.39)

Let us define

L+ = Lx + iLy, (14.40)

L− = Lx − iLy, (14.41)

L2 = L2
x + L2

y + L2
z. (14.42)

These operators satisfy the following commutation relations:

[Lz, L+] = h̄L+, (14.43)

[L−, Lz] = h̄L−, (14.44)

[L+, L−] = 2h̄Lz, (14.45)

[L2,L] = 0. (14.46)

Let us denote the eigenvalues of L2 by λh̄2 and the eigenvalues of Lz by mh̄.
Because L2 and L commute, they have a common set of eigenvectors |λm〉.
Namely

Lz|λm〉 = mh̄|λm〉, (14.47)

L2|λm〉 = λh̄2|λm〉. (14.48)
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The fact 〈λm|L2
x + L2

y|λm〉 ≥ 0 implies

λ ≥ m2. (14.49)

Multiplying Eq. (14.47) by L+ and L− and using Eqs. (14.43) and (14.44),
we have

LzL+|λm〉 = (m + 1)h̄L+|λm〉, (14.50)

LzL−|λm〉 = (m− 1)h̄L−|λm〉. (14.51)

From Eq. (14.48) we have

L2L+|λm〉 = λh̄2L+|λm〉, (14.52)

L2L−|λm〉 = λh̄2L−|λm〉. (14.53)

These four equations show that if |λm〉 is an eigenvector of L2 and Lz with
eigenvalues λh̄2 and mh̄ respectively, then L±|λm〉 is also an eigenvector of
L2 and Lz with eigenvalues λh̄2 and (m±1)h̄ respectively. Therefore we have

L+|λm〉 ∝ |λm + 1〉, (14.54)

L−|λm〉 ∝ |λm− 1〉. (14.55)

Because m can never be larger than
√

λ or smaller than −√λ, we may denote
l the maximum value of m. Then we must have

L+|λl〉 = 0, (14.56)

otherwise L+|λl〉 will be an eigenvector of Lz with a larger eigenvalue than
lh̄. This will lead to a contradiction. Multiplying by L−, we have

L−L+|λl〉 = (L2 − L2
z − h̄Lz)|λl〉 = (λ− l2 − l)h̄|λl〉 = 0. (14.57)

This gives

λ = l(l + 1). (14.58)

Similarly, if l′ is the minimum value of m, we have

L−|λl′〉 = 0, (14.59)

and

L+L−|λl〉 = (L2 − L2
z + h̄Lz)|λl〉 = (λ− l′2 + l′)h̄|λl〉 = 0. (14.60)
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This gives

λ = l′(l′ − 1). (14.61)

Comparing with Eq. (14.58), we have l′ = −l. Because we may start with a
state represented by |λl〉 and after multiplying it by L− a number of times
to obtain a state represented by |λl′〉, l − l′ must be an integer. This leads
to the conclusion that l must be a half-integer or an integer.

Now we may summarize the result. The eigenvectors of L2 and Lz can be
labeled by l and m, where both of them are either integers or half-integers
and |m| ≤ |l|, such that

L2|lm〉 = l(l + 1)h̄2|lm〉, (14.62)

Lz|lm〉 = mh̄|lm〉. (14.63)

14.4 Operator Algebra of the Harmonic Oscillator

The Hamiltonian function of a simple harmonic oscillator is

H =
p2

2m
+

mω2q2

2
, (14.64)

where p is the momentum and q is the coordinate. Define the annihilation
operator a and the creation operator a† by

a ≡
√

mω

2h̄

(
q + i

p

mω

)
, a† ≡

√
mω

2h̄

(
q − i

p

mω

)
, (14.65)

then
aa† − a†a = 1, (14.66)

and

H = h̄ω
(
a†a +

1

2

)
. (14.67)

Let us label the eigenvalues of the operator a†a by λn, and the corresponding
eigenvector by |n〉, that is

a†a|n〉 = λn|n〉. (14.68)

Since 〈n|a†a|n〉 is the norm of a|n〉, it follows λn ≥ 0. If |n〉 is an eigenvector
of a†a, then a|n〉 and a†|n〉 are also eigenvectors, as can be seen from the
following equations.

(
a†a

)
a|n〉 =

(
aa† − 1

)
a|n〉 = (λn − 1) a|n〉, (14.69)
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and similarly, (
a†a

)
a†|n〉 = (λn + 1) a†|n〉. (14.70)

By applying a successively, new eigenvectors with smaller and smaller eigen-
values can be derived. However, since the eigenvalues can not be smaller
than zero, this process must stop at some eigenvector which has the lowest
possible eigenvalue. This particular eigenvector is called the ground state
|0〉. Since there can be no eigenvector with smaller eigenvalue, a|0〉 must not
be another eigenvector. The only choice is then a|0〉 = 0 and thus λ0 = 0. It
follows from Eq. (14.70) that λn = n, and the eigenvalues of the Hamiltonian
are En = h̄ω (n + 1/2).

In the Schrödinger representation,

ih̄
d

dt
|n〉 = H|n〉 = h̄ω

(
n +

1

2

)
|n〉. (14.71)

The solution is

|n〉 = e−iω(n+1/2)t|n〉0, (14.72)

where |n〉0 is the nth state at time t = 0. In the Heisenberg representation,

ih̄
da

dt
= [a,H] =

[
a, h̄ω

(
a†a +

1

2

)]
= h̄ωa. (14.73)

The solution is

a = a(0)e−iωt, (14.74)

and similarly

a† = a†(0)eiωt. (14.75)

We have shown a†a|n〉 = n|n〉, a|n〉 = cd|n− 1〉, and a†|n〉 = cu|n + 1〉. The
constants cd and cu can be determined by the following equations:

〈n|a†a|n〉 = 〈n|n|n〉 = n, (14.76)

〈n|a†a|n〉 = 〈n− 1|c∗dcd|n− 1〉 = |cd|2, (14.77)

hence |cd| =
√

n.

〈n|aa†|n〉 = 〈n|a†a + 1|n〉 = n + 1, (14.78)

〈n|aa†|n〉 = 〈n + 1|c∗ucu|n + 1〉 = |cu|2, (14.79)
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hence |cu| =
√

n + 1. From Eqs. (14.74) and (14.75), cd = |cd|e−i(ωt−φ) and
cu = |cu|ei(ωt−φ), where φ is a constant phase. The relative phase between
|n〉 and |n + 1〉 can be chosen to be 0, then at t = 0

a|n〉 =
√

n|n− 1〉, a†|n〉 =
√

n + 1|n + 1〉. (14.80)

The wavefunction of the ground state can be determined by a|0〉 = 0.
Change variable to

ξ =

√
mω

h̄
q, (14.81)

a|0〉 = 0 becomes

(
∂

∂ξ
+ ξ

)
ψ0(ξ) = 0. (14.82)

The solution is

ψ0(ξ) = e−ξ2/2. (14.83)

From the ground-state wavefunction we can construct the wavefunction of
the first excited state by using the relation a†|0〉 = |1〉.

