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(1) Cluster Peculiar Velocities from kSZE and 
Moving-Lens Effect (Lensing-analog of the Rees-
Sciama Effect) Measurements



MACS0717: Complex Merging Cluster 
at z=0.55 (a pink elephant?)

Multiple cores revealed by optical 
imaging/spectrcoospy, X-ray, and SL data

• Lensing-selected CLASH cluster (one of 
the HST-FF clusters)

• Largest known Einstein radius, RE=60” 
• @z=3 (Zitrin+09)
• Multiple clumps with high relative 

velocities (Ma+09; Mroczkowski+12)
• Most massive cluster known at z>0.5 

(Medezinski, KU+13): Mvir=3x1015 Msun
Circle: Rvir=2Mpc/h (7.5 acmin)

SUBARU WL mass map (Medezinski, Umetsu+13)



HST Weak vs. Strong Lensing Analysis

Nonparametric HST-WL mass reconstruction 
with Umetsu+Broadhurst08 MEM method

Parametric HST-SL mass reconstruction with 
Light-Traces-Mass (LTM) Zitrin+09 method

Overall, the galaxies trace the lensing mass distribution.
Deeper HST-FF imaging will improve WL constraints on the possible DM-galaxy offsets.

Medezinski, Umetsu+CLASH 2013, ApJ, 777, 43



kSZE detection in an individual cluster
Sayers, Mroczkowski, … Umetsu 2013, ApJ, 778, 52

Multi-halo modeling with BOLOCAM/CSO multi-freq SZE (140 & 
268 GHz) and Chandra X-ray observations

Red: tSZE Green: kSZE Blue: total

B:  Vopt=+3200+/-250km/s, VkSZ=+3500+/-900 km/s
C:  Vopt=   -730+/-490km/s, VkSZ= -550+/-1400 km/s

Significant kSZE signal toward B (4.2 sigma)



Moving Lens (Birkinshaw-Gull) Effect
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Lensing-analog of the Rees-Schiama effect



Simulated DM flow centered on the Bullet
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Molnar, Broadhurst, Umetsu+13, ApJ, 774, 70

AMR FLASH (DM+gas) simulation of the Bullet Cluster



(2) Mass, Shape, and Thermal Properties of 
Galaxy Clusters from Multi-probe Observations 



WL vs. tSZE Complementarity

• Large scale: gravitational potential
• Small scale: DM-gas deviations and 

non-equilibrium feature

Cold-front cluster A2142 @ z=0.09 from Ho+09
See also Okabe+Umetsu08; Umetsu+09; Munari+13
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DM vs. ICM structure in an X-ray-
selected relaxed cluster

Relaxed CLASH cluster: MACS1206 at z=0.44 (Umetsu+12, ApJ, 755, 56)

SL+WL mass map from HST+SUBARU data tSZE map from Bolocam@150GHz data

HSE gas follows potential that is rounder than matter density (X-ray shape 
theorem by Buote & Canizares 94):  eICM ~ 0.7 eDM (Lee & Suto 03)
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DM vs. ICM structure in an X-ray-
selected relaxed cluster (contd)

• For MACS1206, lensing, X-ray-HSE, and SZE-HSE spherical mass estimates 
(>r2500) agree (Umetsu+12).

• Biviano+CLASH (2013) showed that the pseudo phase-space density /v
3 of 

member galaxies follow power-law r-1.9 (Taylor & Navarro 01).
• Indicating that MACS1206 is close to HSE AND effectively spherical:

line-of-sight sizescale ~ geometric-mean sizescale in projection space

Umetsu+12



Triaxiality and Projection Effects
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See Sereno & Umetsu (2011);
Stark (1977); Oguri et al. (2003); Sereno (2007)



DM vs. ICM structure in a strong-
lensing cluster

Strong lensing cluster: A1689 at z=0.18 (Umetsu & Broadhurst 08) 

WL-mass map from Subaru 
(KU, Sereno+14, in prep)

X-ray brightness from 
Chandra (Sereno+12)

Non-HSE gas follows matter density, rather than potential:  eICM ~  eDM

SDSS-defined cluster members 
(Kawaharada, Okabe+KU+10)



Discrepant HSE and Lensing Masses?
SUZAKU HSE vs. lensing M3D(<r) of A1689 (Kawaharada, Okabe, Umetsu+10)

Marginalizing over intrinsic triaxial shape parameters  increases  the lensing errors in M3D(r), 
reflecting the lack of line-of-sight information (Oguri, Takada, Umetsu, Broadhurst 05).

