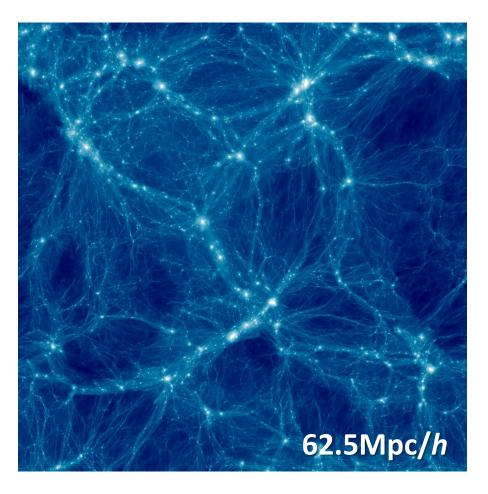
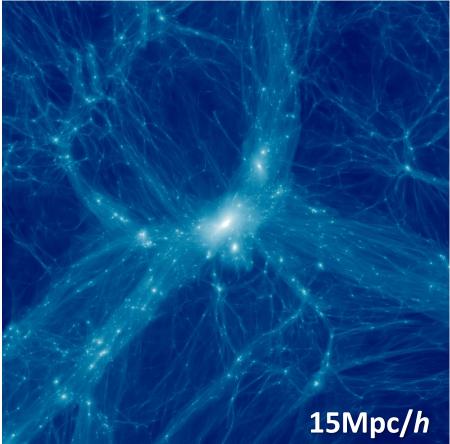

Cluster Weak Gravitational Lensing: CLASH to RELICS




Keiichi Umetsu (ASIAA) in collaboration with CLASH:

E. Medezinski, M. Nonino, J. Merten, A. Zitrin, D. Coe, T. Broadhurst, M. Postman et al.

Galaxy Clusters as Cosmological Probes

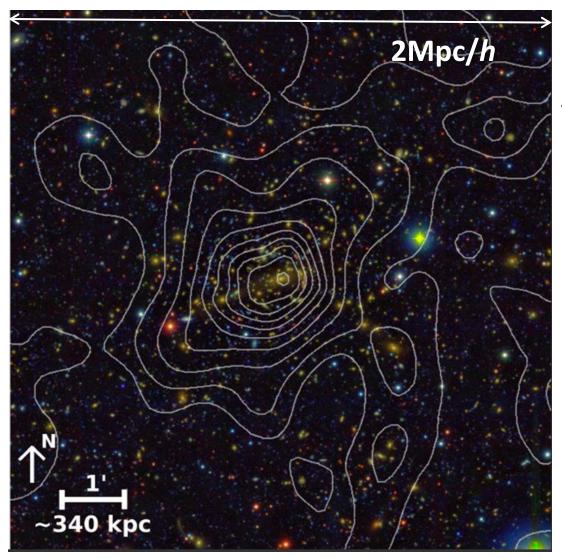

Cluster counts n(M,z) are exponentially sensitive to **cosmology**, but also to **mass calibration**!!!

Diemer & Kravtsov 14

Cluster Gravitational Lensing

Key Objectives

Intra-halo structure


Density profile, $\rho(r)$ Halo mass, M_{200c} , M_{500c} Concentration, $c_{200c} = r_{200c}/r_{-2}$ Halo shape

Surrounding LSS

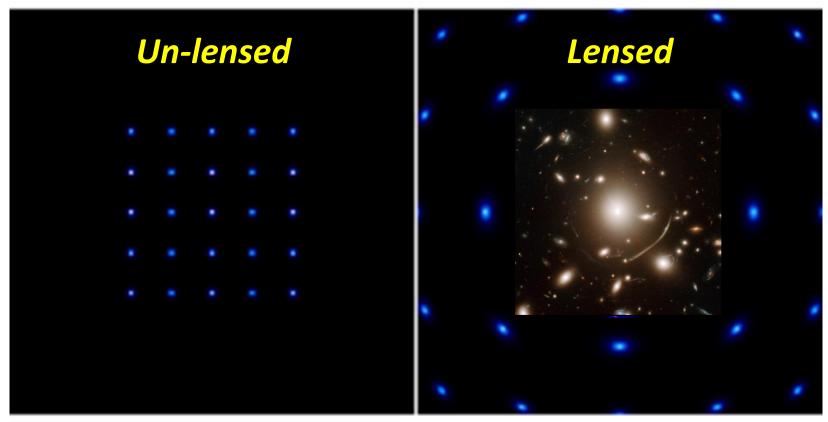
Halo bias $b_h(M)$ DM clustering strength σ_8 Assembly bias

Diemer & Kravtsov 14

Cluster Gravitational Lensing

Key Objectives

Intra-halo structure


Density profile, $\rho(r)$ Halo mass, M_{200c} , M_{500c} Concentration, $c_{200c} = r_{200c}/r_{-2}$ Halo shape

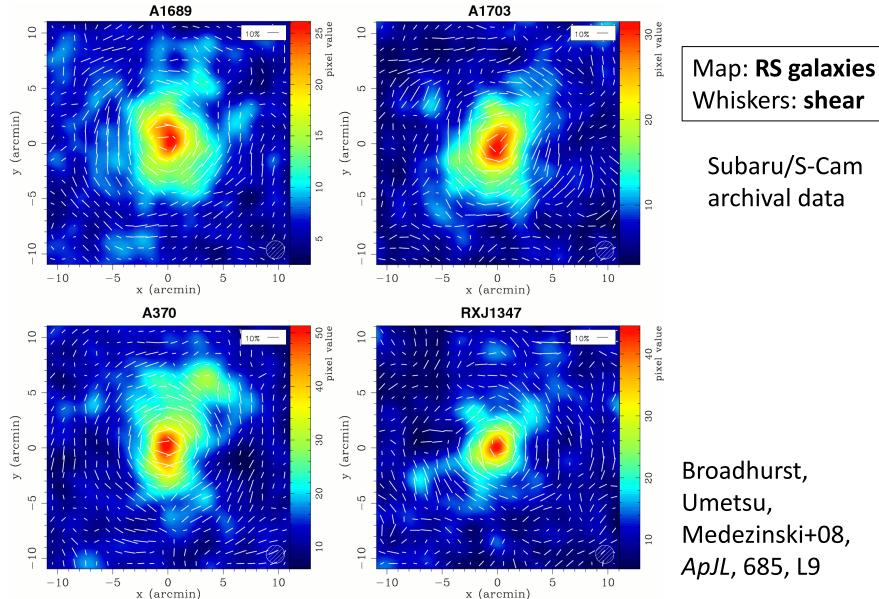
Surrounding LSS

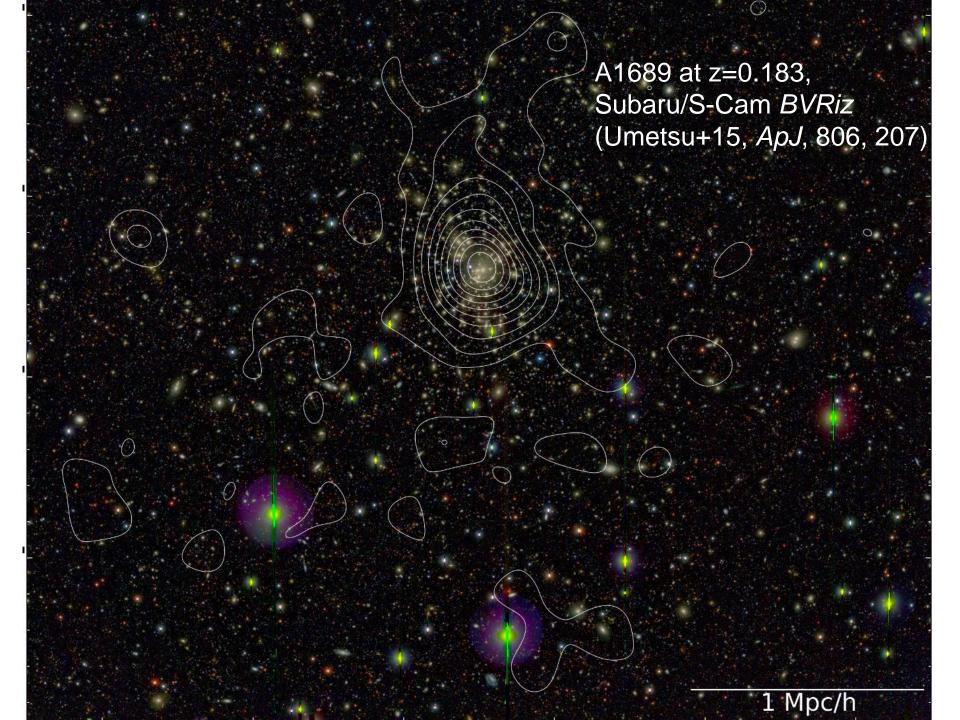
Halo bias $b_h(M)$ DM clustering strength σ_8 Assembly bias

J. Merten's SaWLens reconstruction of M1206 (Umetsu+12, ApJ, 755, 56)

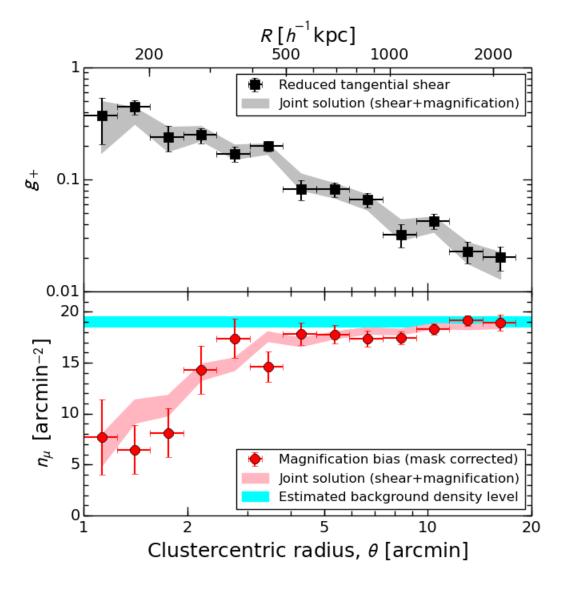
Weak Lensing: Shear & Magnification

- Shear (Kaiser 92)
 - ✓ Shape distortion: $\delta e \sim \gamma$
- Magnification (Broadhurst+ 95)
 - ✓ Flux amplification: μF
 - \checkmark Area distortion: $\mu\Delta\Omega$


