1st Subaru Intl. Conference

Subaru Weak Lensing Study of Merging Clusters of Galaxies

Reference:

Okabe & Umetsu 2008, PASJ in press (astro-ph/00702649)

Keiichi Umetsu

(Academia Sinica IAA [ASIAA], Taiwan)

Collaborator: Nobuhiro Okabe (Tohoku, Japan)

Introduction: Clusters of Galaxies

2. Motivation

Chandra and XMM-Newton X-ray satellites have revealed complex ICM structures associated with cluster mergers:

3. Method: Gravitational Lensing

The images of BG sources carry the imprint of $\Phi(x)$ of intervening cosmic structures:

WL distortions of BG images can be used to derive the underlying mass map in a model independent way!!

Fort & Mellier

Power of Subaru Weak Lensing

A1689 (z=0.183)

A relaxed, massive cluster with large Einstein radius θ_E =45" (z_s=1)

r [kpc/h] Umetsu & Broadhurst 2007, 100 1000 Mp ApJ submitted r=20-2000 (r_{vir}) kpc/h Ξē $0^{15}M$ $(z_s = 1)$ ACS + Subaru - 2D (MEM+ Subaru-2D (MEM+) \mathfrak{m} 0 8 ACS (B05b) 10^{-1} N Subaru 1D ĸ (B05a) Convergence density Subaru 2D r (MEM+) ∞ \times △ Subaru non-linear ζ_-statistic 10⁻² ACS+Subaru-2D NFW (MEM+) mass M_{vir} ACS+Subaru-1D NFW (B05a) LCDM low concentration NFW (cvir=5) urface Sub 10^{-3} 20 25 10 1510 1520 0.1 10 c_{vi}, C. θ [arcmin]

4. Distributions of Mass and Baryons in "Merging Clusters"

Various Merging Stages

Mergers are driven by Φ (Mass~DM)... What is the relation between Mass (~DM) and Baryons during the merging process??

Cluster Targets

Merging clusters with detailed Chandra ar XMM data in the local universe (z=0.05-0.3)

 Table 2. Cluster X-ray Features

	Cluster	z	Type	$1 \operatorname{arcmin}$	Components	$T_{\rm ave}$
				(kpc/h_{70})		(keV)
-	(1)	(2)	(3)	(4)	(5)	(6)
	A754	0.0542	On-going	63.1	1111	$10.0\pm0.3^{\rm a}$
	A1750	0.0860	Binary	96.7	A1750C	3.87 ± 0.10 ^b
This talk					A1750N	2.84 ± 0.12 ^b
\square	A1758	0.2790	Binary	254.0	A1758N	8.2 ± 0.4 ^c
					A1758S	$6.4^{+0.3}_{-0.4}$ c
	A1914	0.1712	On-going	174.9		10.9 ± 0.7 a
	A2034	0.1130	Cold Front	123.2		7.9 ± 0.4 $^{\rm d}$
	A2142	0.0909	Cold Front	101.7		8.1 ± 0.4 e
	A520	0.1990	On-going	197.2	Archival data	7.1 ± 0.9 $^{\rm a}$

This talk will only focus on the results for the 3 merging clusters of different merging stages...

Pre-Merger (Binary)

A1750 (z=0.086) Optical vs. X-ray

A1750 (z=0.086) Mass vs. Baryons

On-going Mergers

A1914 (z=0.172) Optical vs. X-ray

Subaru image + Chandra contours

Chandra image + contours

216.500

α

216.400

A1914 (z=0.172) Mass vs. Baryons

Subaru image + mass contours

ICM distribution is fairly round, while the DM distribution is highly disturbed by the merger, showing an irregular morphology. ^{0'75 Gaussian (130kpc)} The collisionless galaxy distribution & Galaxies) coincides well the DM (~mass) distribution.

> peaks of the primary cluster coincide well

Optical light map + mass contours

37,700

Cold Front Clusters

A2034 (z=0.113) Optical vs. X-ray

Northern sharp-discontinuity in X-ray emission – but no significant jump in Tx
 Kempner & Sarazin 03 argued the excess emission likely to be a background structure

A2034 (z=0.1130) Mass vs. Baryons

Detections of significant "mass clumps" associated with [1] **primary cluster** (6.4σ), [2] **northern structure** (5.4σ) ahead of the cold front, [3] **south X-ray excess** (6.3σ), **and (4) western structures**

A2034 (z=0.1130) Filament?

"Western mass structures" found to be associated with filamentary structure of background galaxies → LOS com. separation of ~ 10Mpc/h (assuming v_pec=0)

4. Tx vs. WL-derived Virial Temperature

Ongoing
Cold front
Pre-merger

Tx is (2-3) times higher than Twl in ongoing mergers:

Merger boosts? (Sarazin & Ricker 02)

A1750C:: Entropy excess

A520:: Tx including the preshock (low-T) region, under-estimated by ~1.7

Summary

Joint WL/X-ray/Optical analysis::

- 1st systematic WL study of merging clusters
 cf. Clowe+ 04 on Bullet cluster; Bradac+ 06 on 1ES0657@z~0.3
 → Provides an important clue to understand the cluster merger

Distributions of Baryons & DM::

- Initial phase: ICM and Galaxies tracing the Mass
- Ongoing: "Mass ~ Galaxies" but highly irregular, offset from "ICM" in a various way
- Cold front: DM clumps always found in front of dense cores (all of 3 cold fronts) as found in the Bullet Cluster (Clowe+04)

Cluster global properties::

- Tx ~ Twl in a pre-merging phase
- Tx ~ (2-3) Twl during mergers

→ merger boosts? (Sarazin & Ricker 02; Rowley+ 04) as a function of dynamical-phase, initial merger conditions, & masses.

Future Work

Ongoing Project

Local Cluster Substructure Survey

Flux limited, unbiased sample of >100 clusters in the local universe $(Lx>5x10^{4}erg/s, 0.15<z<0.3)$

Special Thanks to Lensing Collaborators

<u>LoCuSS</u>

N. Okabe, M. Takada, T. Futamase (Tohoku), G.P. Smith (P.I.)

<u>AMiBA SZE + WL</u>

AMiBA Science Team (ASIAA, NTU/Phys) See the AMiBA poster by K.Y. Lin

HSC WL Working Group

S. Miyazaki, T. Hamana, H. Furusawa, Y. Utsumi (NAOJ), M. Takada (Tohoku), K. Yamamoto (Hiroshima), H. Nishioka (ASIAA)

Fexion and HOLICs

> Y. Okura, T. Futamase (Tohoku)

Dark Halo Density Profiles

T. Broadhurst, E. Medezinski (Tel Aviv)

FIN