ψ1(ξ) =

(
− ∂

∂ξ
+ ξ

)
e−ξ2/2 = 2ξe−ξ2/2. (14.84)

We may continue this process to obtain the wavefunction of the nth state by
using the relation a†|n〉 =

√
n + 1|n + 1〉.

14.5 Quantization of Mechanical Waves

One of the simplest phenomena in systems of many degrees of freedom is
mechanical waves. To illustrate how to quantize a mechanical wave, we now
consider a thin string of uniform mass and tension distribution. Both ends
of the string are fixed, and the length of the string is L. Let us model the
string by a sequence of massive beads linked by ideal springs, and denote the
displacement of the mth bead from its equilibrium position um(t). Assume
each bead-spring unit occupies a length a in space. The mass of the bead can
be written as ρa, where ρ is the mass density. Similarly, the spring constant
can be written as τ/a, where τ is the tension of the string. The Hamiltonian
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function is just the sum of the kinetic energy of the beads and the potential
energy of the springs.

H =
ρ

2

N∑

m=1

a

(
dum

dt

)2

+
τ

2

N∑

m=1

a
(

um+1 − um

a

)2

. (14.85)

Now let a → 0 while keeping ρ and τ constant, we obtain

H =
∫

L

ρ

2

(
∂u

∂t

)2

+
τ

2

(
∂u

∂x

)2

dx, (14.86)

where we have replaced um(t) by u(x, t), the displacement of the string at
x. To reduce the Hamiltonian to a much simpler form, we first decompose
u(x, t) into Fourier components.

u(x, t) =

√
2

ρL

∑
m

qm(t) sin (kmx), (14.87)

where km = nπ/L. Then we substitute Eq. (14.87) into Eq. (14.86). The
result is

H =
1

2

∑
m

(
q̇2
m + ω2

mq2
m

)
, (14.88)

where ωm ≡ km

√
τ/ρ. We see that the Hamiltonian has the same form as

a group of independent simple harmonic oscillators, and qi, pj ≡ q̇j, are
canonical variables. Set

am ≡
√

ωm

2h̄

(
qm + i

pm

ωm

)
, a†m ≡

√
ωm

2h̄

(
qm − i

pm

ωm

)
, (14.89)

the Hamiltonian function can be written as

H =
∑
m

h̄ωm

(
a†mam +

1

2

)
, (14.90)

where the physical meaning of am is the complex amplitude of the mth wave
component.

14.6 Quantization of Electromagnetic Waves

The quantization of electromagnetic waves is similar to that of mechani-
cal waves. Consider a region of volume V which contains no charge or



350 Chapter 14. Operator Algebra in Quantum Mechanics

electric current. The electromagnetic fields can be expressed as superpo-
sitions of orthonormal spatial modes. Let us denote Em(r) exp(−iωmt),
Bm(r) exp(−iωmt) the fields of the mth spatial mode, where the complex
functions Em(r) satisfies the orthonormal condition.

∫
E∗

m(r) · En(r) d3r = δmn. (14.91)

From the Maxwell equations

∇× E = −∂B

∂t
, (14.92)

∇×B =
1

c2

∂E

∂t
, (14.93)

one has

∇× Em = iωmBm, (14.94)

∇×Bm = −iωm

c2
Em. (14.95)

From Eq. (14.95) we have

∫
(∇×B∗

m) · (∇×Bn) d3r =
ω2

m

c4

∫
E∗

m(r) · En(r) d3r =
ω2

m

c4
δmn. (14.96)

Because
∫

(∇×B∗
m) · (∇×Bn) d3r

= −
∫

B∗
m · (∇×∇×Bn) d3r

=
∫

B∗
m · (∇2Bn) d3r

=
ω2

m

c2

∫
B∗

m(r) ·Bn(r) d3r, (14.97)

we have
∫

B∗
m(r) ·Bn(r) d3r =

δmn

c2
. (14.98)

Let us expand an arbitrary electromagnetic field as

E(r, t) =
1

2

∑
m

[vm(t)Em(r) + v∗m(t)E∗
m(r)] , (14.99)

B(r, t) =
1

2

∑
m

[um(t)Bm(r) + u∗m(t)B∗
m(r)] , (14.100)
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where vm(t) and um(t) are complex functions. From Eqs. (14.92)–(14.95), we
have

u̇m(t) = −iωmvm(t), (14.101)

v̇m(t) = −iωmum(t). (14.102)

Thus

um(t) = vm(t) = cme−iωt, (14.103)

where cm is an integration constant.

Let us define

am(t) =

√
ε0

2h̄ωm

um(t) (14.104)

and substitute Eqs. (14.99) and (14.100) into the Hamiltonian function

H =
∫

V

ε0E · E
2

+
B ·B
2µ0

d3r. (14.105)

Averaging over time we obtain

H =
∑
m

h̄ωma∗mam. (14.106)

Let

qm =

√
h̄

2ωm

(am + a∗m) , pm = −i

√
h̄ωm

2
(am − a∗m) , (14.107)

we have

pm(t) = q̇m(t), (14.108)

ṗm(t) = −ω2qm(t), (14.109)

and the time averaged Hamiltonian function becomes

H =
1

2

∑
m

(
p2

m + ω2
mq2

m

)
. (14.110)

The equation of motion and the Hamiltonian function have the same form
as a group of independent simple harmonic oscillators, and the amplitude of
each mode corresponds to an independent simple harmonic oscillator, just
like mechanical waves. Therefore we may quantize the system the same way
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as quantizing harmonic oscillators. After quantization, pm and qm becomes
operators with the commutation relation

[qm, pm] = −ih̄. (14.111)

Correspondingly, we should change notation from a∗m to a†m so that it properly
represents an operator. In terms of the two operators am and a†m, after
quantization the Hamiltonian function becomes

H =
∑
m

h̄ωm

(
a†mam +

1

2

)
, (14.112)

where the extra 1/2 comes from the commutator [am, a†m] = 1.

Now we can quantize Eqs. (14.99) and (14.100) by replacing vm(t) and
um(t) with am and a†m.

