Mass Distribution in and around Galaxy Clusters from Gravitational Lensing:

Cluster Lensing And Supernova survey with Hubble

Keiichi Umetsu (ASIAA, Taiwan) with the CLASH team

Galaxy Clusters as Cosmological Probes

Boylan-Kolchin+09

Galaxy Clusters as Cosmological Probes

Boylan-Kolchin+09

Surrounding LSS (2h)

- ✓ Halo bias b(M,z)
- ✓ Primordial matter P(k)

Halo structure (1h)

- ✓ Mass, M(r):
 Cluster cosmology
- ✓ Concentration, c(M,z):
 Halo mass assembly
- ✓ Central cusp:
 DM nature

Substructure

- ✓ Mass accretion history
- Subhalo mass function

Tangential Shear

Measure of azimuthally-averaged tangential coherence of elliptical distortions around a given point (Kaiser 95):

$$\gamma_{+}(R) = \Delta \Sigma(R) / \Sigma_{\text{crit}} \qquad \gamma_{+}$$

$$(\Gamma_{+})_{ij} = \left(\delta_{i}\delta_{j} - \frac{1}{2}\Delta^{(2)}\delta_{ij}\right)\psi_{+}$$
Brock
$$\gamma_{\times}(R) = 0 \qquad \gamma_{\times} \qquad \gamma_{\times}$$

$$(\Gamma_{X})_{ij} = (\epsilon_{kj}\partial_{i}\partial_{k} - \epsilon_{ki}\partial_{j}\partial_{k})\psi_{X}$$

 $\Sigma = \int dl \delta \rho$

 $\Delta\Sigma(R)$ is the radially-modulated surface mass density:

$$\Delta \Sigma(R) = \underline{\Sigma(< R)} - \Sigma(R)$$

Sensitive to interior mass

 $\Sigma_{crit}(z_l, z_s)$ is the critical surface mass density of lensing

Shear doesn't see mass sheet

Averaged lensing profiles in/around LCDM halos (Oguri+Hamana 11)

- Tangential shear is a powerful probe of 1-halo term, or internal halo structure.
- Shear alone cannot recover absolute mass, known as mass-sheet degeneracy

Non-local substructure effect

Known ~10% negative bias in mass estimates from tangential-shear fitting, inherent to clusters sitting in substructured field (Rasia+12)

Cluster Lensing Magnification

MACSJ1149 (z=0.54) Zheng+CLASH. 2012, *Nature, 489, 406*

Magnification Effects

- Image flux, F: $\mu \sim 1+2\kappa$
- Image size, *r*: $\mu^{1/2} \sim 1 + \kappa$
- Sky area, $\Delta \Omega$: $\mu \sim 1+2\kappa$

Sensitive to "local" matter density $\kappa = \Sigma / \Sigma_{crit}$

Negative Magnification Bias: Count Depletion Geometric shear-magnification consistency Number counts of red galaxies at <z>~1 highly depleted

Umetsu+11a, ApJ, 729, 127

Subaru telescope data

Combining Shear and Magnification

Bayesian joint-likelihood analysis (Umetsu+11a; Umetsu 13)

- Mass-sheet degeneracy broken
- Total statistical precision improved by ~20-30%
- Calibration uncertainties marginalized over: $c = \{\langle W \rangle_s, f_{W,s}, \langle W \rangle_\mu, \overline{n}_\mu, s_{eff}\}.$

Mass profiles from full-lensing analysis

Multi-scale, multi-probe lensing approach (strong-lensing + shear + magnification) with *HST*+Subaru, probing > 2 decades in cluster-centric radius, R= $[5x10^{-3}, 1.5]$ R_{vir}

CLASH:

Cluster Lensing And Supernova survey with Hubble

An HST Multi-Cycle Treasury Program designed to place new constraints on the fundamental components of the cosmos: dark matter, dark energy, and baryons.

Wide-field Subaru imaging (0.4 - 0.9 µm) plays a unique role in complementing deep HST imaging of cluster cores.

My talk will focus on CLASH-WL results based primarily on Subaru data

The CLASH Gallery (HST)

The final HST observation for CLASH was on 9-July-2013 ... 963 days, 15 hrs, 31 min after first obs.

