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Key Objectives 
 

Intra-halo structure (1h) 
• Halo density profile, r(r)                                               
• Halo mass, MD             
• Concentration, c = r200/r-2 
• Shape parameter, aE 

 

 
Surrounding LSS (2h) 

• Halo bias bh(M,z) 
• Assembly bias 
• Clustering strength s8  

 
                         

Cluster Gravitational Lensing 
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Umetsu, Medezinski, Nonino et al. 2012, ApJ, 755, 56  



Weak Lensing Shear and Magnification 

• Shear 
 Shape distortion: de+ ~ g+ 

• Magnification 
 Flux amplification: mF 

 Area distortion: mDW 

Sensitive to “total” matter density 

Un-lensed sources Lensed images 
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Sensitive to “modulated” matter density 



Shear doesn’t see mass sheet  
Averaged lensing profiles in/around LCDM halos (Oguri & Hamana 11) 

c/)(  R c/)( D+ Rg

• Tangential shear is a powerful probe of 1-halo term, or intra-halo structure. 
• Shear alone cannot recover absolute mass, known as mass-sheet degeneracy: 

Total  Modulated  

const.+ g remains unchanged by 



Combining Weak-Lensing Shear and Magnification 
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• Mass-sheet degeneracy broken 
• Total statistical precision improved by ~20-30% 
• Calibration uncertainties marginalized over: 

Subaru/Suprime-Cam data (e.g., Umetsu+11a,15a) 

 


R
RdRM

||

2

2D ')()(
R'

R'



Multi-probe Lensing Approach 
Combining azimuthally-averaged strong and weak 

lensing observables 

Umetsu 2013, ApJ, 769, 13 
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Multi-probe Lensing Approach 
Combining azimuthally-averaged strong and weak 

lensing observables 

Umetsu 2013, ApJ, 769, 13 
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Cluster Lensing And Supernova survey with Hubble 

 

http://www.stsci.edu/~postman/CLASH/Home.html 
PI. Marc Postman (STScI) 



CLASH Objectives & Motivation 

Before CLASH (2010), deep-multicolor Strong (HST) + Weak (Subaru) 
lensing data only available for a handful of “super lens” clusters  

Umetsu+11a 

c2D= 6.2 ± 0.3 

Umetsu+11b 

<c3D> ~ 3 

60% superlens bias 

Total mass profile shape: consistent w self-similar NFW (cf. Newman+13; Okabe+13)  
Degree of concentration: predicted superlens correction not enough if <cLCDM>~3?  
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CLASH X-ray-selected Subsample  

• High-mass clusters with smooth X-ray morphology  

– Tx > 5keV (M200c > 5e14Msun/h) 

– Small BCG to X-ray-peak offset, soff ~ 10kpc/h 

– Smooth regular X-ray morphology 

 

• CLASH theoretical predictions (Meneghetti+14) 

– Composite relaxed (70%) and unrelaxed (30%) clusters 

– Mean <c200c>=3.9,  c200c=[3, 6] 

– Small scatter in c200c : s(lnc200c) = 0.16  

– Largely free of orientation bias (~2% in <M3D>) 

– >90% of CLASH clusters to have strong-lensing features 

 

 Optimized for radial-profile analysis  



 

CLASH: Joint Analysis of Strong-lensing,  

Weak-lensing Shear and Magnification 
Data  

for 20 CLASH Galaxy Clusters 

Umetsu et al. 2015b, arXiv:1507.04385 
(submitted to ApJ in mid July) 
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CLASH HST  Lensing Dataset 

Zitrin et al. 2015, ApJ, 801, 44  



CLASH Subaru Weak-lensing Dataset  

Umetsu, Medezinski, Nonino et al. 2014, ApJ, 795, 163  No WL data for M1311, M2129 



High-resolution space imaging 
with HST (ACS/WFC3) for 
strong lensing 

Subaru/Suprime-Cam multi-
color imaging for wide-field 
weak lensing 

34 arcmin 



Joint Analysis of Strong-lensing, Weak-lensing 
Shear and Magnification Constraints 