Sensitive to "modulated" matter density


$$\Sigma_{c} \gamma_{+} = \Delta \Sigma(R) \equiv \Sigma(\langle R) - \Sigma(R)$$

Sensitive to "total" matter density


$$\mu \approx 1 + 2\kappa; \quad \Sigma_{c} \kappa = \Sigma(R)$$

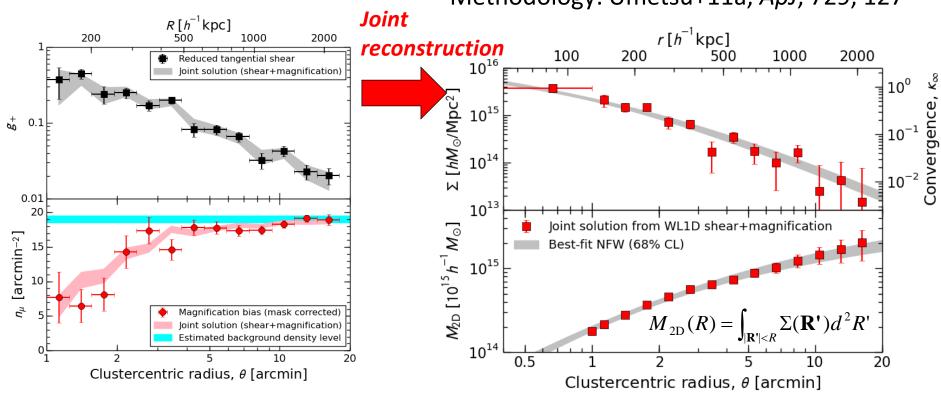
Shear fields around high-mass clusters

Shear vs. Magnification

Reduced tangential shear

$$g_+ \approx \gamma_+ = \Delta \Sigma / \Sigma_c$$

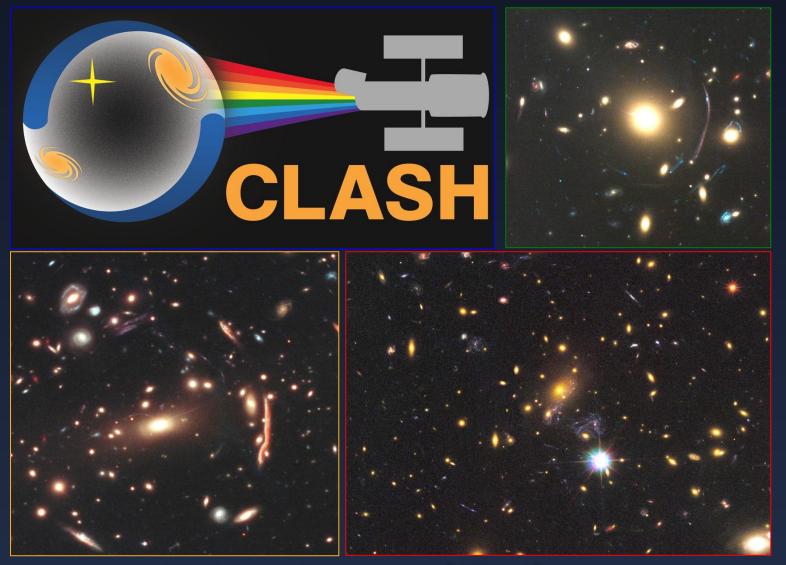
Number count depletion due to magnification


$$n(< m) = \overline{n} \ \mu^{-1+2.5s}$$

with $s = d \log_{10} \overline{N}(< m) / dm << 1$

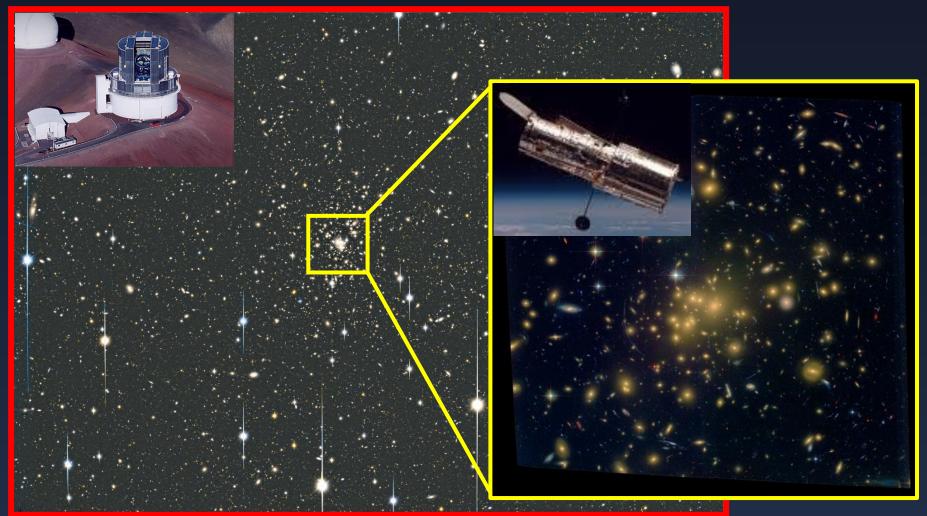
Subaru *BVRiz* data, A1689 (Umetsu+15, *ApJ*, 806, 207)

Combining Shear and Magnification

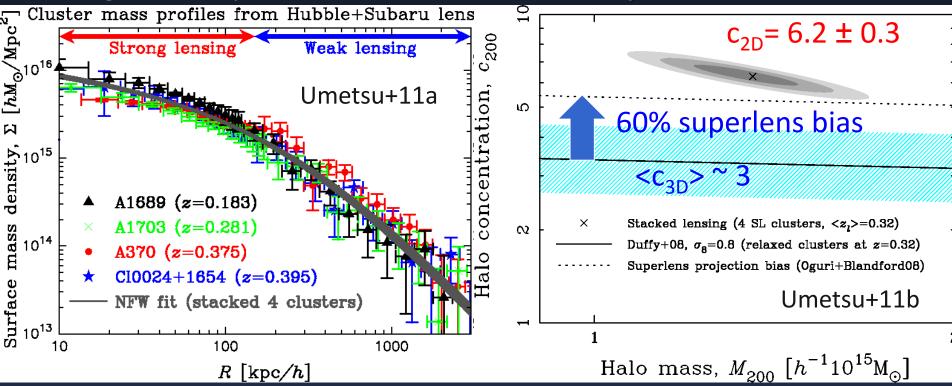

$$P(\kappa \mid WL) \propto P(WL \mid \kappa) P(\kappa) = P(\mathbf{g}_{+} \mid \kappa) P(\mathbf{n}_{\mu} \mid \kappa) P(\kappa)$$

Methodology: Umetsu+11a, ApJ, 729, 127

- Mass-sheet degeneracy broken
- Total statistical precision improved by ~20-30%
- Calibration uncertainties marginalized over: $c = \{\langle W \rangle_s, f_{W,s}, \langle W \rangle_\mu, \overline{n}_\mu, s_{\text{eff}}\}.$

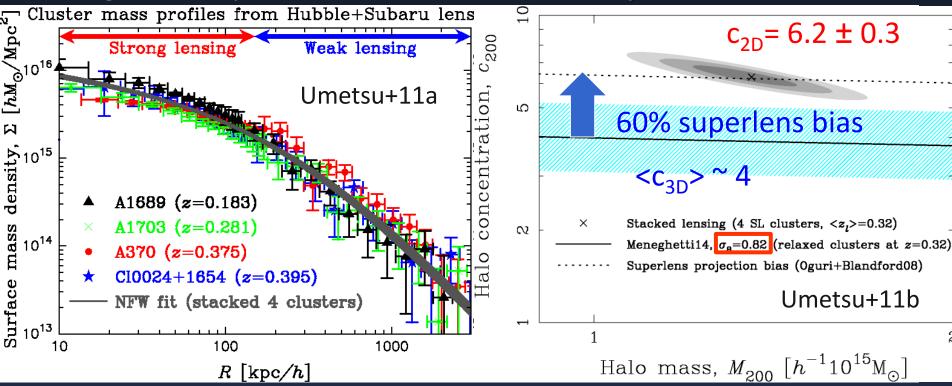

Cluster Lensing And Supernova survey with Hubble

PI. Marc Postman (STScI)


http://www.stsci.edu/~postman/CLASH/Home.html

Subaru/Suprime-Cam multicolor imaging for wide-field weak lensing High-resolution space imaging with *HST* (ACS/WFC3) for strong lensing

CLASH Objectives & Motivation


Before CLASH (2010), deep multicolor Strong (*HST*) + Weak (Subaru) lensing data only available for a handful of "**superlens**" clusters

Mass profile shape: consistent with NFW (cf. Newman+13; Okabe+13) Degree of concentration: predicted superlens correction not enough if $< c_{LCDM} > ^{\sim} 3$?