CLASH X-ray-selected subsample

WL mass maps: 16 clusters completed

X-ray maps: 20 CLASH clusters are purely X-ray selected to be massive and relaxed

	•	Ó		
Abell 209	Abell 383	Abell 611	Abell 1423	Abell 2261
6		•	•	
MACS 0329-0211	MACS 0429-0253	MACS 0744+3927	MACS 1115+0129	MACS 1206-0847
	·	0	٠	
CLJ1226+3332	MACS 1311-0310	RXJ 1347-1145	MACS 1423+2404	RXJ 1532+3020
•			•	0
MACS 1720+3536	MACS 1931-2634	RXJ 2129+0005	MS-2137	RXJ 2248-4431

Umetsu+CLASH 14, in prep (Subaru, 24'x24')

Postman+CLASH 12, ApJS

Ensemble-averaged DM halo profile

Stacking of weak-lensing signals by weighting individual clusters according to the sensitivity kernel matrix:

$$\langle\!\langle \widehat{\Delta\Sigma_+} \rangle\!\rangle = \left(\sum_n \mathcal{W}_{+n}\right)^{-1} \left(\sum_n \mathcal{W}_{+n} \widehat{\Delta\Sigma_{+n}}\right),$$

with the individual sensitivity matrix

$$(\mathcal{W}_{+n})_{ij} \equiv \Sigma_{c,n}^{-2} \left(C_{+n}^{-1} \right)_{ij}$$

defined with the total covariance matrix

$$\mathcal{C}_{+} = \mathcal{C}_{+}^{\mathrm{stat}} + \mathcal{C}_{+}^{\mathrm{sys}} + \mathcal{C}_{+}^{\mathrm{lss}}.$$

With "trace-approximation", averaging is interpreted as

$$\langle\!\langle \Sigma_c^{-1} \rangle\!\rangle = \frac{\sum_n \operatorname{tr}(\mathcal{W}_{+n}) \Sigma_{c,n}^{-1}}{\sum_n \operatorname{tr}(\mathcal{W}_{+n})},$$

CLASH-WL: Stacked Shear-only Analysis

Ensemble-averaged DM-halo mass profile

Consistent with a family of density profiles for collisionless-DM halos in gravitational equilibrium (NFW, BMO, Einasto)

CLASH-WL: Mass-concentration relation

CLASH-WL: Shear+Magnification measurements of 16 X-ray clusters

CLASH low mass

CLASH high mass

M_{vir}=6e14Msun/h (z=0.19)

M_{vir}=23e14Msun/h (z=0.45)

CLASH-WL: Stacked total mass profile from combined shear + magnification

- Measuring 1h+2h term out to R=2r_{vir} around 16 X-ray clusters with $\langle M_{vir} \rangle = 10e14Msun/h$ at $\langle z \rangle = 0.35 \rightarrow halo bias b_h^L = 9$ (Tinker+10)
- Testing shear vs. magnification consistency in the context of LCDM

2D halo model decomposition: smoothly-truncated NFW (BMO) + LCDM 2h-term

Umetsu+CLASH14 in prep

"Scaled" Mass Profile Shape

Strong-lensing (SL) vs. X-ray selected cluster samples

- When scaled, their ensemble-averaged mass profiles are consistent within errors.
- The SL clusters appear to have a steeper outer profile: i.e., less significant 2h-term in projection space.

MACS1206 (z=0.44): A cluster with a high degree of dynamical relaxation

Total mass profiles from completely independent methods agree.

~340 kpc

MACS1206 (z=0.44): A cluster with a high degree of dynamical relaxation

Total mass profiles from completely independent methods agree.

-340 kpc

Constraining the DM Equation of State

B. Sartoris et al., submitted to ApJ Letters

- By testing whether the intracluster DM is pressureless (w=0) using cluster mass profiles M(<r) of MACS1206 determined from 2-independent ways:
 - Gravitational lensing with HST+Subaru (Umetsu+2012)
 - Galaxy kinematics with VLT/VIMOS (Biviano+2013)
- Test made possible by our high-quality CLASH data for an equilibrium cluster:

$$w(r) = \frac{p_r(r) + 2p_t(r)}{c^2 3\rho(r)}$$

Framework

Consider the static, spherically-symmetric metric within a DM halo of the form:

$$ds^{2} = -e^{-2\Phi(r)}dt^{2} + \left[1 - \frac{2Gm(r)}{r}\right]^{-1}dr^{2} + r^{2}d\Omega^{2}.$$