+g

c/ 

HST multiple-image constraints on M2D(<R) (Zitrin et al. 15, ApJ, 801, 44) 
D = 10”(REin/22”)1/2(N/17)-1/2 sampling, Rmax ~ 2<REin> ~ 40”  

Strong-lensing mass integration radii: R=(10”, 20”, 30”, 40”) 
 

 <c2/dof> = 0.95 for 20 CLASH clusters  
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CLASH Stacked Full-lensing Analysis of 
the X-ray-selected Subsample 

 

 

 

Umetsu et al. 2015b, arXiv:1507.04385 

 



Ensemble-averaged Surface Mass Density Profile  

33s detection of the ensemble-averaged mass profile out to ~2r200m 
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Characterizing the Averaged Mass Profile Shape 

Models: 

1. No 2-halo term, 
no truncation 
(ft=1, r2h=0) 

2. With 2-halo term 
(Tinker+10)  



Comparison of Best-fit Models 
Acceptable fits: p values (PTE) > 0.05 

• Consistent with cuspy density profiles (NFW, Einasto, DARKexp) 
• Cuspy models that include LCDM 2-halo term (bh~9.3) give improved fits 
• The best model reproduces the observed Einstein radius, REin~ 20” at zs=2 



Concentration—Mass Relation of the 
CLASH X-ray-selected Subsample 

 

 

 

Umetsu et al. 2015b, arXiv:1507.04385 



Concentration—Mass Scaling Relation 

Consider a power-law scaling relation of the form: 

Define new independent (X) and dependent (Y) variables: 

34.0,/10 pivsun

15

piv  zhMMwith pivot mass and redshift 

Redshift slope g is fixed to the theoretical prediction 
for the CLASH sample, g=-0.668 (Meneghetti+14) 

XY a +



Bayesian Regression Analysis 
We take into account 
• Covariance between observed M and c  
• Intrinsic scatter in c  
• Non-uniformity in mass probability distribution P(logM) 

Conditional probability P(y|x) with  (x,y) = observed (X,Y) 



Marginalized Posterior Distributions 

High  tail associated 
with small t: i.e., 
localized P(lnM) 

a: intercept 
: slope 
sY|X: scatter 
m: Gaussian mean of P(lnM) 
t: Gaussian width of P(lnM) 



CLASH: Lensing Observations vs. Predictions 

Normalization, slope, & scatter are all consistent with LCDM when the CLASH 
selection function based on X-ray morphological regularity and the projection 

effects are taken into account 
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Comparison with LCDM Models 

WMAP3 

• Consistent with models that are calibrated for more recent cosmologies 
(WMAP7 and later) 

• Better agreement is achieved when selection effects (overall degree of 
relaxation) are taken into account 

(WMAP7) 

High 
normalization 



X-ray Regular vs. Superlens Clusters 
Umetsu+11b: 4 superlens clusters with REin>30” at zs=2 (A1689, A1703, Cl0024, A370) 

Higher normalization LCDM cosmology (WMAP7 and later) + “predicted” +60% 
superlens correction (e.g., Oguri+Blandford09) can explain superlens mass profiles! 



Einasto Shape Parameter vs. Halo Mass 
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Einasto Shape Parameter vs. Halo Peak Height 
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rdaE: degree of curvature of the Einasto density profile 
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Ensemble Calibration of Cluster Masses 

 

 

 

Umetsu et al. 2015b, arXiv:1507.04385 

 



Planck13 CMB vs. Cluster Cosmology  

Slide taken from Anja von der Linden’s presentation 

b=0.2?? – 0.4?? 