CLASH Objectives & Motivation

Before CLASH (2010), deep multicolor Strong (*HST*) + Weak (Subaru) lensing data only available for a handful of "**superlens**" clusters

Mass profile shape: consistent with NFW (cf. Newman+13; Okabe+13) Degree of concentration: predicted superlens correction is just enough if $< c_{LCDM} > ^4$

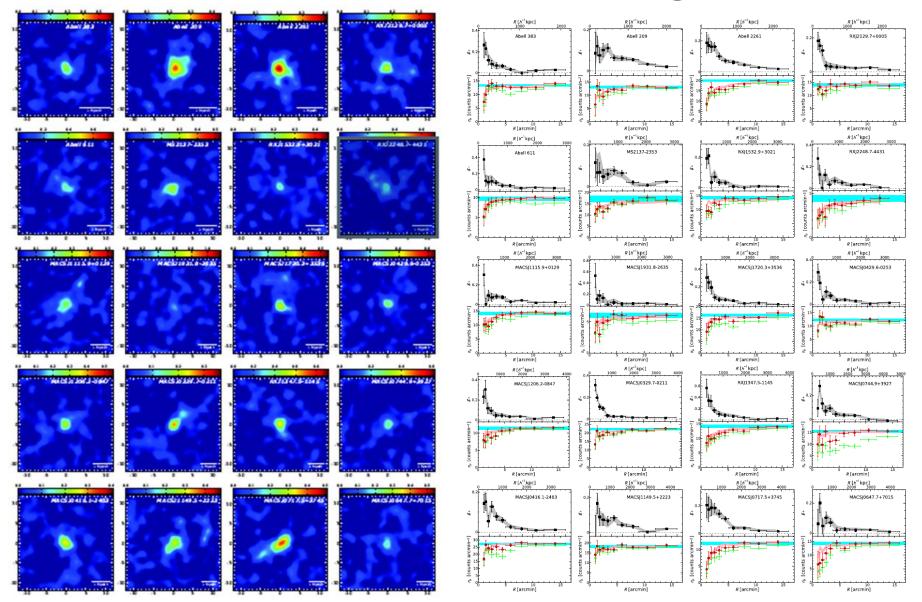
CLASH X-ray-selected Subsample

High-mass clusters with smooth X-ray morphology

- $-T_x > 5 \text{keV} (M_{200c} > 5 \text{e} 14 M_{\text{sun}}/h)$
- Small BCG -X-ray offset, $\sigma_{\rm off} \sim 10 {\rm kpc}/h$
- Smooth, regular X-ray morphology

→ Optimized for (1D) radial-profile analysis

CLASH theoretical predictions (Meneghetti+14)


- Composite relaxed (70%) and unrelaxed (30%) clusters
- Mean $\langle c_{200c} \rangle = 3.9$, $c_{200c} = [3, 6]$
- Small scatter in c_{200c} : $\sigma(\ln c_{200c}) = 0.16$
- Largely free of orientation bias ($^{\sim}2\%$ in $< M_{3D}>$)
- 90% of CLASH clusters to have strong-lensing features

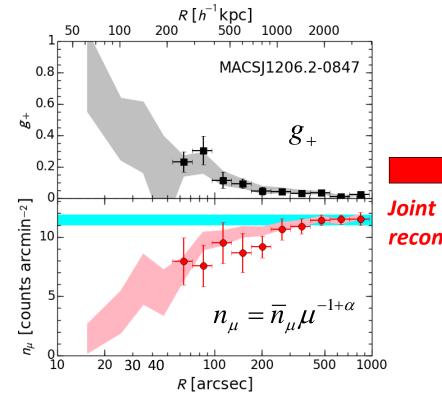
CLASH: Joint Analysis of Strong-lensing, Weak-lensing Shear and Magnification Data for 20 CLASH Galaxy Clusters

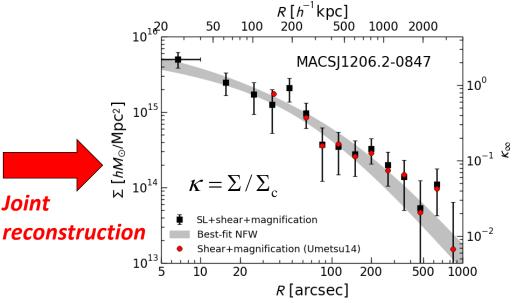
Umetsu, Zitrin, Gruen, Merten, Donahue, & Postman 2016, *ApJ*, in press (arXiv:1507.04385)

CLASH Subaru Weak-lensing Dataset

Umetsu, Medezinski, Nonino et al. 2014, ApJ, 795, 163

Combining SL, WL shear and magnification

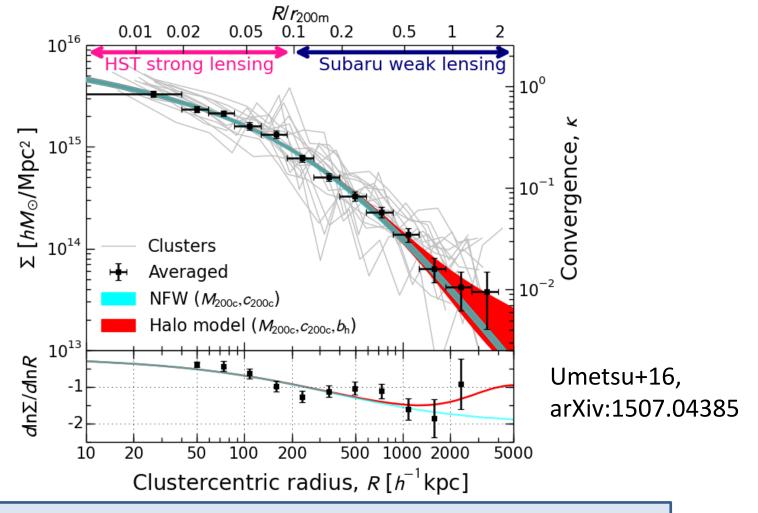

$$\{M_{{\rm 2D},i}\}_{i=1}^{N_{\rm SL}}, \{\langle g_{+,i}\rangle\}_{i=1}^{N_{\rm WL}}, \{\langle n_{\mu,i}\rangle\}_{i=1}^{N_{\rm WL}}.$$


Methodology:

Umetsu 13, ApJ, 769, 13

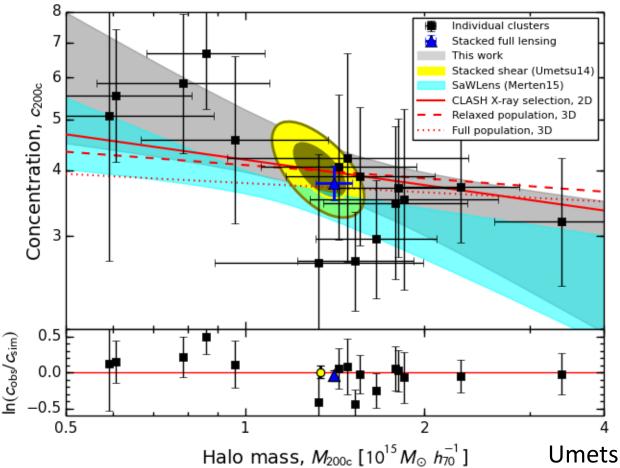
CLASH determination of $M_{2D}(< R)$ from HST strong-lens modeling (Zitrin+15)

- Effective resolution (Coe+10): $\Delta R \sim 10''(\langle R_{Ein} \rangle / 22'')(\langle N \rangle / 17)^{-1/2}$
- Maximum integration radius: $R_{\text{max}} \sim 2 < R_{\text{Fin}} > \sim 40$ "
 - \rightarrow Mass integration radii: R=(10'', 20'', 30'', 40'')



Umetsu+16, arXiv:1507.04385

 $<\chi^2/dof> = 0.95$ for 20 CLASH clusters


CLASH Ensemble Mass Profile

- 33 σ detection of ensemble mass profile out to $^{\sim}2r_{_{200\mathrm{m}}}$
- Consistent with cuspy density profiles (NFW, Einasto, DARKexp)
- Cuspy models with LCDM 2-halo term ($b_h \sim 9.3$) give improved fits

CLASH Concentration vs. Mass Relation

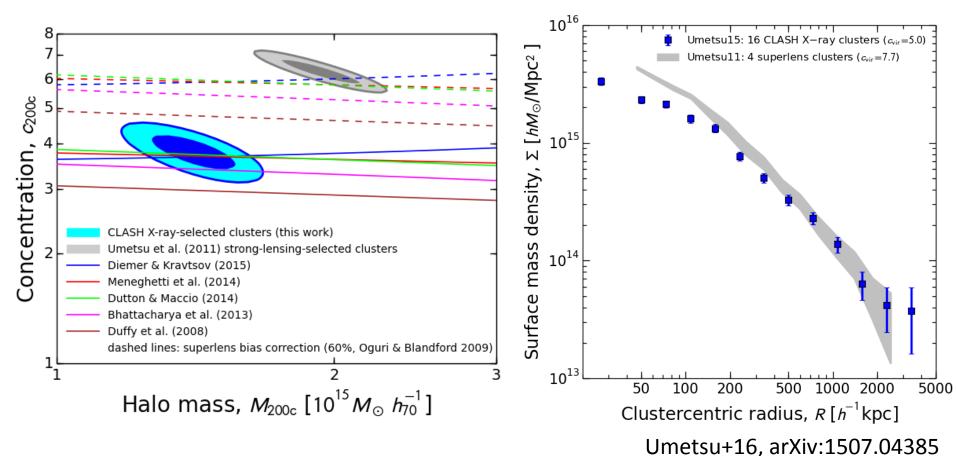
Predicted for CLASH (Meneghetti+14):

$$\langle c_{200c} \rangle = 3.9,$$

 $3 \le c_{200c} \le 6,$
 $\sigma(\ln c_{200c}) = 0.16$

Observed (this work):

$$c_{200c}$$
 |_{z=0.34} = 3.95 ± 0.35
at M_{200c} = $10^{15} M_{sun} / h$,
 $\sigma(\ln c_{200_c}) = 0.13 \pm 0.06$

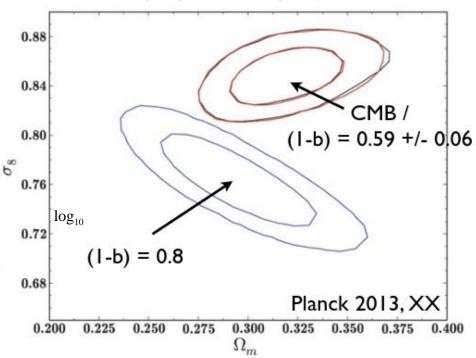

Umetsu+16, arXiv:1507.04385

Normalization, slope, & scatter are all consistent with LCDM when the CLASH selection function based on X-ray morphological regularity and projection effects are taken into account

CLASH (X-ray regular) vs. Superlens Clusters

Umetsu+11b: 4 *superlens* clusters with $R_{\text{Ein}}>30"$ ($z_{\text{s}}=2$): A1689, A1703, Cl0024, A370

Higher normalization LCDM cosmology (WMAP7 and later) + predicted 60% superlens correction (e.g., Oguri+Blandford09) can explain superlens mass profiles!