Consider an intracluster DM fluid with anisotropic pressure. In this metric, the Einstein field equations read:

$$\begin{split} \rho(r) &= \frac{1}{8\pi G} \frac{m'}{r^2}, \\ p_r(r) &= -\frac{1}{8\pi G} \frac{2}{r^2} \left[\frac{m}{r} - r \Phi' \left(1 - \frac{2m}{r} \right) \right], \\ p_t(r) &= \frac{1}{8\pi G} \left\{ \left(1 - \frac{2m}{r} \right) \left[\frac{\Phi'}{r} + \Phi'^2 + \Phi'' \right] - \left(\frac{m}{r} \right)' \left(\frac{1}{r} + \Phi' \right) \right\}. \end{split}$$

The equation of state of this DM fluid is defined as

$$w(r) = \frac{p_r + 2p_t}{3\rho}$$

Consider the weak-field limit, $|\Phi| \ll 1$, $Gm/r \ll 1$.

DM EoS from kinematics+lensing

The JeanSequation provides a way to measure the cluster mass profile from cluster galaxy kinematics

$$m_K(r) = -\frac{r\sigma_r^2}{G} \left[\frac{d\ln n_g}{d\ln r} + \frac{d\ln \sigma_r^2}{d\ln r} + 2\beta \right],$$

where galaxies as the probe particles are non-relativistic, $\sigma_r, \sigma_t \ll 1$ with $\beta = 1 - \sigma_t^2/(2\sigma_r^2)$. In our metric, the kinematic mass profile is related to the potential by

$$m_K(r) = \frac{r^2}{G} \Phi' \approx 4\pi \quad \int [1 + 3w(r)] r^2 \rho(r) dr.$$

Gravitational lensing is sensitive to g_{00} and g_{rr} . Hence, its potential and associated mass profile are defined by

$$2\Phi_l \equiv \Phi + G \int \frac{m(r)}{r^2} dr,$$
$$m_L(r) \equiv \frac{r^2}{G} \Phi'_l = \frac{1}{2} \left[m_K(r) + m(r) \right]$$

To first order, the DM equation of state is sensitive to the derivatives of the lensing and kinematic mass profiles:

$$w(r) \approx \frac{2}{3} \frac{m'_K(r) - m'_L(r)}{2m'_L(r) - m'_K(r)}$$

 $\langle w \rangle = 0.00 \pm 0.14(stat) + 0.03(syst)$ Consistent with w=0 Negligible baryonic contribution

averaged in R=0.5-2Mpc

Summary

- Ensemble-averaged internal halo structure $\Delta\Sigma$ (1h) of relaxed CLASH clusters in good agreement with a family of standard (collisionless) DM predictions:
 - Halo mass: M_{200} =(1.4 +/- 0.1) 10¹⁵ M_{sun} at z=0.35
 - Degree of curvature: α =0.25 +/- 0.07 (Einasto)
 - Degree of concentration: 3.3<c_{200}<4.2 at 1σ
- Total matter distribution Σ (1h+2h) around clusters determined from shear+magnification, being consistent with the shear-only prediction (b_h~9), thus establishing consistency in the context of LCDM.

Summary (contd)

- CLASH HST (SL) + Subaru (WL) + VLT (kinematics), providing high-quality data to test DM models:
 - 20 CLASH clusters X-ray-selected to be relaxed
 - 5 CLASH clusters lensing-selected (merging clusters)
- For a relaxed cluster with no orientation bias (for lensing), lensing+kinematics (HST+Subaru+VLT) can be used to test the pressureless assumption of DM.
 - CLASH-VLT redshift survey is in progress (12 southern CLASH clusters at 0.3<z<0.6), providing 500 members/cluster out to >3Mpc.

Supplemental Slides

Power of Stacking Analysis

Stacking lensing signals around a sample of clusters to average out projection effects due to halo asphericity, substructure, and uncorrelated LSS

Okabe, Smith, Umetsu+13

November 25, 2013

PASCOS 2013

Mas Distribution in and around Galaxy Clusters from Strong-Lensing, Weak-Lensing Shear and Magnification

Keiichi Umetsu (ASIAA, Taiwan) with the CLASH team