Ê(r, t) =
∑
m

√
h̄ωm

2ε0

[
amEm(r) + a†mE∗

m(r)
]
, (14.113)

B̂(r, t) =
∑
m

√
h̄ωm

2ε0

[
amBm(r) + a†mB∗

m(r)
]
. (14.114)

After this quantization procedure, E(r, t) and B(r, t) are no longer classical
variables. They become operators since they are linear combinations of am

and a†m. The mode functions Em(r) and Bm(r) play the role of the linear-
combination coefficients. To distinguish from the classical fields, we write
them as Ê(r, t) and B̂(r, t) in Eqs. (14.113) and (14.114).

14.7 Coherent States

Since 〈n|a|n〉 = 〈n|a†|n〉 = 0, the expectation values of the field operators in
a pure n-photon state |n〉 are always zero. Hence pure n-photon states are
not states which correspond to classical electromagnetic waves. It is nature
to ask which states give nonzero expectation values of the field operators. A
good guess is the eigenstate of a. If |αm〉 is an eigenstate of am, Eqs. (14.113)
and (14.114) imply

〈αm|Ê|αm〉 =
∑
m

√
h̄ωm

2ε0

[
〈αm|am|αm〉Em(r) + 〈αm|a†m|αm〉E∗

m(r)
]

=
∑
m

√
h̄ωm

2ε0

[αmEm(r) + α∗mE∗
m(r)] , (14.115)
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〈αm|B̂|αm〉 =
∑
m

√
h̄ωm

2ε0

[
〈αm|am|αm〉Bm(r) + 〈αm|a†m|αm〉B∗

m(r)
]

=
∑
m

√
h̄ωm

2ε0

[αmBm(r) + α∗mB∗
m(r)] . (14.116)

The expectation value is indeed the classical mode expansion. Eqs. (14.115)
and (14.116) show that coherent states provide the connection between clas-
sical and quantum mechanical descriptions of electromagnetic fields.

Similarly, for a simple harmonic oscillator in a coherent state the expec-
tation values of p and q follow their classical trajectory.

〈α|p|α〉 = −i

√
h̄mω

2
〈α|a− a†|α〉

= −
√

2h̄mω |α| sin(ωt + φ), (14.117)

〈α|q|α〉 =

√
h̄

2mω
〈α|a + a†|α〉

=

√
2h̄

mω
|α| cos(ωt + φ), (14.118)

where φ = arg(α). Again it is seen the coherent state provides the connection
between classical and quantum mechanical descriptions.

To find what |α〉 is, we expand |α〉 in a series of |n〉,
|α〉 =

∑
n

cn|n〉. (14.119)

At t = 0,
α|α〉 = a|α〉 =

∑
n

cn

√
n|n− 1〉. (14.120)

On the other hand,

α|α〉 =
∑
n

αcn|n〉 =
∑
n

αcn−1|n− 1〉. (14.121)

Comparing the two equations, one obtains cn = (α/
√

n)cn−1. By induc-
tion, cn = (αn/

√
n!)c0. Now all the expansion coefficients have been deter-

mined except c0, which can be fixed by the normalization condition 〈α|α〉 =
|c0|2 exp(|α|2) = 1. Hence

|α〉 = exp
(
−1

2
|α|2

) ∑
n

αn

√
n!
|n〉. (14.122)
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The state |α〉 is called the coherent state.

For a coherent state, the probability of finding n quanta in the harmonic
oscillator is

P (n) =
|α|2ne−|α|

2

n!
. (14.123)

This is the well-known Poisson distribution. The average number of quanta
is n = |α|2, and the standard deviation is ∆n = |α|. For a classical state
|α| À 1, we have

∆n

n
¿ 1. (14.124)

This means the peak of P (n) centered at n becomes increasingly sharp as n
increases. However, this does not mean the state |α〉 approaches the eigen-
state |n〉. No matter how large n is, 〈n|p|n〉 = 〈n|q|n〉 = 0, whereas 〈α|p|α〉
and 〈α|p|α〉 follow Eqs. (14.117) and (14.118).

14.8 Quantum Fluctuation of Electromagnetic Waves

The fractional uncertainty of the electric field for a coherent state is defined
by

∆E

E
=

√√√√√√

∣∣∣〈α|Ê · Ê|α〉
∣∣∣−

∣∣∣〈α|Ê|α〉
∣∣∣
2

∣∣∣〈α|Ê|α〉
∣∣∣
2 , (14.125)

According to Eqs. (14.113), (14.115), if we define

Cm(r) =

√
h̄ωm

2ε0

Em(r),

for a single mode we have

Ê = amCm + a†mC∗,

|〈α|Ê|α〉|2 = α2Cm ·Cm + 2|Cm|2α|2 + α∗2C∗
m ·C∗

m,

Ê · Ê = a2
mCm ·Cm + a†2mC∗

m ·C∗
m + ama†mCm ·C∗

m + a†mamCm ·C∗
m,

〈α|Ê · Ê|α〉 = α2Cm ·Cm + α∗2C∗
m ·C∗

m + |Cm|2(1 + 2|α|2).
After time averaging, we obtain

∣∣∣〈α|Ê|α〉
∣∣∣
2

= 2 |Cm|2 |α|2 ,
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∣∣∣〈α|Ê · Ê|α〉
∣∣∣ = |Cm|2

(
1 + 2 |α|2

)
.

Therefore ∣∣∣〈α|Ê · Ê|α〉
∣∣∣−

∣∣∣〈α|Ê|α〉
∣∣∣
2

= |Cm|2 ,

and
∆E

E
=

1√
2 |α| . (14.126)

For the single-mode plane wave, we have

Em(r) =
eikm·r
√

V
. (14.127)

The energy of the field is

E = ε0

∫

V

∣∣∣〈α|Ê|α〉
∣∣∣
2

d3r

= ε0

∫

V
2 |Cm|2 |α|2 d3r

= ε0

∫

V
h̄ωm |α|2 E∗

m(r) · Em(r)d3r

= h̄ωm |α|2 . (14.128)

Hence
∆E

E
=

√
h̄ω

2E =
1√
2n

, (14.129)

where n = h̄ω/E is number of photons in V .

Let us calculate the quantum fluctuation in the electromagnetic wave
radiated by an FM radio station. Assume the frequency is 100 MHz, the
total radiating power of the station is 10 kW, and we measure the field at
a distance of 10 km from the station. For dipole radiation in the direction
perpendicular to the dipole, the energy density ρ of the wave is

ρ =
power
4π
3

r2c
=

3× 105

4π × 108 × 3× 108
Jm−3.