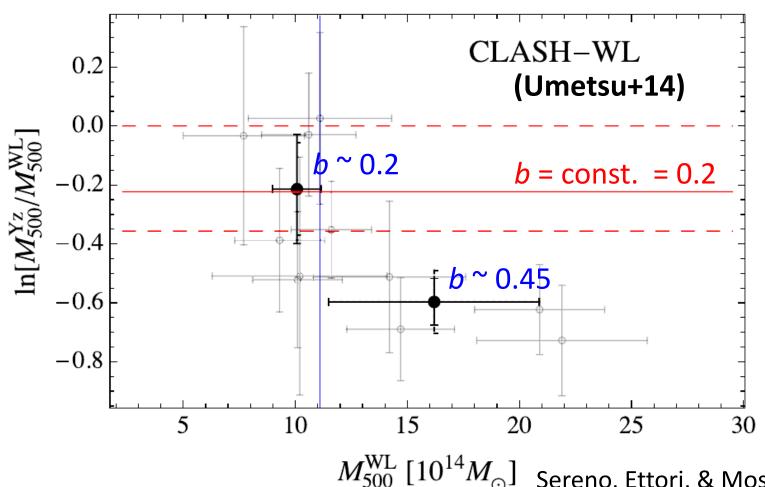
Ensemble Calibration of Cluster Masses

Planck13 CMB vs. Cluster Cosmology

b=0.2??-0.4??

- Planck: 3σ tension between SZ cluster counts and CMB cosmology
- assumes $M_{Planck} / M_{true} = (1-b) = 0.8$
- calibrated with XMM
 hydrostatic masses (Arnaud et al. 2010) + simulations

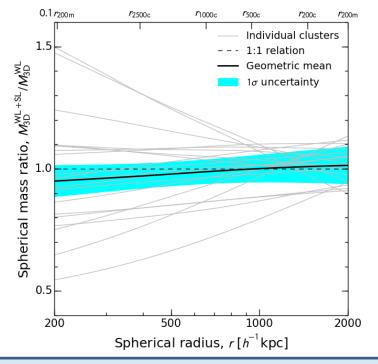
suggested explanations:


- mass bias underestimated (and no accounting for uncertainties)
- 2.9 σ detection of neutrino masses: $\Sigma m_V = (0.58 + /- 0.20)$ eV (Planck+WMAPpol+ACT+BAO: $\Sigma m_V < 0.23$ eV, 95% CL)

Slide taken from Anja von der Linden's presentation

Comparison with *Planck* Masses – Not so simple

Mass-dependent bias (20-45%) observed for *Planck*-SZE mass estimates

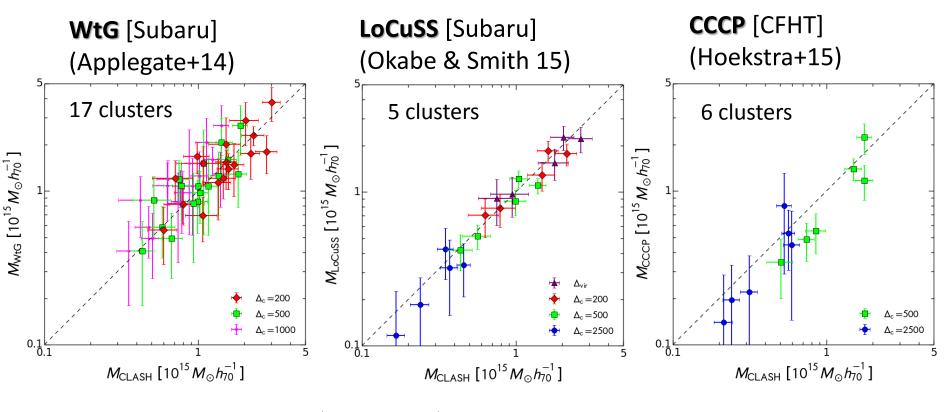


 M_{500}^{WL} [$10^{14}M_{\odot}$] Sereno, Ettori, & Moscardini 15, CoMaLit II (arXiv:1407.7869)

CLASH Lensing: Internal Consistency

 $M_{3D}(< r)$ for N=20 clusters de-projected assuming spherical NFW model

WL (U14) and WL+SL (U16) are consistent within 5% at r = [200, 2000] kpc/h


Umetsu+16, arXiv:1507.04385

CLASH ensemble mass calibration uncertainty

- Statistical uncertainty with N=20: 28%/sqrt(20) = 6.3%
- Systematic uncertainty: 5.6% [5% shear calibration, 2% dilution]
- Mass modeling bias (dev from NFW, orientation bias): 3%
- Total calibration uncertainty: 9%

Comparisons with Other WL Surveys

$$\langle M_{\text{WtG}}/M_{\text{CLASH}} \rangle = 1.03 \pm 0.09 \quad (\Delta = 200)$$

$$= 1.07 \pm 1.12 \quad (\Delta = 500)$$

$$= 1.07 \pm 1.12 \quad (\Delta = 1000)$$

$$= 0.98 \pm 0.13 \quad (\Delta = 200)$$

$$= 0.93 \pm 0.10 \quad (\Delta = 500)$$

$$= 0.93 \pm 0.10 \quad (\Delta = 500)$$

$$= 0.94 \pm 0.22 \quad (\Delta = 2500)$$

$$= 0.84 \pm 0.22 \quad (\Delta = 2500)$$

$$= 0.84 \pm 0.22 \quad (\Delta = 2500)$$

Umetsu+16, arXiv:1507.04385

RELICS-WL: Uniqueness & Prospects

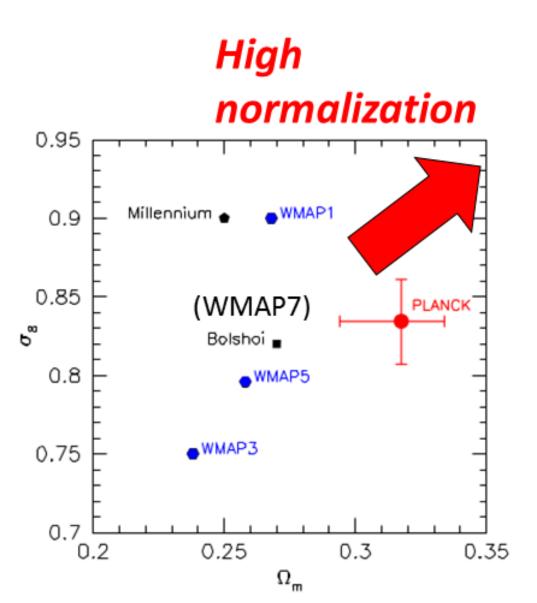
- RELICS ~ Mass-selected sample of *Planck* SZE clusters
 - First systematic WL follow-up of this legacy sample
- Need Subaru Hyper Suprime-Cam (HSC) data for ~20 RELICS clusters (Suprime-Cam being decomissioned!!!)
 - 1.5deg HSC FoV \rightarrow 20Mpc/h at z=0.4
- Characterization of mass distribution in and around the legacy sample, in combination with RELICS-HST strong lensing
 - $R = 10 \text{kpc/}h 10 \text{Mpc/}h (\sim 5 R_{\text{vir}})$
- Expected ensemble WL mass precision
 - -28%/sqrt(41) = 4.4%

CLAS#

Summary

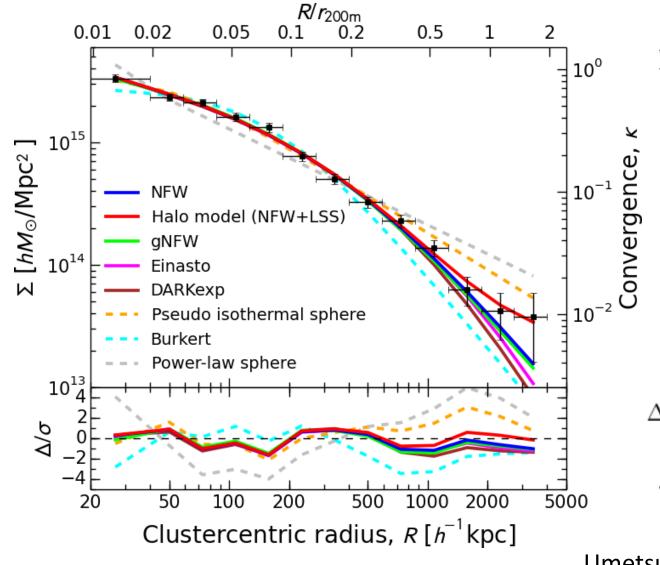
Ensemble mass profile

- CLASH data in favor of cuspy density profiles predicted for collisionless, DM-dominated halos in gravitational equilibrium: NFW, Einasto, DARKexp [~ Hernquist]
- The highest-ranked model is the 2-parameter NFW+LSS model including the clustering 2h term using the LCDM halo bias-mass relation ($b_h \sim 9.3$; Tinker+10).
- $c_{200c} = 3.8 +/-0.3$ and $M_{200c} = (1.0 +/-0.1) 10^{15} M_{sun}/h, < z > = 0.34$


Concentration vs. mass relation

 Fully consistent with LCDM when the CLASH selection function based on X-ray morphological regularity and projection effects are taken into account.

Ensemble mass calibration


- Internal consistency (WL vs. WL+SL) at the ~5% level
- Total calibration uncertainty ~9% (~6% stat., ~6% sys.)