M200c= 1.3 (+0.2, -0.2) 1015 Msun/h, c200c=9.0  (+1.5, -1.5) by Umetsu & Broadhurst 08 NFW
M200c= 0.9 (+0.1, -0.1) 1015 Msun/h, c200c=6.6 (+0.4, -0.4) by Peng+09 NFW
M200c= 1.1 (+0.3, -0.5) 1015 Msun/h, c200c=14 (+2, -11) by Oguri+05 triaxial-NFW



Multi-probe approach for constraining 
3D cluster structure

Combining lensing, X-ray, and tSZE observations
• Strong-lensing

– inner matter density profile
– 2D matter morphology

• Weak-lensing
– outer matter density profile
– 2D matter morphology (noisy)

• X-ray
– emission-measure (ne

2 T1/2) and spec-temperature profiles 
– 2D gas morphology

• tSZE
– thermal pressure profile out to ~r500
– 2D gas morphology (challenging?: contamination, transfer function, ..)

tSZE+X-ray constraining ICM sizescales both along LOS and in projection!! 
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Methodology 

• Morandi method (Morandi, Limousin, Rephaeli, Umetsu+11; Morandi+12)
– Total matter

• triaxial generalization of NFW

– ICM
• Ptot = Pth + Pnth follows gravitational potential, with Pnth(R)/ Ptot(R) = x (R/R200)n

• Small-eccentricity approximation for gravitational potential (Lee & Suto 03)

– Couple total-matter and ICM distributions by using generalized HSE 

• Sereno method (Sereno & Umetsu 11; Sereno, Ettori, Umetsu+13)
– Total matter

• Triaxial generalization of NFW

– ICM
• Triaxial matter and ICM halos coaligned with the same degree of triaxiality , 

T=(e_b/e_a)^2 < 1

– Couple total-matter and ICM distributions by much less informative priors on 
geometric shape, without making equilibrium assumptions

)()()()()()( SZSLWL pppppp LLLLLL
XX ST

Total matter ICM



Applications to A1689 (z=0.18)
Revisiting multi-probe analysis of A1689 with new WL (Subaru BVRIz) and tSZE
(SZA/BIMA/OVRO) observations: Umetsu, Sereno+14 in prep.

2D strong lensing (HST/ACS) 2D WL shear + magnif (Subaru)
2D X-ray (Chandra/XMM)

• WL: 2D mass reconstruction from Subaru 2D-shear + magnification (KU)
• SL: 2D mass reconstruction from HST/ACS/WFC3 data (Sereno)
• X-ray: 2D morphology and brightness profile from Chandra@R<1200kpc (Ettori)
• X-ray: temperature profile from XMM data@R<900kpc (Ettori)
• tSZE: joint Y(R) modeling of BIMA+OVR+SZA data (Mroczkowski)



Joint Bayesian analysis of WL2D+SL2D+Xray2D+SZE 
observations [Sereno+13 method]

• Spherical NFW mass model (WL-2D alone)
– M200c= (1.3 +/- 0.2) 1015 Msun/h, c200c=9.0 +/- 1.5

• Triaxial NFW mass model (w/o informative prior)
– M200c=(1.0 +/- 0.2) 1015Msun/h, c200c=6.2 +/- 0.8
– a/c=0.45 +/- 0.16, b/c=0.57 +/- 0.17, cos=0.94 +/- 0.04

• Including N-body priors on axis-ratio distribution:
– M200c=(1.0 +/- 0.2) 1015Msun/h, c200c=5.9 +/- 0.7
– a/c=0.43 +/- 0.08, b/c=0.54 +/- 0.10, cos=0.95 +/- 0.04

• Results
– Insensitive to priors thanks to the improved WL/SZE data!
– C200c = 5-6 @ M200c~1015Msun/h, compared to <c200c>=3.3 +/- 1.1 by 

Bhattacharya+13 DM-only predictions
– Similar matter and ICM eccentricities: eICM ~ 0.9 eDM

– Consistent with prolate structure with a/c~b/c~0.5
– The semi-major axis is closely aligned with LOS:  ~ 20 (+5, -10,) deg



Reconstructed fgas=Mgas/Mtot

1 and 3 bounds

Spherical radius, r [Kpc]

fgas ~ 10% at r=1Mpc from multi-probe triaxial analysis

Umetsu, Sereno+14 (WL+SL+Xray+SZE) Kawaharada, Okabe, KU+10



Reconstructed Pth/Ptot

Spherical radius, r [Kpc]

• Approximately 20% nonthermal pressure support at r=50-1000kpc.
• The observed Pth/Ptot is more consistent with those found for 1015Msun clusters 

in AMR simulations of Molnar+10 with resolved subsonic gas motions.