We are interested in the noise integrated over a duration of 0.1 ms, which
corresponds to the upper portion of the music spectrum. Assuming the cross
section of the antenna is (λ/2)2, the volume of integration is

V =

(
λ

2

)2

× 0.0001× 3× 108 = (1.5)2 × 0.0001× 3× 108 m3.
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The number of photons in this volume is

n = 8.1× 1016,

and
∆E

E
= 2.5× 10−9.

This is much smaller than the thermal noise and the shot noise of electrons
in the amplifier. Therefore we do not need to worry the quantum fluctuation
when we listen to the FM broadcasting.

As a comparison, let us also calculate ∆E/E for a pixel on a CCD camera
irradiated by a 100-W light bulb at a distance of 1 km. Assume the wave-
length is 600 nm and the efficiency of the light bulb is 15%. The area of the
pixel is 10 µm×10 µm, and the integration time is 1 ms. The energy density
is

ρ =
power

4πr2c
=

15

4π × 106 × 3× 108
Jm−3.

The volume of integration is 10−10×0.001×3×108 m3. The photon number
is

n = 0.36,

and
∆E

E
= 1.2.

This presents a significant quantum noise on the CCD pixel. In reality, in
front of the CCD sensor there is a focusing lens. Assume the aperture of
the lens is 1 cm2. The number of photons becomes 3.6 × 105, and ∆E/E
becomes 1.2× 10−3.

14.9 Exercises

Exercise 14.1. In quantum mechanics, if the expectation value of some
Hermitian operator Ô is independent of time, we say Ô is a conserved physical
quantity. From the Schrödinger equation

ih̄
∂ψ(r, t)

∂t
= Hψ(r, t),

we have

d

dt

∫
ψ∗(r, t)Ôψ(r, t) d3r =

1

ih̄

∫
ψ∗(r, t)[ÔĤ − ĤÔ]ψ(r, t) d3r
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for any state ψ(r, t). Therefore the necessary and sufficient condition for Ô
to be a conserved quantity is ÔĤ − ĤÔ = 0. If the Hamiltonian function
has the following form

H =
p2

2m
+ V (r),

namely the potential function V (r) is only a function of r, not θ or φ, we
know in classical mechanics the angular momentum L is conserved, because

dL

dt
=

d

dt
(r× p) = r× ṗ = r× [−∇V (r)] = 0.

In quantum mechanics, we have

L̂ = r× h̄

i
∇.

Prove that L̂ is a conserved quantity by showing L̂Ĥ − ĤL̂ = 0.

Exercise 14.2. If ψn(x, t) is the wavefunction of the nth eigenstate of a
quantum harmonic oscillator. Show that

x(t) =
∫

ψ∗n(x, t)xψn(x, t)dx = 0,

and

p(t) =
∫

ψ∗n(x, t)

(
−ih̄

∂

∂x

)
ψn(x, t)dx = 0,

for every n. These results means even for large n, the expectation values of
position and momentum are both zero. However, for a classical harmonic
oscillator we have

x = a cos(ωt) 6= 0,

and

p = −mωa sin(ωt) 6= 0.

If we claim the expectation value of a physical quantity in quantum mechanics
is equal to the classical value of the same quantity, how would you resolve
the above discrepancy?

Exercise 14.3. Consider the Schrödinger equation for a two-dimensional
harmonic oscillator.

[
− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y)

]
ψ(x, y) = Eψ(x, y),



358 Chapter 14. Operator Algebra in Quantum Mechanics

where

V (x, y) =
1

2
k(x2 + y2).

Within all the solutions of this equation, what is the minimum-energy quan-
tum state which is the eigenstate of Lz = xpy − ypx with eigenvalue equal to
h̄? You do not need to write out the wavefunctions explicitly. You can use
the Dirac notation |n〉|m〉 to represent the product of wavefunctions of the
nth state in the x-axis and the mth state in the y-axis.



Appendix A

Theory of Measurement Uncertainty

A.1 Variance of Arithmetic Means

In any measurement, there is always uncertainty in the result. It is only
a matter of degree. There are many causes of the uncertainty, such as vi-
bration of the floor, power fluctuation of the electricity, temperature and
pressure change of the surrounding, or even the quantization error of digital
recording instruments. These causes are mostly uncorrelated, therefore the
measurement result can be treated as random variables. The simplest way to
describe a random variable x is by its expectation value E(x) and its variance
V (x).

E(x) ≡ α ≡
∫

xP (x) dx, (A.1)

V (x) ≡ σ2
x ≡ E(x− α)2

=
∫

(x− α)2P (x) dx,

= E(x2)− E(x)2, (A.2)

where P (x) is the probability distribution of x. The uncertainty of measure-
ment can be reduced by taking the average of many measurements, because
the deviation from the true result which can only be obtained with per-
fect instruments in an ideal environment tends to cancel partially for each
other. It is possible to estimate how much the uncertainty is reduced. Let
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x1, x2, . . . , xn be the results of n measurements and y the average result.

y =
1

n

∑

i

xi. (A.3)

Since the sum of random variables is also a random variable, one can ask
what the expectation value and the variance of y are.

E(y) =
1

n

∑

i

E(xi) = α, (A.4)

V (y) = E(y − α)2

=
1

n2
E

(∑

i

xi − nα

)2

=
1

n2
E


∑

i

(xi − α)2 +
∑

i6=j

(xi − α)(xj − α)




=
σ2

x

n
. (A.5)

In the above equation, because xi and xj are independent random variables,

E


∑

i6=j

(xi − α)(xj − α)


 =

∑

i6=j

E(xi − α)E(xj − α) = 0. (A.6)

It is seen that the average measurement result has a much smaller variance
when n is large. This is how averaging works.

A.2 Sample Variance

A subtle question is: how can one know σ2
x in the first place? To determine,

one needs to know P (x) precisely, which is possible only with an infinite
number of measurements. However, one can still estimate σ2

x from the finite
(but large) number of measurement results available. Let us define the sample
variance s2

x by

s2
x ≡

1

n

∑

i

(xi − y)2. (A.7)
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Note that the definition of s2
x does not involve P (x). In fact, s2

x itself is a
random variable whose expectation value we would like to know.

E(ns2
x) =

∑

i

E(xi − y)2

=
∑

i

E [(xi − α)− (y − α)]2

=
∑

i

E
[
(xi − α)2 − 2(xi − α)(y − α) + (y − α)2

]

=
∑

i

E(xi − α)2 − 2

n

∑

i

E[(xi − α)(xi − α)]

− 2

n

∑

i6=j

E[(xi − α)(xj − α)] +
∑

i

E(y − α)2. (A.8)

The first two terms combines to be (n− 2)σ2
x, the third term is zero because

xi and xj are independent, and the last term is σ2
x according to Eq. (A.5).