Supplemental Slides

Characterizing the Ensemble Mass Profile

$$\Sigma(R) = \int dl \, \Delta \rho(r),$$

Models:

- 1. No 2-halo term $(f_t=1, \rho_{2h}=0)$
- 2. With 2-halo term (LCDM halo bias, Tinker+10)

$$\Delta \rho(r) = f_{\rm t}(r) \, \rho_{\rm h}(r) + \rho_{\rm 2h}(r),$$

$$f_{\rm t}(r) = \left[1 + \left(\frac{r}{r_{\rm t}}\right)^2\right]^{-2},$$

Umetsu+16, arXiv:1507.04385

Comparison of Best-fit Models

Acceptable fits: p values (PTE) > 0.05

Table 4
Best-fit models for the stacked mass profile of the CLASH X-ray-selected subsample

Model	$M_{200c} \atop (10^{14} M_{\odot} h_{70}^{-1})$	c _{200c}	Shape/structural parameters	$b_{ m h}$	$\chi^2/{ m dof}$	PTE ^a	Notes
NFW	14.4+1.1	3.76+0.29	$\gamma_{\rm c} = 1$		11.3/11	0.419	No truncation
gNFW	$14.1_{-1.1}^{-1.0}$	$4.04^{+0.53}_{-0.52}$	$\gamma_{\rm c} = 0.85^{+0.22}_{-0.31}$	_	10.9/10	0.366	No truncation
Einasto	$14.7^{+1.1}_{-1.1}$	$3.53^{+0.36}_{-0.39}$	$\alpha_{\rm E} = 0.232^{+0.042}_{-0.038}$	_	11.7/10	0.306	No truncation
DARKexp $-\gamma^b$	$14.5^{+1.2}_{-1.1}$	$3.53^{+0.42}_{-0.42}$	$\phi_0 = 3.90^{+0.41}_{-0.45}$	_	13.5/10	0.198	No truncation
Pseudo isothermal	_	_	$V_{\rm c} = 1762^{+40}_{-39}$ km/s, $r_{\rm c} = 69^{+7}_{-7}$ kpc	_	23.6/11	0.015	No truncation
Burkert	$11.6^{+0.8}_{-0.8}$	_	$r_{200c}/r_0 = 8.81^{+0.42}_{-0.41}$	_	29.9/11	0.002	No truncation
Power-law sphere	$12.5^{+0.8}_{-0.8}$	_	$\gamma_c = 1.78^{+0.02}_{-0.02}$	_	93.5/11	0.000	No truncation
Halo model ^c :			¥				
NFW+LSS (i)	$14.1^{+1.0}_{-1.0}$	$3.79^{+0.30}_{-0.38}$	$\gamma_{\rm c} = 1$	9.3	10.9/11	0.450	$\Lambda CDM b_h(M)$ scaling
NFW+LSS (ii)	$14.4^{+1.4}_{-1.3}$	$3.74^{+0.33}_{-0.30}$	$\gamma_{\rm c} = 1$	$7.4^{+4.6}_{-4.7}$	10.8/10	0.377	$b_{ m h}$ as a free parameter
Einasto+LSS (i)	$14.3^{+1.1}_{-1.1}$	$3.74_{-0.30}^{+0.35}$ $3.69_{-0.42}^{+0.36}$	$\alpha_{\rm E} = 0.248^{+0.051}_{-0.047}$	9.3	10.7/10	0.385	$\Lambda \text{CDM } b_{h}(M)$ scaling
Einasto+LSS (ii)	$14.5^{+1.9}_{-1.6}$	$3.65^{+0.47}_{-0.61}$	$\alpha_{\rm E} = 0.245^{+0.061}_{-0.052}$	$8.7^{+5.3}_{-5.6}$	10.6/9	0.301	$b_{ m h}$ as a free parameter
DARKexp+LSS (i)	$14.2^{+1.2}_{-1.1}$	$3.64^{+0.44}_{-0.46}$	$\phi_0 = 3.89^{+0.51}_{-0.54}$	9.3	11.7/10	0.308	Λ CDM $b_h(M)$ scaling
DARKexp+LSS (ii)		$3.69^{+0.53}_{-0.57}$	$\phi_0 = 3.85_{-0.61}^{+0.57}$	$10.1^{+4.9}_{-5.1}$	11.6/9	0.235	$b_{ m h}$ as a free parameter

^a Probability to exceed the observed χ^2 value.

Umetsu+16, arXiv:1507.04385

- Consistent with cuspy density profiles (NFW, Einasto, DARKexp)
- Cuspy models that include Λ CDM 2-halo term (b_h ~9.3) give improved fits

b We use Dehnen-Tremaine γ -models with the central cusp slope $\gamma_c = 3\log_{10}\phi_0 - 0.65$ (1.7 $\leq \phi_0 \leq 6$) as an analytic fitting function for the DARKexp density profile.

^c For halo model predictions, we decompose the total mass overdensity $\Delta \rho(r) = \rho(r) - \overline{\rho}_{\rm m}$ as $\Delta \rho = f_{\rm t} \rho_{\rm h} + \rho_{\rm 2h}$ where $\rho_{\rm h}(r)$ is the halo density profile, $\rho_{\rm 2h}(r) = \overline{\rho}_{\rm m} b_{\rm h} \xi_{\rm m}^{\rm L}(r)$ is the two-halo term, and $f_{\rm t}(r) = (1 + r^2/r_{\rm t}^2)^{-2}$ describes the steepening of the density profile in the transition regime around the truncation radius $r_{\rm t}$, which is assumed to be $r_{\rm t} = 3r_{\rm 200\,c}$.

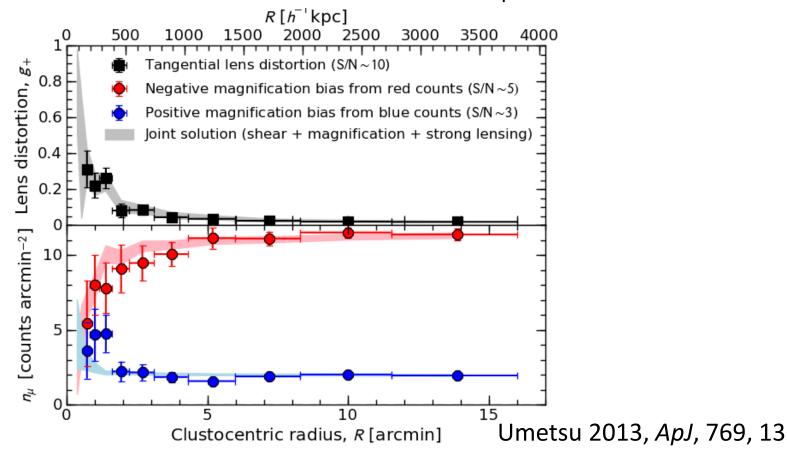
Comparison with LCDM c(M) models

Table 5 Comparison of measured and predicted concentrations for the CLASH X-ray-selected subsample

Umetsu+16, arXiv:1507.04385

Author	Sample	3D/2D	Function ^a	$c^{(\text{obs})}/c^{(\text{pred})}$		χ^2	PTEb		
	_			Averagec	$\sigma^{ m d}$		A/R/	A DE	
Theory:							MINI	APS	Himb
Duffy et al. (2008)	full	3D	c– M	1.331 ± 0.108	0.334	22.6	0.046		High
Duffy et al. (2008)	relaxed	3D	c $-M$	1.165 ± 0.094	0,290	13.6	0.399		normalization
Prada et al. (2012)	full	3D	c – ν	0.733 ± 0.065	0.244	24.6	0.026	0.95 г	HOHHUHZUUUH
Bhattacharya et al. (2013)	full	3D	<i>c</i> − <i>ν</i>	1.169 ± 0.095	0.292	14.1	0.369	0.95	
Bhattacharya et al. (2013)	relaxed	3D	c – ν	1.131 ± 0.092	0.277	12.4	0.494	-	
Dutton & Macciò (2014)	full	3D	c– M	1.061 ± 0.086	0.262	10.4	0.659	0.9	Millennium • • WMAP1
Meneghetti et al. (2014)	full	3D	c– M	1.061 ± 0.089	0.279	10.2	0.675		1
Meneghetti et al. (2014)	relaxed	3D	c– M	0.990 ± 0.083	0.249	9.2	0.760		
Diemer & Kravtsov (2015)	full (median)		c – ν	1.021 ± 0.083	0.330	14.4	0.349	0.85	(WMAP7)
Diemer & Kravtsov (2015)	full (mean)	3D	c – ν	1.060 ± 0.086	0.326	13.8	0.391	o _s	Bolshoi
Meneghetti et al. (2014)	full	2D	c– M	1.087 ± 0.092	0.336	13.5	0.413	-	- <u> </u>
Meneghetti et al. (2014)	relaxed	2D	c– M	1.040 ± 0.086	0.283	10.8	0.628	0.8	- •WMAP5 -
Meneghetti et al. (2014)	CLASH	2D	c– M	0.988 ± 0.078	0.227	9.6	0.730		: :
Observations:								0.75	
Merten et al. (2015)	CLASH	2D	c– M	1.133 ± 0.087	0.209	9.2	0.754	0.73	-
a c_M: power-law c(M x) relativ		1							
$c-M$: power-law $c(M,z)$ relation; $c-\nu$: halo concentration given as a function of peak height $\nu(M,z)$.									2 0.25 0.3 0.3
	Probability to exceed the measured χ^2 value assuming the standard χ^2 probability distribution function.								
Weighted geometric average of observed-to-predicted concentration ratios.									Ω

- Consistent with models that are calibrated for more recent cosmologies (WMAP7 and later)
- Better agreement is achieved when selection effects (overall degree of relaxation) are taken into account

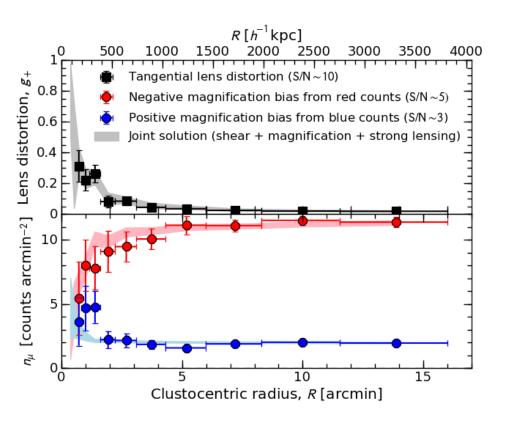

d Standard deviation of the distribution of observed-to-predicted concentration ratios.

