Cluster Lensing Science with HSC

Distortion, Depletion, and Dilution: Key "Three D" Components in Weak Lensing

Keiichi Umetsu

ASIAA, Taiwan @Princeton: 9.11.2009

Contents

- 1. Subaru Cluster Lensing and Multi- λ Cluster Science
- 2. Lens Distortion + Dilution
- 3. Lens Distortion + Depletion
- 4. Weak + Strong Lensing
- 5. Subaru Weak Lensing + AMiBA-SZE
- 6. Subaru Weak Lensing + Suzaku-X
- 7. Summary

Major Collaborators (alphabetical order)

HSC WL-WG

- **G** Furusawa, H.
- Hamana, T.
- □ Miyazaki, S.
- Morokuma, T.
- Nishioka, H.
- Nishizawa, A.
- Okabe, N.
- Okura, Y.
- Takada, M.
- Utsumi, Y.
- □ Yamamoto, K. et al.

Cluster Lensing/Dynamics Broadhurst, T. Lemze, D. Medezinski, E. **Zitrin**, A. LoCuSS Okabe, N. Smith, G.P. Takada, M. et al. **AMiBA SZE** Birkinshaw, M. □ Ho, P.T.P. Nishioka, H. Wu, J.H.P. et al.

z = 0.183

- Subaru
 Suprime-34'x27'
- HST ACS 3.3'x3.3'
- Chandra ACI
- AMiBA
- VLT/VIRMOS
- Suzaku/XIS

2. Distortion + Dilution Analysis

Improving weak lensing measurements

Tangential Distortion

Umetsu & Broadhurst 08, ApJ

Umetsu, Birkinshaw, Liu+ 09, ApJ

Distortion + Einstein Radius

Stacked Lensing Analysis

Stacked lensing analysis (already mentioned by Hamana-san) less sensitive to substructures/asphericity of individual clusters

SIS rejected @6 and 11 σ levels (Okabe, Takada, Umetsu+ 09)

YES, Cluster Weak Lensing is so POWERFUL.

However,

You first need a CLEAN background sample!!

To do so, Deep Multiband photometry is necessary!!

Galaxies in Color-Magnitude Space

- E/S0 sequence galaxies
- Three galaxy samples
 - Green cluster
 +background
 - Red background.
 (redder than sequence)
 - Blue faint
 background.
 (determine by
 comparing WL signal
 to red)

Medezinski, Broadhurt, Umetsu+ 2007, ApJ, 663, 717

Umetsu & Broadhurst 2008, ApJ, 684, 177

Weak Lensing Distortion

- <u>Background</u> WL distortion rises all the way to the center
- Green (cluster members + BG) – distortion diluted towards the center by unlensed cluster members

The "Dilution" Effect

Cluster Membership Fraction

Cluster fraction from lensing strengths

- Dilution to measure cluster membership
- Cluster luminosity functions and profiles can be derived (Medezinski+07,09)

The central region (<200kpc/h) is highly dominated by unlensed cluster galaxies – blue cluster galaxies are difficult to separate out. Even problematic in high-z and Butcher-Oemler clusters!!

New Color-Color Diagram Approach

Wide/uniform Optical- λ coverage with Subaru BRz photometry

- **B**,**R**,**z**' for CL0024
- **B**,**R**,**z**' for A370
- V,R,z' for RXJ1347
- g',r',i' for A1703
- Color, positional, and lensing correlations explored in CC-space
- Density peaks in CCspace – different galaxy populations

- Medezinski, Broadhurst, Umetsu+ 09, ApJ submitted (arXiv:0906.4791)
- Umetsu, Medezinski, Broadhurst+ 09, ApJ submitted (arXiv:0908.0069)

Mean Radius Statistic in CC-Space

Mean radius of galaxies from the cluster center

• First identify the cluster sequence in CC-space.

• Cluster members appear as a distinct cloud with small mean radii.

COSMOS Photometry and Redshifts

- 30-band wide-field (2 sqdeg) survey (Capak et al. 2007)
- Photometric-redshift catalog (Ilbert et al. 2009)
- Deep COSMOS survey <u>as a reference for "CC-selection" and</u> <u>"depth calibration"</u>

Galaxy samples in CC-space

Color-Color Selected Samples

Color boundaries for Red, Green, Blue galaxy samples

Example in CL0024+1654 at z=0.395 (Umetsu+09b)

Density plot

 The red and blue boundaries are chosen so as to maximize the lensing signal (minimizing dilution)

Lensing Strengths of Color Samples

Lens distortions in CL0024 Umetsu+09b, arXiv:0908.0069

3. Distortion + Depletion Analysis

Combining full-lensing information

Count Depletion: Magnification Bias

Magnification bias: Lensing-induced fluctuations in the background density field (Broadhurst, Taylor, & Peacock 1995)

$$\delta n(\mathbf{\theta}) / n_0 \approx -2(1 - 2.5\alpha)\kappa(\mathbf{\theta})$$

with unlensed counts of background galaxies $n_0(< m) \propto 10^{\alpha m}$

When the count-slope is <0.4 (=lens invariant slope), a net deficit is expected.