Comparison with Planck Masses:  
It’s not so simple!!! 

b ~ 0.2 

b ~ 0.45 

b = const.  = 0.2 
Fiducial value assumed by the Planck team 

Sereno, Ettori, & Moscardini 15, 
CoMaLit II  (arXiv:1407.7869) 

Mass-dependent bias (20-45%) observed for Planck mass estimates 



CLASH Internal Consistency 
M(<r) de-projected assuming spherical NFW density profiles 

Systematic uncertainty in the overall mass calibration is empirically 
derived to be < 5%, which is insignificant compared to the statistical 

uncertainty of ~6% with N=20 clusters 
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Umetsu+15b, 
arXiv:1507.04385 



Mass Comparisons with Other WL 
Surveys 

WtG [Subaru]  
(Applegate+14) 

LoCuSS [Subaru] 
(Okabe & Smith 15) 

CCCP [CFHT] 
(Hoekstra+15) 

17 clusters 5 clusters 6 clusters 
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Summary 
– Ensemble-averaged mass profile shape  

• Data favor cuspy density profiles predicted for collisionless-
DM-dominated halos in gravitational equilibrium (NFW, 
Einasto, DARKexp) 

• The highest-ranked model is the 2-parameter NFW+LSS 
model including the 2-halo term using the LCDM b-M relation 
(bh ~ 9.3) 

• c200c = 3.8 +/- 0.3 at M200c=1015Msun/h, z=0.34 

– Concentration vs. mass relation 
• Fully consistent with LCDM when the CLASH selection 

function based on X-ray morphological regularity and the 
projection effects are taken into account 

– Mass calibration 
• Internal consistency better than 5% +/- 6% by comparison 

with the WL-only analysis of Umetsu et al. (2014) 

 



Reionization Lensing Cluster Survey (RELICS) 

Newly approved 190-orbit HST survey (7 ACS/WFC3 
filters) of 41 high-mass clusters primarily selected from 
the Planck survey (P.I. Dan Coe; Oct 2015 – Apr 2017) 

http://hstrelics.weebly.com 



Supplemental Slides 

 



Ensemble-averaged Error Budget 
Diagonal elements (Cii) averaged over all CLASH clusters 

  22
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Intrinsic profile variations 
due to triaxiality, 
substructure, and c-M 
scatter (Gruen+15) 

Residual mass-sheet 
uncertainty (Umetsu+14) 

  2

sys (0.02)~const.~
ii

C



Degree of Mass Concentration 

In hierarchical structure 
formation, <c> is predicted 
to correlate with M 
  
DM halos that are more massive 
collapse later on average, when the 
mean background density of the 
universe is correspondingly lower (e.g., 
Bullock+01) 

radius)scale(Inner 

radius)scale(Outer200
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Concentration is sensitive to cosmology 

Dutton & Maccio 2014 

c ~ 2.9 vs. 3.6 
@1015Msun/h 



Intrinsic Scatter in c(M): 
Mass Assembly Histories (MAH) 

log M200 

High a, low c 

Low a, high c 

a: degree of curvature 

• Scatter is due to another DoF (α), related to MAH (Ludlow+13) 
• Larger values of α correspond to halos that have been assembled more rapidly 

than the NFW curve 
• Halos with average c200 have the NFW-equivalent α ~0.18   

Ludlow+13 



Key Predictions of nonlinear structure 
formation models 

(3) Halo bias: surrounding large-scale structure  
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Halo Bias Factor: bh 
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Matter correlation function: 

Linear halo bias: 

Correlated matter distribution (2h term) 



Non-local substructure effect 
A substructure at R ~ rvir of the main halo, 
modulating  )()()( RRR D

Known 5%-10% negative bias in mass estimates from tangential-
shear fitting, inherent to rich substrucure in outskirts (Rasia+12) 



Magnification  bias effects 

Depletion 

Enhancement 

n/m  

Geometric area 
distortion 

Flux amplification 

Broadhurst, Taylor & 
Peacock 1995 

Flux-limited 
source counts: 
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Averaged Halo Density Profile (R) 

Stacking lensing signals of individual clusters by 

with individual “sensitivity” matrix  

defined with total covariance matrix 

With “trace-approximation”, averaging (stacking) is 

interpreted as 
Umetsu et al. 2014, 

ApJ, 795, 163 

Summing over clusters (n=1, 2, ..) 