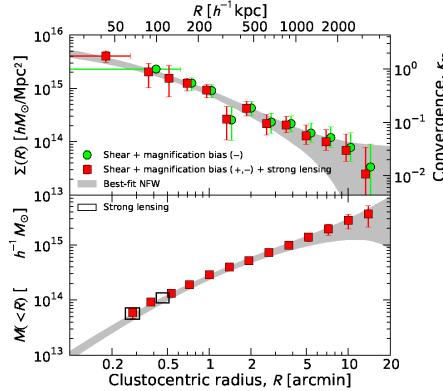
Multi-probe Lensing Approach

Combining azimuthally-averaged strong and weak lensing observables

lensing observables
$$\{M_{\mathrm{2D},i}\}_{i=1}^{N_{\mathrm{SL}}}, \{\langle g_{+,i}\rangle\}_{i=1}^{N_{\mathrm{WL}}}, \{\langle n_{\mu,i}\rangle\}_{i=1}^{N_{\mathrm{WL}}}. \\ M_{\mathrm{2D}}(< R) = \int_{|\mathbf{R'}| < R} \Sigma(\mathbf{R'}) d^2 R' d^2 R'$$

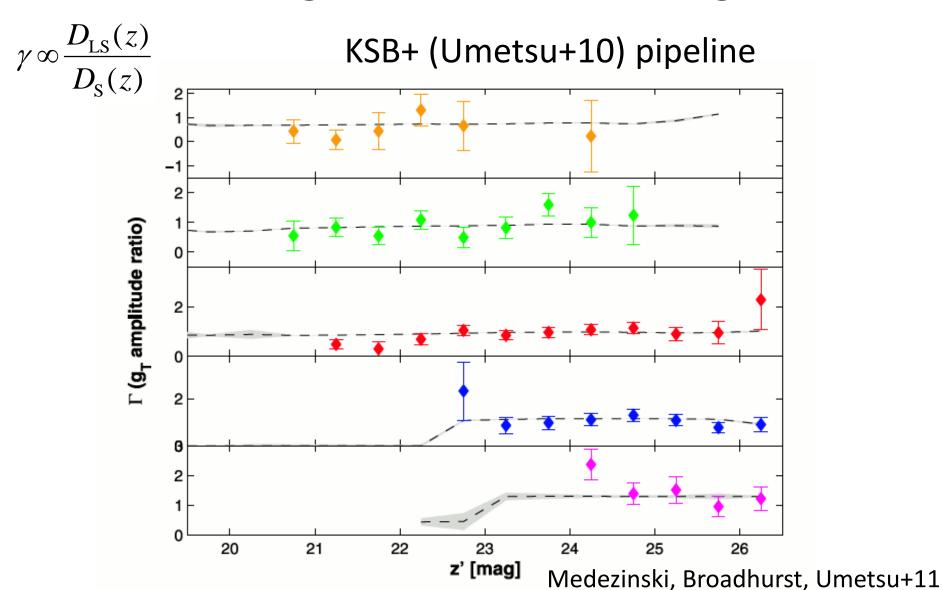
$$P(\kappa \mid \text{WL,SL}) \propto P(\text{WL,SL} \mid \kappa) P(\kappa) = P(\mathbf{g}_+ \mid \kappa) P(\mathbf{n}_{\mu} \mid \kappa) P(\mathbf{M}_{2D} \mid \kappa) P(\kappa)$$

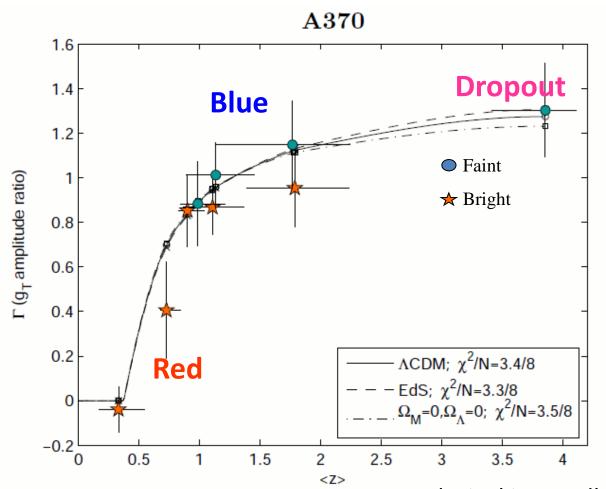



Multi-probe Lensing Approach

Combining azimuthally-averaged strong and weak lensing observables

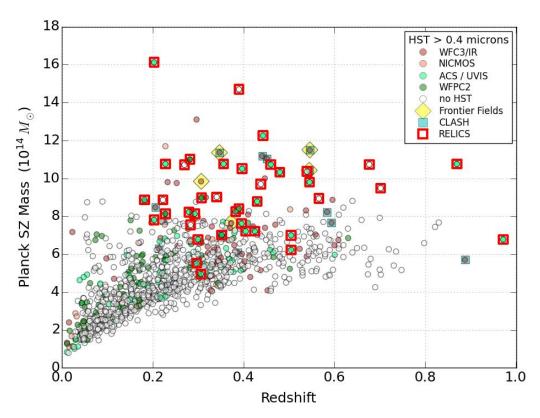
lensing observables
$$\{M_{\mathrm{2D},i}\}_{i=1}^{N_{\mathrm{SL}}}, \{\langle g_{+,i}\rangle\}_{i=1}^{N_{\mathrm{WL}}}, \{\langle n_{\mu,i}\rangle\}_{i=1}^{N_{\mathrm{WL}}}. \\ M_{\mathrm{2D}}(< R) = \int_{|\mathbf{R'}| < R} \Sigma(\mathbf{R'}) d^2 R' d^2 R'$$

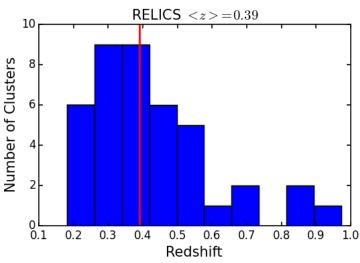

$$P(\kappa \mid \text{WL,SL}) \propto P(\text{WL,SL} \mid \kappa) P(\kappa) = P(\mathbf{g}_+ \mid \kappa) P(\mathbf{n}_{u} \mid \kappa) P(\mathbf{M}_{2D} \mid \kappa) P(\kappa)$$


Umetsu 2013, ApJ, 769, 13

Shear strength as function of magnitude

Shear strength as function of z (KSB+)

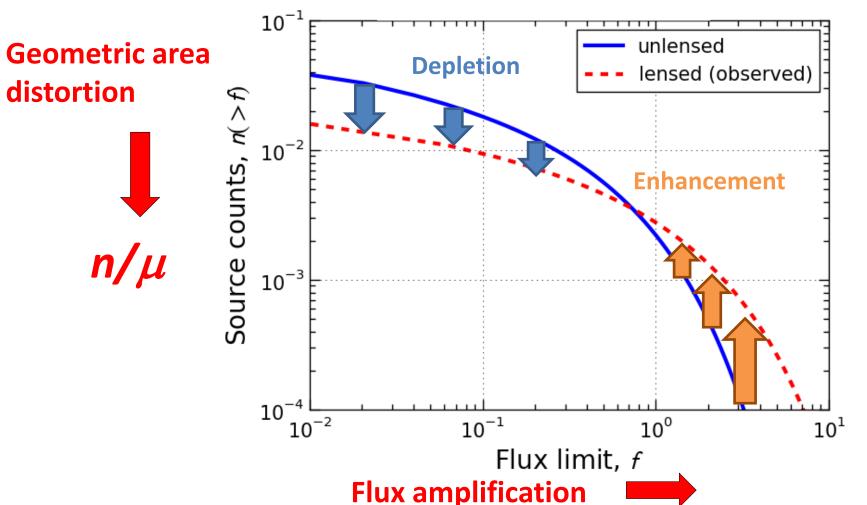

First detection of WL distance vs. redshift relation!!!



Medezinski, Broadhurst, Umetsu+11

Reionization Lensing Cluster Survey (RELICS)

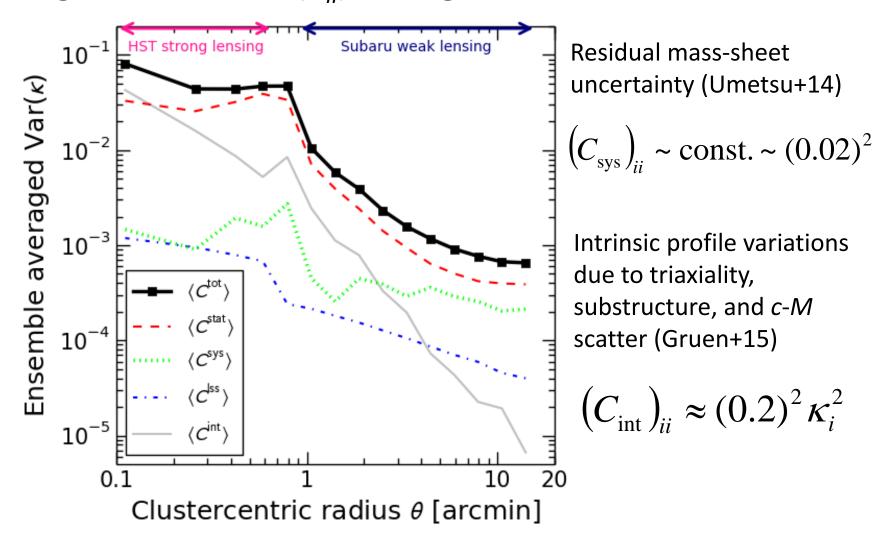
Newly approved 190-orbit *HST* survey (7 ACS/WFC3 filters) of 41 high-mass clusters primarily selected from the *Planck* survey (P.I. Dan Coe; Oct 2015 – Apr 2017)

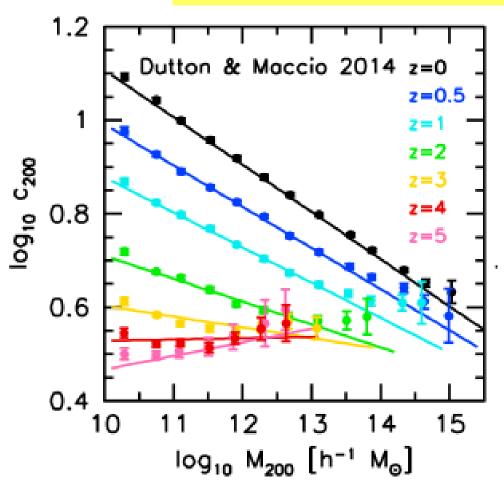

http://hstrelics.weebly.com

Magnification bias effects

Flux-limited source counts:

