ASIAA Luncheon Talk

Galaxy Clusters as Cosmic Lenses

Keiichi Umetsu (ASIAA)

Matter PSD, P(k): Data vs. ΛCDM

Cosmic mean properties on "large scales" are well explained by $\Lambda \text{CDM}.$

How about nonlinear scales where $\Delta := \Delta \rho / \langle \rho \rangle >> 1$?

Predictions on (collisionless) CDM halos

- CDM mass profiles ρ(r) are nearly universal
 - Shape is nearly independent of halo mass (self-similar), $\rho(r/r_s)/\rho_s=\eta(x)$
 - Normalization: the more massive a halo, the less concentrated it is.
- CDM halos are cuspy, with outwardly-steepening density slopes: γ (r) := dlnρ/dlnr
 - $\gamma \sim -1$ at innermost radius, $\gamma \sim -3$ at large radius
 - Self-annihilation signature? $dL/dV \sim \rho^2 < \sigma v >$
- CDM halos are clumpy
 - Abundant substructure (5%-20% in mass)
 - Massive (hence young) halos are substructure rich.
- CDM halos are triaxial
 - Preference for prolate configuration
 - Asphericity increasing toward the center

My Approach: Cluster Gravitational Lensing

SUBARU wide-field imaging (Suprime-Cam) for weak lensing

High-resolution space imaging with *Hubble* for strong lensing

Shape and Area Distortions by Lensing

Deformation of an image

$$\delta \beta_{i} = (\delta_{ij} - \psi_{,ij}) \delta \theta_{j} + O(\delta \theta^{2})$$
$$\approx \left[(1 - \kappa) \delta_{ij} - \Gamma_{ij} \right] \delta \theta_{j}$$

Amplification of solid angle (i.e., flux)

$$\mu = \det\left(\frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\theta}}\right)^{-1} = \frac{1}{\left(1 - \kappa\right)^2 + \det \Gamma}$$

Strong Lensing [1]: Multiple Imaging

33 lensed images of 11 source galaxies identified in HST/ACS multicolor images by SL analysis (Zitrin, Broadhurst, Umetsu+09, MNRAS, 396, 1985)

CL0024+1654 (z=0.395) HST/ACS Abell 383 z = 0.187

Strong Lensing [2]: Giant Arcs

Zitrin+11 (arXiv:1103.5618)

CLASH Hubble MCT Program: Cluster #1/25 MACSJ1149 z = 0.544

Strong Lensing [3]: Magnification

CLASH Hubble MCT Program: Cluster #2/25

Abell 2261 z = 0.224

Strong Lensing [4] Tangential Arcs

CLASH Hubble MCT Program: Cluster #3/25

Weak Lensing [2]: Magnification Bias

Lensing-induced fluctuations in the background number density field (Broadhurst, Taylor, & Peacock 1995):

$$\frac{n(\mathbf{\theta})}{n_0} = \mu^{s-1}(\mathbf{\theta}) \approx 1 + \underline{2(s-1)\kappa(\mathbf{\theta})}$$

with faint-end slope, *s*, of unlensed Luminosity Function, *n*₀(>*F*)

 $\Omega_{ ext{survey}}$

When the faint-end slope is shallow, i.e., s<1, a net deficit of counts is expected (the case for red galaxies)

lensed

unlensed

 $|n_0(>F) \propto F^{-s}$

Shear and Magnification Combined

Number counts (magnification bias) Tangential shear radial profile $r \left[h^{-1} \mathrm{kpc} \right]$ $r \left[h^{-1} \mathrm{kpc} \right]$ 1000 2000 3000 3000 $\Sigma_{\rm crit} \gamma_+ = \overline{\Sigma}(< R) - \Sigma(R)$ ท 20 arcmin C10024+1654 15 C10024 + 1654Subaru blue+red sample 0.5 Red galaxies (no correction) Bayesian reconstruction 10 Red galaxies (mask corrected) $n(\theta)$ Bayesian reconstruction $r \left[h^{-1} \mathrm{kpc} \right]$ 0 \geq 1000 100 0.2 ounts, g_{\times} $\kappa(\theta)$ 0 -0.2Mpc²] rgence 10^{-1} 5 15 θ arcmin $[hM_{c}]$ CONV A unique mass-profile solution (Σ) can be C10024+1654 10^{-2} Shear+magbias (Bayesian MCMC) obtained from a Bayesian analysis of joint ens Shear (UB08 aperture mass) WL shear + magnification measurements 10 10 Umetsu+2011a, 2011b 0.1 θ arcmin

Highlights: 58 cluster mass profile averaged from the highest-quality SL+WL data

Umetsu et al. 2011b, ApJ in press (arXiv:1105.0444)

Constraint on Central Cusp Slope

More² Hubble data to come!

Cluster Lensing And Supernova survey with Hubble A Hubble Space Telescope Multi-Cycle Treasury Program

P.I. Marc Postman (STScI) Co-P.I. Holland Ford (JHU)

Matthias Bartelmann • Narciso Benitez • Larry Bradley • Tom Broadhurst • Dan Coe • Megan Donahue • Rosa Gonzales-Delgado eopoldo Infante • Daniel Kelson • Ofer Lahav • Doron Lemze • Dan Maoz • Elinor Medezinski • Leonidas Moustakas • Eniko Regoes Adam Riess • Piero Rosati • Stella Seitz • Keiichi Umetsu • Arjen van der Wel • Wei Zheng • Adi Zitrin A 524-orbit HST Multi Cycle Treasury Program (2010-2012)

CLASH = Cluster Lensing And Supernova survey with Hubble

- 25 carefully-selected clusters at 0.2<z<0.9
- 16 WFC3/ACS band imaging

Postman+11 (arXiv:1106.3328)

Thank You!

Halo central density somewhat higher than LCDM predictions??

Observed "lensing" clusters are more concentrated than LCDM?

Umetsu et al. 2011b

Oguri et al. 2010 Broadhurst, Umetsu, Medezinski+08