Therefore one has

E(s2
x) =

n− 1

n
σ2

x. (A.9)

If we are lucky enough that the s2
x we get from our random samples of mea-

surement is close to E(s2
x), then we may replace E(s2

x) by s2
x in Eq. (A.9).

The result is

V (y) =
σ2

x

n
≈ s2

x

n− 1
. (A.10)

Eq. (A.10) tells us how to plot the error bar in our presentation of measure-
ment data.

A.3 Central Limit Theorem

In Sec. A.1, we showed how to estimate the uncertainty of the average mea-
surement result. One can push much further to show that the probability
distribution of y is a Gaussian function regardless of the shape of P (x). This
is known as the central limit theorem.

For simplicity let us change variable x to x−α such that the expectation
value of x is zero. Let us also define the characteristic function C(k) to be
the Fourier transformation of P (x),

C(k) =
1√
2π

∫
P (x)eikx dx. (A.11)
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By Taylor expansion

C(k) = b0 + b1k + b2k
2 + b3k

3 + · · · , (A.12)

where

b0 =
1√
2π

∫
P (x) dx =

1√
2π

b1 =
1√
2π

∫
P (x)(ix) dx = 0

b2 =
1√
2π

∫
P (x)

(ix)2

2
dx = − σ2

x

2
√

2π
, (A.13)

and in general

bn =
1√
2π

∫
P (x)

(ix)n

n!
dx =

(i)nMn

n!
√

2π
. (A.14)

Mn is the nth moment of P (x). Consider the probability distribution of
z = x1 + x2,

P2(z) =
∫

P (x1)P (z − x1)dx1. (A.15)

By the Fourier convolution theorem, the characteristic function of P2(z) is
simply C2(k) =

√
2πC(k)2. Consider in general the probability distribution

of z = x1 + x2 + · · ·+ xn.

Pn(z) =
∫

P (xn)Pn−1(z − xn)dxn. (A.16)

Again by the Fourier convolution theorem, the characteristic function of
Pn(z) is simply Cn(k) =

√
2πC(k)Cn−1(k). Clearly, by mathematical induc-

tion, Cn(k) = (
√

2π)n−1C(k)n. Let the probability distribution of y = z/n be
Py(y). Because Py(y)dy = Pn(z)dz, Py(y) = nPn(ny) and the corresponding
characteristic function is

Cn

(
k

n

)
=

1√
2π

[
1− σ2

xk
2

2n2
+ o

(
1

n2

)]n

. (A.17)

Since
(
1 +

c

n2

)n

= exp
[
n ln

(
1 +

c

n2

)]
= exp

[
c

n
+ o

(
1

n

)]
, (A.18)

Cn

(
k

n

)
=

1√
2π

exp

[−σ2
xk

2

2n
+ o

(
1

n

)]
→ 1√

2π
exp

(−σ2
xk

2

2n

)
. (A.19)
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By inverse Fourier transformation,

Py(y) →
√

n

2π

1

σx

exp

(−ny2

2σ2
x

)
. (A.20)

Eq. (A.20) shows the probability distribution of the average measurement
result is a Gaussian distribution with a variance σ2

x/n. Note that we did not
assume x has a Gaussian distribution. The central limit theorem tells us that
for any reasonable distribution, the average result is a Gaussian distribution
with a variance n-fold smaller than that of P (x).

A.4 Curve Fitting as an Indirect Measurement

Consider a set of measurement data yi associated with a set of variables
xi. Each measurement is carried out by setting the variable to x, and the
measured data is y. A plot of yi with respect to xi will show how y changes
with x. By curve fitting, the set {xi, yi} can be used to construct a function
that best describe the relation between y and x.

By physical arguments, one may anticipate a functional form y = f(x; ai)
where ai is a set of parameters to be determined from the data set {xi, yi}.
For example, for a pendulum one already knows the angular frequency of
oscillation ω is related to the pendulum length l by ω2 = l/g. A data set
{ωi, li} will help us to determine the gravitational acceleration g. Intuitively,
one may determine g for each measurement by gi = li/ω

2
i , and then take the

average of gi as the best estimate of g and the standard deviation of gi as
the best estimate of its uncertainty. But how rigorous statistically is such
a procedure? In particular, because the measurements are affected by noise
and fluctuation, ω may be modelled as a random variable with a distribution
function P (ω|l) which represents the probability of ω under the condition
that the length of the pendulum is l. Can one obtain information about
P (ω|l) from the data set {ωi, li}? Given {ωi, li}, what are the best estimates
of the expectation value and the standard deviation of g? Using curve fitting
to determine ai from experimental data can be considered as an indirect
measurement. Therefore, it is important to know the uncertainty of such
measurements.
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A.5 Linear Regression

Consider the simplest case where y = α + βx. If P (yi|xi) is modelled as

P (yi|xi) =
1

σ
√

2π
exp



−

1

2

[
yi − (α + βxi)

σ

]2


 , (A.21)

one can find α, β, and σ by the method of maximum likelihood:

∂ ln L

∂α
=

1

σ2

n∑

i=1

[yi − (α + βxi)] = 0, (A.22)

∂ ln L

∂β
=

1

σ2

n∑

i=1

xi[yi − (α + βxi)] = 0, (A.23)

∂ ln L

∂σ
= −n

σ
+

1

σ3

n∑

i=1

[yi − (α + βxi)]
2 = 0, (A.24)

where L =
∏

i P (yi|xi) is the total probability. The solution of these equations
gives us the maximum likelihood estimates of α, β, and σ.

β̂ =
n

∑
xiyi − (

∑
xi)(

∑
yi)

n
∑

x2
i − (

∑
xi)2

, (A.25)

α̂ =

∑
yi − β̂

∑
xi

n
, (A.26)

σ̂ =

√
1

n

∑
[yi − (α̂ + β̂xi)]2. (A.27)

Define

Sxx ≡ ∑
(xi − x̄)2 =

∑
x2

i −
1

n

(∑
xi

)2
, (A.28)

Syy ≡ ∑
(yi − ȳ)2 =

∑
y2

i −
1

n

(∑
yi

)2
, (A.29)

Sxy ≡ ∑
(xi − x̄)(yi − ȳ) =

∑
xiyi − 1

n

(∑
xi

) (∑
yi

)
, (A.30)

we have

β̂ =
Sxy

Sxx

, (A.31)

α̂ = ȳ − β̂x̄, (A.32)

σ̂ =

√
1

n
(Syy − β̂Sxy). (A.33)
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Now we have the maximum likelihood estimates of α and β, but what are
the uncertainties of them? Note that yi are actually random variables. If we
do the same measurement again, we are likely to get a different set of yi. If
we express α̂ and β̂ in terms of yi, we can calculate their expectation values
and variances.