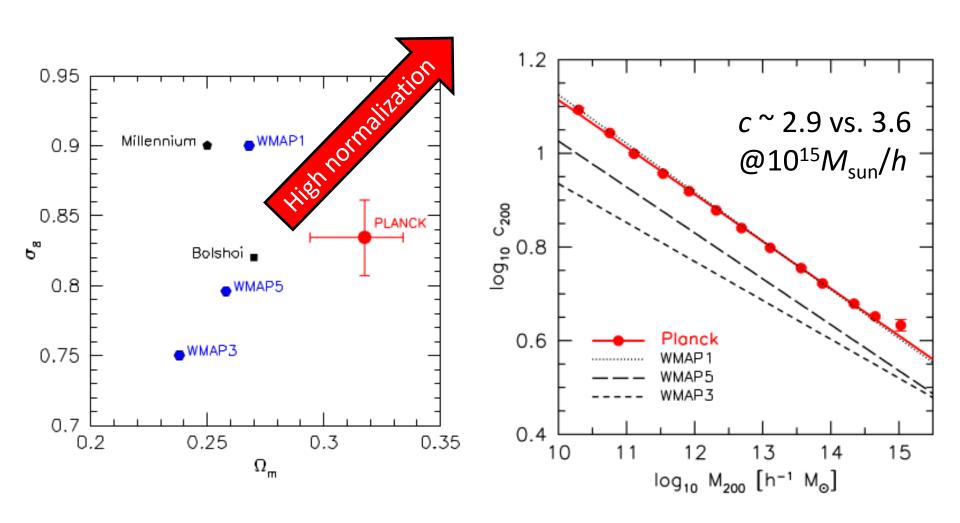
$$|n_{\text{obs}}(>f) = \mu^{-1}n(>\mu^{-1}f)|$$


Broadhurst, Taylor & Peacock 1995

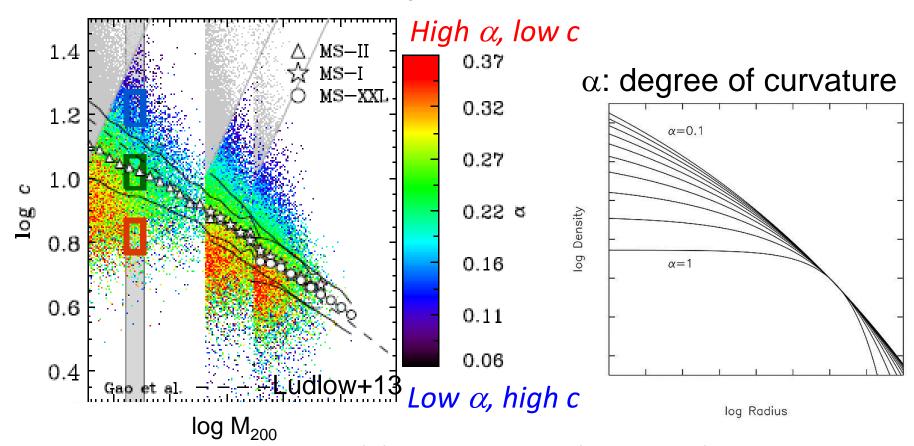

Ensemble-averaged Error Budget

Diagonal elements (C_{ii}) averaged over all CLASH clusters

Degree of Mass Concentration

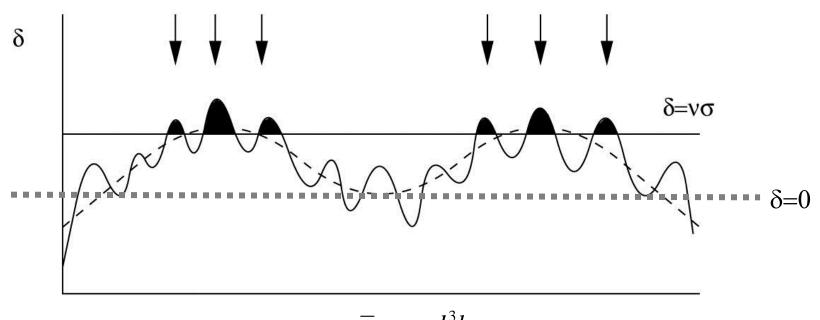

$$c_{200} \equiv \frac{r_{200}}{r_s} = \frac{\text{(Outer scale radius)}}{\text{(Inner scale radius)}}$$

In hierarchical structure formation, <*c*> is predicted to correlate with *M*


DM halos that are more massive collapse later on average, when the mean background density of the universe is correspondingly lower (e.g., Bullock+01)

Concentration is sensitive to cosmology

Dutton & Maccio 2014

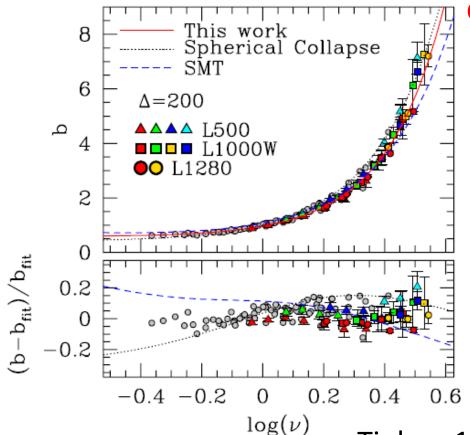

Intrinsic Scatter in c(M): Mass Assembly Histories (MAH)

- Scatter is due to another DoF (α), related to MAH (Ludlow+13)
- Larger values of α correspond to halos that have been assembled more rapidly than the NFW curve
- Halos with average c_{200} have the NFW-equivalent $\alpha \sim 0.18$

Key Predictions of nonlinear structure formation models

(3) Halo bias: surrounding large-scale structure

$$\delta(\mathbf{x}) := \frac{\rho - \overline{\rho}}{\overline{\rho}} = \int \frac{d^3k}{(2\pi)^3} \widetilde{\delta}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}}$$


$$\langle \widetilde{\delta}(\mathbf{k}) \widetilde{\delta}(\mathbf{k'}) \rangle = (2\pi)^3 \delta_D^3(\mathbf{k} + \mathbf{k'}) P(k)$$

Halo Bias Factor: b_h

Clustering of matter around halos with *M*:

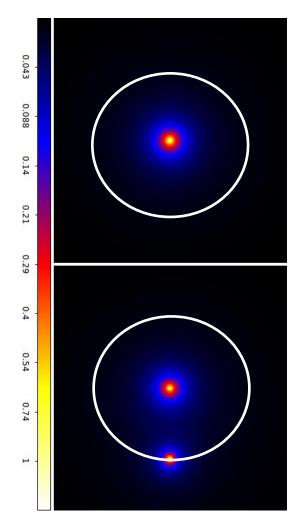
$$\xi_{\rm hm}(r \mid M) \equiv \left\langle \delta_{\rm h}(\mathbf{x} \mid M) \delta_{\rm m}(\mathbf{x} + \mathbf{r}) \right\rangle$$

$$= \frac{\left\langle \rho_{\rm h}(r \mid M) \right\rangle}{\overline{\rho}} + b_{\rm h}(M) \xi_{\rm mm}(r) \quad \text{2h term}$$

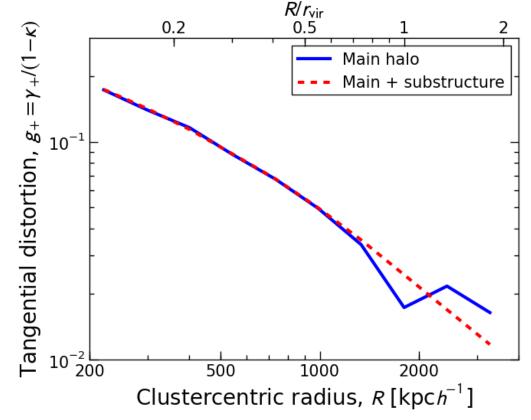
Correlated matter distribution (2h term)

Matter correlation function:

$$\xi_{\text{mm}}(\mathbf{r}) \equiv \left\langle \delta_{\text{m}}(\mathbf{x}) \delta_{\text{m}}(\mathbf{x} + \mathbf{r}) \right\rangle = \int \frac{d^3k}{(2\pi)^3} P(k) e^{i\mathbf{k} \cdot \mathbf{r}}$$
$$\propto \sigma_8^2$$


Linear halo bias:

$$b_{\rm h}(v) \approx 1 + \frac{v^2 - 1}{\delta_c}$$


$$v \equiv \frac{\delta_c}{\sigma(M,z)} \sim 3 - 4$$
 for clusters

Tinker+10 LCDM simulations

Non-local substructure effect

A substructure at $R \sim r_{\rm vir}$ of the main halo, modulating $\Delta \Sigma(R) = \Sigma(< R) - \Sigma(R)$

Known 5%-10% negative bias in mass estimates from tangential-shear fitting, inherent to rich substrucure in outskirts (Rasia+12)

Averaged Halo Density Profile $\Sigma(R)$

Stacking lensing signals of individual clusters by

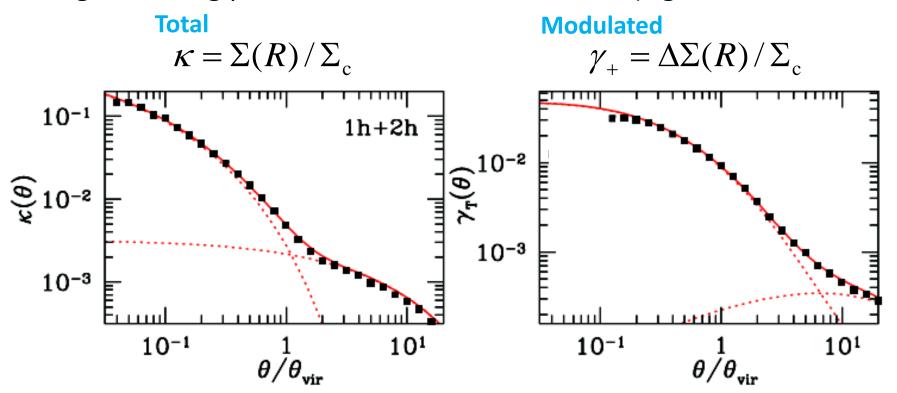
$$\langle\!\langle \mathbf{\Sigma} \rangle\!\rangle = \left(\sum_n \mathcal{W}_n\right)^{-1} \left(\sum_n \mathcal{W}_n \mathbf{\Sigma}_n\right),$$

Summing over clusters (n=1, 2, ..)

with individual "sensitivity" matrix

$$(\mathcal{W}_n)_{ij} \equiv \Sigma_{(\mathbf{c},\infty)n}^{-2} \left(C_n^{-1} \right)_{ij},$$

defined with total covariance matrix


$$C = C^{\text{stat}} + C^{\text{sys}} + C^{\text{lss}} + C^{\text{int}}$$
.