Shaw et al. (2010) 
prediction

1 and 3 bounds



Future prospects / ongoing projects

BOXSZ sample of 45 clusters (Sayers+13) Wide-field SZE imaging with sub-arcmin
resolution is ALSO sensitive to 2D gas-halo 
morphology: 
• Bolocam/CSO with 58” (30”) PSF @ 150 

(248) GHz, 14-arcmin map FoV
• MUSIC/CSO (2014~) will have about x2

wider effective FoV
• Multiscale synthesis of interferometric

data with ALMA+ACA and CARMA will 
also be promising. 

Consistent joint SZ+X modeling of 3D ICM 
structure is in progress by integrating 
Bolocam data into JACO by CLASH+ 
collaboration (Mahdavi, Sieagel, Sayers, 
Donahue+)



(3) Ensemble-averaged thermal pressure vs. 
total mass profiles from stacked SZE and lensing 
analyses



Ensemble-averaged Pressure Profile 
around Clusters

• Testing self-similarity (scalability) and predicted radial profile 
shape P(r) of the averaged pressure profile (Suto, Sasaki, & 
Makino 98; Komatsu & Seljak 01; Nagai+07; Arnaud+10; 
Cavaliere, Lapi & Fusco-Femiano 11)
– Empirical tests of ICM morphology dependence

– Empirical tests of  non-gravitational processes in cluster cores 
and outskirts (>r500)

– Comparison with the lensing-derived averaged mass profile for 
examining the degree of HSE

• Warm gas  in cluster filaments and LSS, or 2-halo term (Fang,  
Kadota, & Takada 12)



Stacked Pressure Profile of BOXSZ 
Sample (Sayers+13)

BOXSZ (Bolocam SZ/X-ray) sample tSZE analysis:
• 45 high-mass clusters @ 0.15<z<0.89 with <M500c>=9x1014Msun including 25 

CLASH clusters.
• X-ray Chandra data for determining r500 and P500

• X-ray Chandra data for morphology classification
• 17 cool-core and 16 disturbed clusters (2 CC-disturbed)
• Arnaud+10: 33 clusters at z<0.2, XMM (inner), simulations (outer)
• Planck12: 62 clusters at <z> = 0.15, XMM (inner), Planck SZE (outer)



Stacked P(R/R500) and gNFW fits

BOXSZ full sample, <z>=0.42 Disturbed subsample, <z>=0.52 CC subsample, <z>=0.36

• gNFW gives a good fit to R = [0.07, 3.5]R500c

• At r< 0.15 r500, the CC clusters show higher 
pressures than the disturbed ones.

• Consistent pressure profiles at > 0.15 r500

between the CC and disturbed subsamples
• Consistent with other X/SZ results (Plagge+10; 

Melin+11; Planck 11; Komatsu+11).
• Hints of slightly higher pressures at the smallest 

and largest radii. Sayers+13



Mean Pressure Profile and Intrinsic Scatter 
from Gaussian-Process Modeling 

• Model individual cluster profiles as 
Gaussian process
 simultaneously constrain mean 

profile, mass scaling, and 
intrinsic scatter

• Find mass scaling shallower than 
self-similar one 
 0.49 compared to 2/3

• Intrinsic scatter minimized to ~20% 
at intermediate radii, ~0.5 R500c

Sayers+13



Next Step
• Compare the stacked pressure and mass profiles for a statistical sample of clusters.
• Combining (1) SL, (2) WL-shear, and (3) WL-magnification allows us to derive the 

total projected mass profile (R) from R=10kpc/h to beyond Rvir (Umetsu+11b).
• CLASH lensing, SZE, and X-ray comparison in progress.

• BolocamMUSIC upgrade @CSO will improve the effective FoV by a factor of 2, 
probing the radial range R = [0.07, 7]R500 ~ [0.035, 3.5] Rvir

• Subaru HSC-WL + ACT will be very powerful for low-mass and high-z clusters.

Sayers+13



Next Step
• Compare the stacked pressure and mass profiles for a statistical sample of clusters.
• Combining (1) SL, (2) WL-shear, and (3) WL-magnification allows us to derive the 

total projected mass profile (R) from R=10kpc/h to beyond Rvir (Umetsu+11b).
• CLASH lensing, SZE, and X-ray comparison in progress.

• BolocamMUSIC upgrade @CSO will improve the effective FoV by a factor of 2, 
probing the radial range R = [0.07, 7]R500 ~ [0.035, 3.5] Rvir

• Subaru HSC-WL + ACT will be very powerful for low-mass and high-z clusters.