β̂ =

∑
(xi − x̄)(yi − ȳ)

Sxx

=
∑ (

xi − x̄

Sxx

)
yi, (A.34)

α̂ =

∑
yi − β̂

∑
xi

n
=

∑ (
Sxx + nx̄2 − nx̄xi

nSxx

)
yi. (A.35)

E(β̂) =
∑ (

xi − x̄

Sxx

)
E(yi|xi)

=
∑ (

xi − x̄

Sxx

)
(α + βxi)

= β, (A.36)

V (β̂) =
∑ (

xi − x̄

Sxx

)2

V (yi|xi)

=
∑ (

xi − x̄

Sxx

)2

σ2

=
σ2

Sxx

. (A.37)

E(α̂) =

(
Sxx + nx̄2 − nx̄xi

nSxx

)
E(yi|xi)

=

(
Sxx + nx̄2 − nx̄xi

nSxx

)
(α + βxi)

= α, (A.38)

V (α̂) =
∑ (

Sxx + nx̄2 − nx̄xi

nSxx

)2

V (yi|xi)

=
∑ (

Sxx + nx̄2 − nx̄xi

nSxx

)2

σ2

=
σ2

Sxx

. (A.39)
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A.6 Multivalue fitting with unknown error bars

Consider the case in which y =
∑m

k=1 akXk(x), where m is the number of
parameters to be fit, ak are the parameters, and Xk(x) are a set of functions
of x. By changing variables, many curve fitting problems can be reduced to
this form. For example, if the model function is

y = a1 exp

[
−

(
x− a2

a3

)2
]
, (A.40)

one may transform it into

ln y =

(
ln a1 − a2

2

a2
3

)
+

2a2

a2
3

x− 1

a2
3

x2. (A.41)

The crucial point is to make y linear in all the fitting parameters. Let us
simplify the notation Xk(xi) to Xik. The equations for maximum likelihood
estimates of ai and σ are:

∂ ln L

∂aj

=
1

σ2

n∑

i=1

Xij

(
yi −

m∑

k=1

akXik

)
= 0, (A.42)

∂ ln L

∂σ
= −n

σ
+

1

σ3

n∑

i=1

(
yi −

m∑

k=1

akXik

)2

= 0. (A.43)

In the matrix notation X ≡ Xij, a ≡ ai, and y ≡ yi, the solution of
Eqs. (A.42) and (A.43) can be written as

â =
(
XTX

)−1
XTy, (A.44)

σ̂ =

√
yTy − âTXTy

n
. (A.45)

where XT is the transpose of X, and â, σ̂ are the maximum likelihood esti-

mates of a and σ. Let us write
(
XTX

)−1
as Cij,

âj =
m∑

k=1

Cjk

n∑

i=1

Xikyi =
n∑

i=1

(
m∑

k=1

CjkXik

)
yi. (A.46)

E(âj) =

(
m∑

k=1

Cjk

n∑

i=1

Xik

)
m∑

l=1

Xilal

=
m∑

l=1

m∑

k=1

Cjk

(
n∑

i=1

XikXil

)
al

=
m∑

l=1

m∑

k=1

Cjk (Ckl)
−1 al = aj, (A.47)
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V (âj) =
n∑

i=1

(
m∑

k=1

CjkXik

) (
m∑

l=1

CjlXil

)
σ2

=
m∑

l=1

m∑

k=1

CjlCjk

(
n∑

i=1

XikXil

)
σ2

=
m∑

l=1

m∑

k=1

CjlCjk (Ckl)
−1 σ2 = Cjjσ

2. (A.48)

A.7 Multivalue fitting with known error bars

To improve the signal-to-noise ratio, it is a common practice to take yi as
the average of a large number of repeated measurements. In such cases, we
would already have a good estimate of the variance σ2

i of yi. The equations
for maximum likelihood estimates of ai become

∂ ln L

∂aj

=
n∑

i=1

Xij

σ2
i

(
yi −

m∑

k=1

akXik

)
= 0. (A.49)

By a change of variables Aij = Xij/σi and ui = yi/σi, Eq. (A.49) is reduced
to Eq. (A.42). From the result of previous section it can be seen immediately

that if Cij ≡
(
ATA

)−1
, we have

â =
(
ATA

)−1
ATu, (A.50)

E(âj) =

(
m∑

k=1

Cjk

n∑

i=1

Aik

)
m∑

l=1

Ailal

=
m∑

l=1

m∑

k=1

Cjk

(
n∑

i=1

AikAil

)
al

=
m∑

l=1

m∑

k=1

Cjk (Ckl)
−1 al = aj, (A.51)

V (âj) =
n∑

i=1

(
m∑

k=1

CjkAik

) (
m∑

l=1

CjlAil

)

=
m∑

l=1

m∑

k=1

CjlCjk

(
n∑

i=1

AikAil

)

=
m∑

l=1

m∑

k=1

CjlCjk (Ckl)
−1 = Cjj. (A.52)
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Appendix B

Hints of Selected Exercises

Chapter 2

Hint 2.11. Assume the position vector of the car is r(t) = [x(t), z(t)]. Then
one has v(t) = [ẋ(t), ż(t)]. The condition of constant speed is

v =
√

ẋ2(t) + ż2(t) =

√√√√1 +

(
dz

dx

)2 (
dx

dt

)
,

hence
ẋ(t) =

v√
1 +

(
dz
dx

)2
,

ż(t) =
v

(
dz
dx

)
√

1 +
(

dz
dx

)2
.

Hint 2.16. As the train accelerates on the surface of the Earth, the angular
velocity of the Earth must change because angular momentum is conserved.
Therefore the rotational energy of the Earth must also change.

Hint 2.25. Calculate the gravitational potential as a function of d, where d is
the distance from the wire. Alternatively, you may calculate the gravitational
force at a distance d and integrate the force to obtain the potential. To
escape, the kinetic energy must be larger than the potential energy. Note
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that only the difference of potential energy for two positions is meaningful.
The absolute value of potential energy has no physical meaning.

Hint 2.26. Patch up the opening and use the shell theorem. What is the
contribution of the patch to the gravitational force?

Hint 2.32. From the initial energy E and the initial angular momentum L
the trajectory of the satellite can be determined. See Eqs. (2.88)–(2.91) in
the lecture note. However, since the Earth is not a point mass, one must
make sure the trajectory of the satellite does not cross the surface of the
Earth. This means the ratio between the long axis and the short axis must
not be too large.