With "trace-approximation", averaging (stacking) is interpreted as $\sum_{n} \operatorname{tr}(W_n) M_{\Delta,n} = \lim_{n \to \infty} \operatorname{tr}(W_n) M_{\Delta,n}$

 $\langle\langle M_{\Delta}\rangle\rangle = \frac{\sum_{n} \operatorname{tr}(\mathcal{W}_{n}) M_{\Delta,n}}{\sum_{n} \operatorname{tr}(\mathcal{W}_{n})}$ Umetsu et al. 2014, ApJ, 795, 163

Shear doesn't see mass sheet

Averaged lensing profiles in/around LCDM halos (Oguri & Hamana 11)

- Tangential shear is a powerful probe of 1-halo term, or intra-halo structure.
 - Shear alone cannot recover absolute mass, known as mass-sheet degeneracy:

$$\gamma$$
 remains unchanged by $\kappa \to \kappa + \text{const.}$

Umetsu et al. 2016, arXiv:1507.04385

Concentration—Mass Scaling Relation

Consider a power-law scaling relation of the form:

$$c_{200c} = 10^{\alpha} \left(\frac{M_{200c}}{M_{\rm piv}}\right)^{\beta} \left(\frac{1+z}{1+z_{\rm piv}}\right)^{\gamma},$$

with pivot mass and redshift $M_{\rm piv} = 10^{15} M_{\rm sun} / h$, $z_{\rm piv} = 0.34$

Define new independent (X) and dependent (Y) variables:

$$Y \equiv \log_{10} \left[\left(\frac{1+z}{1+z_{\mathrm{piv}}} \right)^{-\gamma} c_{200c} \right], \quad Y(X) = \alpha + \beta X$$
 $X \equiv \log_{10} \left(\frac{M_{200c}}{M_{\mathrm{piv}}} \right).$

Redshift slope γ is fixed to the theoretical prediction for the CLASH sample, γ =-0.668 (Meneghetti+14)

Bayesian Regression Analysis

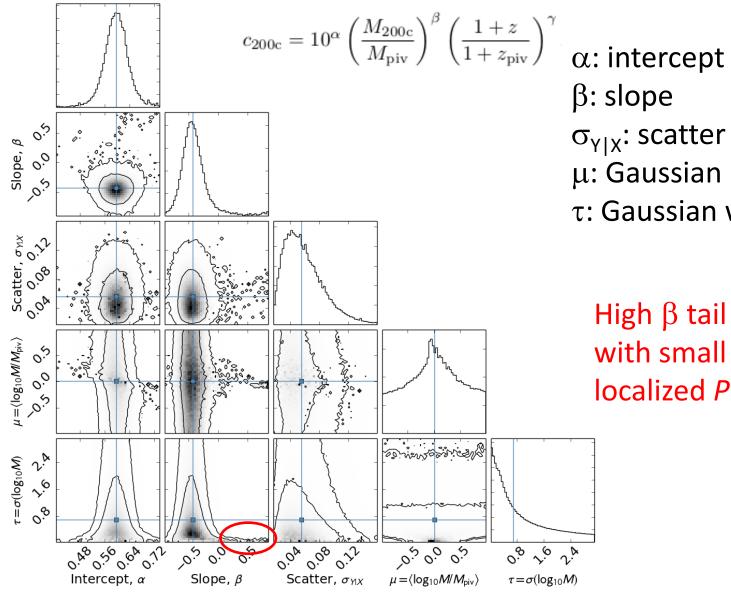
We take into account

- Covariance between observed M and c
- Intrinsic scatter in c
- Non-uniformity in mass probability distribution P(logM)

Conditional probability P(y|x) with (x,y) = observed (X,Y)

$$\ln \mathcal{P}(\boldsymbol{y}|\boldsymbol{x}) = -\frac{1}{2} \sum_{n} \left[\ln \left(2\pi \sigma_{n}^{2} \right) + \left(\frac{y_{n} - \langle y_{n} | x_{n} \rangle}{\sigma_{n}} \right)^{2} \right], \tag{35}$$

where $\langle y_n | x_n \rangle$ and $\sigma_n^2 \equiv \operatorname{Var}(y_n | x_n)$ are the conditional mean and variance of y_n given x_n , respectively:


$$\langle y_n | x_n \rangle = \alpha + \beta \mu + \frac{\beta \tau^2 + C_{xy,n}}{\tau^2 + C_{xx,n}} (x_n - \mu),$$

$$\sigma_n^2 = \beta^2 \tau^2 + \sigma_{Y|X}^2 + C_{yy,n} - \frac{(\beta \tau^2 + C_{xy,n})^2}{\tau^2 + C_{xx,n}},$$
(36)

where $\sigma_{Y|X}$ is the intrinsic scatter in the Y-X relation;

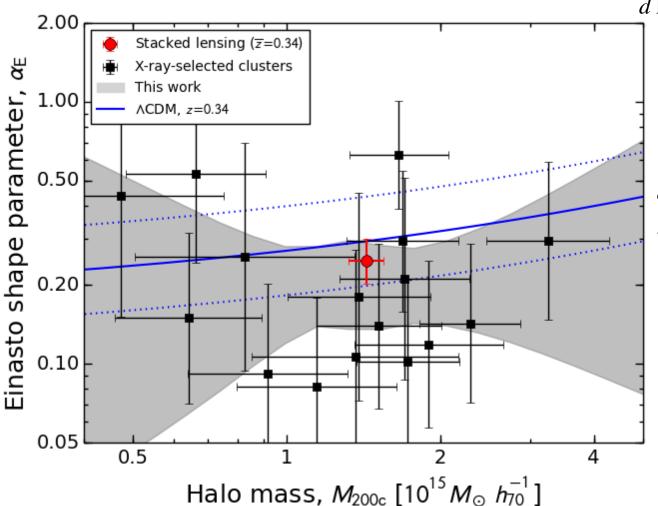
Marginalized Posterior Distributions

β: slope

 $\sigma_{Y|X}$: scatter

 μ : Gaussian mean of $P(\ln M)$

 τ : Gaussian width of $P(\ln M)$


High β tail associated with small τ : i.e., localized P(lnM)

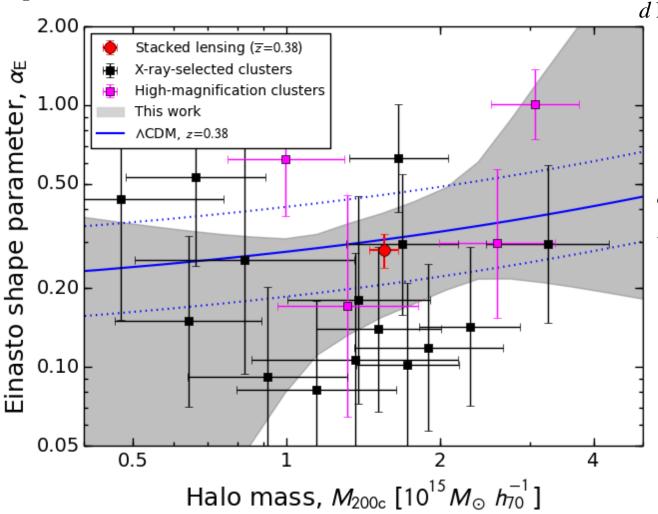
Einasto Shape Parameter vs. Halo Mass

 $\alpha_{\mbox{\tiny F}}$: degree of curvature of the Einasto density profile

$$\frac{d\ln\rho(r)}{d\ln r} = -2\left(\frac{r}{r_{-2}}\right)^{\alpha_{\rm E}}$$

$$\alpha_E \approx 0.155 + 0.0095v^2 \text{ (Gao + 08)}$$

$$v = \frac{\delta_c}{\sigma(M)}$$


Preliminary results

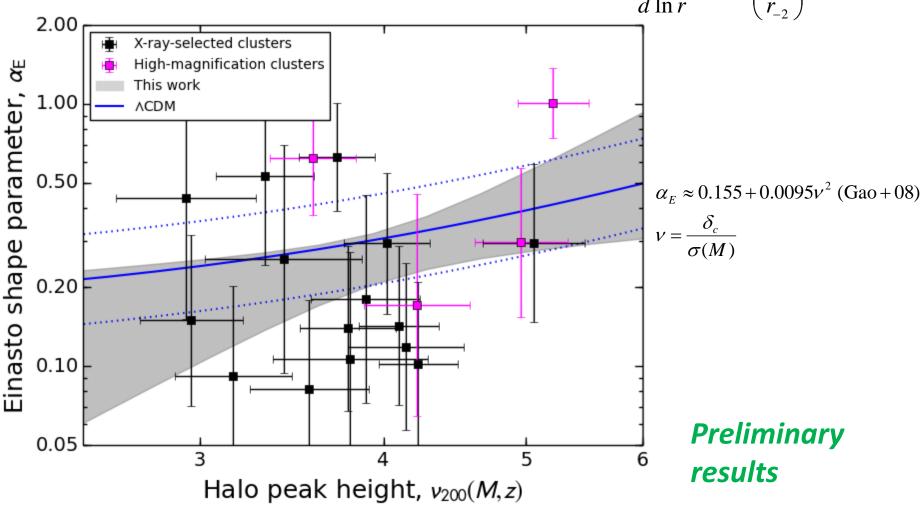
Einasto Shape Parameter vs. Halo Mass

 $\alpha_{\scriptscriptstyle F}$: degree of curvature of the Einasto density profile

$$\frac{d \ln \rho(r)}{d \ln r} = -2 \left(\frac{r}{r_{-2}}\right)^{\alpha_{\rm E}}$$

$$\alpha_E \approx 0.155 + 0.0095v^2 \text{ (Gao + 08)}$$

$$v = \frac{\delta_c}{\sigma(M)}$$


Preliminary results

Einasto Shape Parameter vs. Halo Peak Height

 $\alpha_{\scriptscriptstyle E}$: degree of curvature of the Einasto density profile

$$\frac{d\ln\rho(r)}{d\ln r} = -2\left(\frac{r}{r_{-2}}\right)^{\alpha_{\rm E}}$$

Preliminary

CLASH HST Lensing Dataset

Zitrin et al. 2015, ApJ, 801, 44