Umetsu+CLASH 14

Sayers+13



Summary
• Multi-frequency high-resolution SZE + X-ray observations of moving 

substructures for LoS gas peculiar velocity measurements.
• ALMA and NIR (e.g., XSHOOTER on VLT) spectroscopy of multiply-

lensed images in Bullet-like colliding clusters for tangential DM-
peculiar-velocity measurements:
– Large-separation multiply-lensed QSOs with many absorption feature (if 

any) are very useful because the errors get reduced by 1/sqrt[N]
– For lensed galaxy images, once the source redshift is known, ALMA with 

high resolution is very powerful for measuring (narrow) molecular 
emission

• Spatially-resolved tSZE imaging with subarcmin-resolution and >10-
arcmin-FoV can be used for multi-probe 3D cluster modeling of high-
mass clusters (M500c>5x1014Msun): Bolocam/MUSIC@CSO, 
ALMA+ACA, etc.

• Improved transfer function with CSO-to-MUSIC upgrade at CSO 
probing the stacked pressure profile out to 7R500c ~ 3.5Rvir (?)
– Still useful before CCAT replacement?





SZE instruments for pointed (targeted) observations

• Bolocam at CSO 10m
– 140 GHz -> 8' FOV, 58” PSF, ~22μKCMB-arcmin sensitivity
– 268 GHz -> 31” PSF 
– MACS0717 at z=0.55: 3.3 mJy/beam@140 GHz, 1.8 mJy/beam@268 GHz 

(Sayers et al. 2013)

• MUSTANG at GBT 100m
– 90 GHz -> 42” FOV, 10”-18” PSF
– MACS0717 at z=0.55: 34 uJy/beam (Mroczkowski et al. 2012)

• CARMA/SZA interferometer array at Cedar Flat
– An array of six 10m, nine 6m, eight 3.5m antennas at 30GHz and 90GHz
– 12’ FOV, 0.3’ PSF (depending on config)
– Follow up observations for SPT, XXM-XXL

• NIKA (KIDs based instrument) at IRAM 30m 
– 140 GHz, 132 pixels -> 1.8’ FOV, 18.5” PSF (see Adam+13, arXiv:1310.6237)
– 240 GHz, 224 pixels  -> 1.0’ FOV, 12.5” PSF 
– NIKA2 with 1000 and 4000 detectors at 140 and 240GHz (2015-)

• MUSIC at CSO 10m
– 14’ FOV, 2304 detectors/ 576 spatial pixels
– 0.86,1.0,1.3, & 2.0mm

Blue = under commissioning



WL vs. SZE morphology in A383 

Subaru WL mass map 
(Umetsu+CLASH 14, in prep)

Bolocam SZE map@150GHz 
(Zitrin et al. 2012)



Averaged Lensing Profiles of LCDM Halos

Shear Doesn’t See Mass Sheet

crit/ crit/T

• Tangential shear is a powerful probe of 1-halo term, or internal halo 
structure.

• Shear alone cannot recover absolute mass, known as mass-sheet 
degeneracy. Figures from Oguri & Hamana 11
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X-ray maps: 20 CLASH clusters are purely 
X-ray selected to be massive and relaxed 

Umetsu+CLASH 14, in prep (Subaru, 24’x24’) Postman+CLASH 12, ApJS

WL mass maps: 16 clusters completed

CLASH X-ray-selected subsample



CLASH-WL: Stacked shear profile 
Ensemble-averaged internal halo structure of X-ray-selected 
relaxed CLASH clusters with <M200c>=1015Msun/h at <z>=0.35

Umetsu+CLASH 14, in prep 

Consistent with a family of density profiles for collisionless-DM halos in gravitational 
equilibrium (NFW, BMO, Einasto)



CLASH-WL: Stacked total mass profile 
from combined shear + magnification

2D halo model decomposition: 
smoothly-truncated NFW 
(BMO) + LCDM 2h-term

• Measuring 1h+2h term out to R=2rvir around 16 X-ray clusters with 
<Mvir>=10e14Msun/h at <z>=0.35  linear halo bias bh= 9 (Tinker+10)

• Testing shear vs. magnification consistency in the context of LCDM

Umetsu+CLASH14 in prep



Strong-lensing, weak-lensing 
shear+magnifcation constraints on A1689

WL shear-magnification consistency 
(Umetsu+11a Bayesian method)

Strong-lensing vs. weak-lensing 
projected mass profiles

Projected total mass profile well described by the steepening NFW form