Hint 2.33. From the initial energy E and the initial angular momentum
L the trajectory of the alpha particle can be determined. It is a hyperbola.
The angle θ is just the angle between the two asymptotes of the hyperbola.

Chapter 3

Hint 3.5. Write down the equation of motion along the curve, and show that
it is equivalent to the simple harmonic oscillator. If the curve is described
by r = [x(θ), y(θ)], where θ = 0 represents the bottom of the curve, then the
length of the curve from the bottom is

l(θ) =
∫ θ

0

√
dx2 + dy2 =

∫ θ

0

√
x′2(φ) + y′2(φ) dφ.

Hint 3.6. If the potential function is V (x), one has

mv2

2
= E − V (x),

where v is the velocity of the ball and E is the total energy. Hence

dx

dt
= ±

√
2E − 2V (x)

m
.

The oscillation period can be calculated from the following integral,

∫ 0

x0

−
√

m

2E − 2V (x)
dx =

∫ tc

0
dt =

T

4
,
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where x0 is the initial displacement and tc is the time when the ball passes
the point x = 0.

Hint 3.11. The equation of motion for the two masses can be written in the
following form:

mẍ1 = k11x1 + k12x2

mẍ2 = k21x1 + k22x2.

Change the coordinate to

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2.

Find a suitable set of (a11, a12, a21, a22) such that

mÿ1 = λ1y1

mÿ2 = λ2y2.

Hint 3.12. In general, the period of an oscillator can be calculated from the
following equation.

dx

dt
=

√
2[E − V (x)]

m
,

or
T

2
=

∫ xmax

xmin

dt =

√
m

2

∫ xmax

xmin

dx√
E − V (x)

.

For this particular oscillator we have

T

2
=

∫ xmax

xmin

dt =

√
m

2(a + E)

∫ xmax

xmin

dx√
1− a

a+E
(e−αx − 1)2

.

The integration can be simplified by a change of variable sin u =
√

a/(a + E)(1−
e−αx). Note that xmin and xmax occur at zero kinetic energy. You should be
able to figure out the upper bound and the lower bound for the integration
with respect to u.

T

2
=

∫ xmax

xmin

dt =

√
m

2(a + E)

∫ umax

umin

du

α
(√

a
a+E

− sin u
) .
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Chapter 4

Hint 4.4. Assume the radius of the chicken is rc and that of the elephant is
re, and the defrosting time for the chicken is tc and that for the elephant is
te. Rewrite the diffusion equation in the dimensionless form, then the ratio
tc/te becomes clear when it is required that the two dimensionless equations
have the same solution.

Hint 4.12. Assume the concentration is x at r = ∞ and x0 at r = R in the
steady state. Use the continuity equation to find the flux of water molecules
J as a function of r. To completely determine J, you will need the equation
J = −D∇ρ to impose the boundary conditions. From J you may calculate
the evaporation rate as a function of x, x0, ρw, ρv, R, and D.

Hint 4.13. The first law of thermodynamics is TdS = dU + V dq, where q
is the amount of charge that flows through the battery. The Helmholtz free
energy is defined by A = U − TS. Consider the second derivatives of A with
respect to q and T .

Chapter 6

Hint 6.8. Use J = σE, the Gauss’ law, and the continuity equation.

Hint 6.9. To make an ion trap using only static electric field, one must
construct a three-dimensional electric potential well. Apply Gauss’ law at
the bottom of the potential well.

Chapter 8

Hint 8.8. The cable can be thought as a series of inductors and capacitors
connected in a way shown by Fig. B.1. The ith capacitor is charged by two
neighboring inductors. The equation is

dqi

dt
= Ii−1 − Ii+1.
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At the same time the current in the ith inductor is driven by the voltage of
two neighboring capacitors. The equation is

L
dIi

dt
=

1

C
(qi−1 − qi+1).

In the continuum limit we change the index from integer i to the position x,
and these two equations can be combined into a wave equation.

Hint 8.9. The cable can be thought as a series of inductors and capacitors
connected in a way shown by Fig. B.1. Assume the impedance of the cable
is Z, then one can cut out a small piece of the cable without changing the
impedance. The small piece of cable can be represented by a voltage divider
made of a small inductor and a small capacitor. Let L and C represent
the inductance and capacitance per unit length respectively, then the cut-
out inductance and capacitance are εL and εC respectively, where ε is an
arbitrarily small number. The impedance Z satisfies the following equation:

Z = ZL + (ZC ‖ Z),

where ZL is the impedance of εL, ZC is the impedance of εC, and the binary
operator ‖ means the two elements are connected in parallel.

Hint 8.10. If you remember that the electric field produced by a line charge
is proportional to 1/r, then it is easy to obtain that the electric potential
φ(r) is proportional to ln(r/d). Then you can compare

Ue =
1

2

∫
ρ(r)φ(r) d3r

and

Ue =
Q2

2C

to obtain the capacitor per unit length. Similarly you can compare

Um =
1

2

∫
J(r) ·A(r) d3r

and

Um =
LI2

2

to obtain the inductance per unit length. Because

∇2φ(r) = − ρ

ε0

,
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Fig. B.1: Equivalent circuit of a coaxial cable.

∇2A(r) = −µ0J,

the dependence of A on J is the same as that of φ on ρ. Hence it is pretty
easy to make the same comparison to obtain the inductance per unit length.

Hint 8.14. If the motion of the electron is a linear harmonic oscillator, you
may use the standard formula of dipole radiation. However, a circular motion
is simply the superposition of two perpendicular linear harmonic oscillators
with a phase difference of π/2.

Chapter 9

Hint 9.6. Is magnetic force the only force the particle experiences in frame
B? The wire is neutral in frame A, is it still neutral in frame B? Solve this
exercise in two ways, one by the transformation of ρ and J, and the other by
the transformation of E and B.

Hint 9.7. Because (p, E/c) is a four-vector, we have

dp′x = γ

(
dpx − β

c
dE

)
,

dp′y = dpy,

dp′z = dpz.

Using the relation

dt′ = γ

(
dt− β

c
dx

)

we have

dp′x
dt′

=
dpx − β

c
dE

dt− β
c
dx

=
dpx

dt
− βdE

cdt

1− β2
= γ2

(
dpx

dt
− βdE

cdt

)
,
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dp′y
dt′

=
dpy

γ
(
dt− β

c
dx

) =
dpy

dt

γ(1− β2)
= γ

dpy

dt
,

and similarly
dp′z
dt′

= γ
dpz

dt
.