unlensed

Slide by M. Takada

Depletion Profile in CL0024

Count depletion of "red" galaxies in CL0024

Distortion of "blue+red" sample

Umetsu et al. 2009b, arXiv:0908.0069

Count Depletion in Other Clusters

Lens distortion (left) vs. depletion (right) in high-mass clusters

Observed curves are similar in form, well described by NFW

Broadhurst, Umetsu, Medezinski+ 2008, ApJ, 685, L9

Mass Profile of A1689 from Full Lensing

Mass profile and full covariance matrix in (10, 2000)kpc/h derived from distortion, depletion (Scam), and strong lensing (ACS) datasets

Mass profiles are useful for a multi- λ analysis: Example of A1689

- Lemze+08: +Chandra
- Lemze+09: +VLT/VIRMOS
- Umetsu+09a: +AMiBA

Kawaharada, Okabe,
Umetsu, .. Hamana,
Miyazaki .. 09 in prep.:
+Suzaku X-ray

4. Weak and Strong Lensing

Case for CL0024-1654

<u>Zitrin, Broadhurst, Umetsu et al. 2009</u> (SL)
<u>Umetsu, Medezinski, Broadhurst et al. 2009</u> (WL+SL)

HST/ACS Strong Lensing Analysis

ACS+NIC3 "BVg'r'i'z'JH" photometry for accurate photo-z

Identified 33 multiply-lensed images of 11 BG galaxies in 8"<r<48" (R_{ein}=30", z=1.7)

Strong-lens critical curves

Smooth-DM + lumpy-galaxy mass map

Zitrin, Broadhurst, Umetsu+ (2009)

HST/ACS vs. Subaru/S-Cam Data

Surface number density of CC-

selected cluster galaxies Cluster galaxy number density (arcmin

HST/ACS (2'x2' region)

Virial radius (~8' @z=0.395) R_{vir}=~ 1.8Mpc/h Umetsu et al. 2009b

HST/ACS vs. Subaru/S-Cam Data

Weak Lensing mass map

HST/ACS (2'x2' region)

Virial radius (~8' @z=0.395) R_{vir}=~ 1.8Mpc/h Umetsu et al. 2009b

Joint Mass Profile of CL0024

Model-independent mass profile from joint Subaru+ACS lensing analysis, derived for the entire cluster R=(40,2300)kpc/h

• gNFW with α ~0.2 preferred

Umetsu et al. 2009b

5. Subaru Weak Lensing and SZE

Interferometer arrays: <u>ALMA</u>, AMI, <u>AMiBA</u>, SZA (CARMA), ..

Bolometer arrays: <u>ACT, APEX-SZ, GBT/MUSTANG, SPT, ...</u>

First SZE Results with AMiBA-7

First AMiBA papers published in ApJ, 694, 2009, April 1:

- Design/Results:
- Instrumentation:
- Hexapod mount:
- System performance:
- Data integrity tests:
- SZE + Weak Lensing:
- Analysis pipeline:

Ho, P.T.P. et al.
Chen, M.T. et al.
Koch, P.M. et al.
Lin, K.Y. et al.
Nishioka, H. et al.
Umetsu, K. et al.
Wu, J.H.P. et al.

More papers (2009-2010):

- Cluster scaling relations:
- Correlator system:
- Fore/CMB Contamination: Liu, G.C. et al., ApJ submitted
- X-ray + SZE for H₀:
- Radial profiles of IC-gas:
- Cluster SZE properties:

Li, C.T. et al., ApJ submitted Liu, G.C. et al., ApJ submitted Koch, P.M. et al., ApJ submitted Molnar, S.M. et al., ApJ submitted Liao, Y.W. et al., to be submitted

Huang, C.W.L. et al., ApJ accepted

13-element AMiBA (94GHz), Hawaii

 7-element AMiBA science operation (2007-2008) completed (8 papers published/accepted in ApJ)

• Science operation with AMiBA-13 will start this month (A370 as a first target)

Cluster Gas Fractions from Subaru/WL + AMiBA/SZE

5. Subaru Weak Lensing and Suzaku X-ray Analysis

Suzaku-X vs. Subaru/ACS-GL: A1689

Suzaku/XIS, 4 x 39s

Suzaku - unique facility to detect Xray emission in the cluster outskirts

Kawaharada, Okabe, Umetsu, .., Hamana Miyazaki .. et al. 09, in prep.

Summary for Discussion

- Removal of blue cluster and foreground galaxies is the most critical issue in cluster weak lensing. Due to dilution, inner distortion profiles from WL measurements will be ALMAYS underestimated.
- "Deep multicolor" photometry is essential for individual cluster lensing analysis – We may be able to combine deep i'-band HSC imaging with multiband photometry from other surveys.
- Not only distortion/dilution but also depletion (magbias) can be examined to achieve the maximum lensing precision. Wide-field HSC imaging will be a big plus for the count normalization (n0). Proper declustering and masking corrections better than 5% accuracy (matching the dilution analysis) will be required for a full lensing analysis.
- Deeper HSC imaging will be extremely useful for multi-λ cluster studies (X-ray, SZE, dynamics) where the Subaru HSC imaging will play a most crucial role to probe the DM distribution in clusters.