Therefore
dp

dt
=

dE

dt
= 0

implies
dp′

dt′
= 0.

Chapter 10

Hint 10.1. In a conventional positive lens, light is delayed more at the
center, because the lens is thicker at the center. In a graded-index lens, light
is also delayed more at the center, because the index of refraction is larger
at the center even though the thickness is the same. If the two devices have
the same optical delay as a function of r, they have the same focal length.

Hint 10.3. One must consider the relative phase of the waves. The power
reflectivity is related to amplitude reflectivity by R = |R|2 and similarly
T = |T |2. What is the relation between the phase angles of R and T in order
to meet the energy conservation law? The result of Exercise 10.2 should help.

Hint 10.6. Use Fourier transform to inspect the plane-wave components of
E(r, t).

Hint 10.8. When we deal with evanescent waves across the surface of total
reflection, we usually choose

kt = (kxi, kyi, ik0

√
n2

i sin2 θi − n2
t )

instead of

kt = (kxi, kyi,−ik0

√
n2

i sin2 θi − n2
t )

even though both satisfy the condition

k2
⊥t = k2

0(n
2
t − n2

i sin2 θi)
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when sin θi > nt/ni. This is because if there is only one surface, the second
choice will lead to an exponential growth of the wave amplitude, which is
not possible. However, if there is another parallel surface beyond which the
wave can revert to a traveling wave, one cannot rule out the second choice.

Chapter 11

Hint 11.5. In exercise 11.4 the angular momentum cannot be zero even for
the ground state.

Hint 11.7. Since dr = drr̂ + rdθθ̂ and p = prr̂ + rθ̇θ̂, we have

∮
p · dr =

∮
mṙ dr +

∮
m(rθ̇)(rdθ) = nh.

Consider the quantity

d

dt
(p · r) =

dp

dt
· r + p · dr

dt
.

For the hydrogen atom the first term on the right-hand side is the potential
energy V and the second term on the right-hand side is 2T , where T is the
kinetic energy. Since the motion is periodic, if we take the time average of
the above equation over the period τ , we get

1

τ

∫ τ

0

d

dt
(p · r) dt =

1

τ
[p(τ) · r(τ)−p(0) · r(0)] = 0 =

1

τ

∫ τ

0
V dt +

1

τ

∫ τ

0
2T dt.

Note that ∮
p · dr =

∮
p · dr

dt
dt =

∫ τ

0
2T dt.

Using the results derived in Section 2.13, you have all the equations needed
to express the energy as a function of n.

Hint 11.8. For each polarization of lattice vibration (two transverse and
one longitudinal), the internal energy as a function of T can be written as

Ui =
∫ νmax

0
P (ν)dν =

∫ νmax

0

4πν2

v3
i

hν

exp
(

hν
kT

)
− 1

dν,

where vi is the propagation speed of lattice vibration for the ith polarization,
and νmax is determined by the number of modes (atoms).



377

Chapter 14

Hint 14.1. (1) Show that

∫
ψ∗(r)

[
L̂V (r)− V (r)L̂

]
ψ(r) d3r = 0.

(2) Using [ri, pj] = ripj − pjri = ih̄δij, show that

∫
ψ∗(r)

[
L̂p2 − p2L̂

]
ψ(r) d3r = 0.

Combining (1) and (2), you have the answer.

Hint 14.2. Since in the classical harmonic oscillator the position and mo-
mentum change with time, it cannot be the corresponding state of a station-
ary state. Instead it must be the corresponding state of a superposition of
eigenstates. You should find the right superposition to answer this problem.

Hint 14.3. (1) Since [Lz, H] = 0, one can find wavefunctions that are
simultaneously the eigenfunction of H and Lz. (2) In classical mechanics, a
rotation can be thought of as a superposition of two vibrations, one in the
x-axis and the other in the y-axis with a phase shift of π/2. It is similar in
quantum mechanics.



378 Appendix B. Hints of Selected Exercises



Appendix C

Topics to be added

1. calculus of complex functions

2. Rutherford scattering

3. small oscillation

4. Lagrangian and Hamiltonian mechanics

5. wave propagation in a periodic medium

6. nucleation

7. Maxwell daemon

8. coarse graining

9. phasor and AC impedance

10. transmission lines

11. Bose-Einstein distribution

12. Fermi-Dirac distribution

13. quantum tunneling

14. scattering in quantum mechanics

15. Kramers-Kronig relations
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16. Fermi’s golden rule

17. quantum version of the interaction between light and matter

18. semiconductor band gap

19. Gaussian beam

20. lasers

21. fast light and slow light

22. Rabi oscillation

23. laser cooling

24. nonlinear optics

25. chaos and fractal

26. relativity in accelerated frame

27. simple version of general relativity

28. Bell’s inequality

29. quantum computation



Appendix D

ASCII and Greek Characters

D.1 ASCII Characters

space, blank ! exclamation point, exclamation (mark)
" quotation mark, (double) quote # crosshatch, pound, pound sign
$ dollar sign, dollar % percent sign, percent
& ampersand, and ´ apostrophe, (single) quote
* asterisk, star () parentheses
) right parentheses + plus sign, plus
, comma - hyphen, minus (sign)
. period, dot / slash
: colon ; semicolon
<> angle brackets = equal sign
? question mark @ at sign
[] brackets, square brackets ] right bracket
\ backslash ^ circumflex, caret

underscore, underline ` grave, (grave/acute) accent
{} braces { left brace, brace
} right brace, unbrace | vertical bar
~ tilde
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D.2 Greek Characters

α alpha β beta γ, Γ gamma δ, ∆ delta ε epsilon
ε varepsilon ζ zeta η eta θ, Θ theta ϑ vartheta
ι iota κ kappa λ, Λ lambda µ mu ν nu
ξ, Ξ xi o o π, Π pi $ varpi ρ rho
% varrho ς varsigma τ tau υ, Υ upsilon φ, Φ phi
ϕ varphi χ chi ψ, Ψ psi ω, Ω omega

D.3 Military Phonetic Alphabet

A Alfa B Bravo C Charlie D Delta E Echo
F Foxtrot G Golf H Hotel I India J Juliett
K Kilo L Lima M Mike N November O Oscar
P Papa Q Quebec R Romeo S Sierra T Tango
U Uniform V Victor W Whiskey X X-ray Y Yankee
Z Zulu

0 Zeero 1 Wun 2 Too 3 Tree/Thr-ree 4 Fower
5 Fife 6 Siks 7 Seven 8 Ate 9 Niner
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