July 1st, 2013

Cluster Mass Distribution from Weak Lensing Shear and Magnification

> Keiichi Umetsu, ASIAA, Taiwan

Acknowledgment

ASIAA, Taiwan

- Nobuhiro Okabe (ASIAA → IPMU from Sep) and LocuSS
- Jean Coupon (ASIAA \rightarrow Geneva from Oct)

CLASH team, with special thanks to CLASH-WL:

- Elinor Medezinski
- Mario Nonino
- Alberto Molino
- Stella Seitz
- Julian Merten
- Peter Melchor
- Anton Koekemoer
- Marc Postman
- Holland Ford
- Tom Broadhurst

Next speakers

Galaxy Clusters as Cosmological Probes

Boylan-Kolchin+09

Surrounding LSS (2h)

- ✓ Halo bias b(M,z)
- ✓ Primordial matter P(k)

Halo structure (1h)

- Average & individual M(r):
 Cluster cosmology (this and Anja's talks)
- ✓ c(M,z): Halo assembly history
- Central cusp: DM nature (Tommaso's talk)

Substructure

- Mass accretion history
- Subhalo mass function

Tangential Shear

Measure of azimuthally-averaged tangential coherence of elliptical distortions around a given point (Kaiser 95):

$$\gamma_{+}(R) = \Delta \Sigma_{+}(R) / \Sigma_{\text{crit}}(z_{l}, z_{s})$$

 $\gamma_{\times}(R) = 0$

 $\Delta \Sigma_{+}(R)$ is the *modulated* surface mass density of the lens:

$$\Delta \Sigma_+(R) = \Sigma(< R) - \Sigma(R)$$

Sensitive to interior mass

 $\Sigma_{crit}(z_l, z_s)$ is the critical surface mass density of lensing

Shear doesn't see mass sheet

Averaged lensing profiles in/around LCDM halos (Oguri+Hamana 11)

- Tangential shear is a powerful probe of 1-halo term, or internal halo structure.
- Shear alone cannot recover absolute mass, known as mass-sheet degeneracy

Non-local substructure effect

5-15% negative bias (M_{2500c} - M_{200c}) from tangential shear fitting, inherent to clusters sitting in biased, substructured fields (Rasia+12)

Magnification Effects

- Image flux, F: $\mu \sim 1+2\kappa$
- Image size, *r*: $\mu^{1/2} \sim 1 + \kappa$
- Sky area, $\Delta \Omega$: $\mu \sim 1+2\kappa$

Sensitive to "local" matter density $\kappa = \Sigma / \Sigma_{crit}$

Count depletion: geometric effect Geometric shear-magnification consistency

Flux-limited red galaxy samples at <z>~1 highly depleted

Umetsu+11a, ApJ, 729, 127

High-purity background source selection (color-color selection) is the most critical requirement for accurate cluster weak-lensing measurements!!

See Elinor's talk.

Combining Shear and Magnification

Bayesian joint-likelihood method (Umetsu+11a, ApJ, 729, 127)

- Mass-sheet degeneracy broken
- Total statistical precision improved by ~20-30%
- Reduced sensitivity to systematics

Multi-probe Lensing Approach: Shear, magnification bias (+,-), strong lensing X-ray selected cluster MACS1206 (z=0.44)

Umetsu, Medezinski, Nonino+CLASH 12, ApJ Umetsu 13, ApJ, 769, 13 [methodology]

See Elinor's talk for MACS0717

Mass profiles from full lensing analysis

Multi-probe lensing approach (SL + shear + magnification) with HST+Subaru, probing R= ~10kpc/h to ~3000kpc/h, also providing consistency tests against systematics

Magnification boosts <z_{source}>

Flux-limited redshift samples of background sources

Applications to SDSS/BOSS

- SDSS: ~10,000 foreground (lens) clusters (z<0.3)
- BOSS: ~300,000 background galaxies (z>0.45)

Coupon, Broadhurst, & Umetsu 13, ApJ in press (arXiv:1303.6588)

5σ detection behind SDSS clusters

5,646 clusters

Model uncertainty

- LF cosmic variance
- BOSS color selection

Measurement uncertainty

Variance in BOSS n(z), estimated from randomizing cluster positions

Coupon, Broadhurst, & Umetsu 13, ApJ in press (arXiv:1303.6588)

Prospects of the <z>-boost effect

- First detection at 5σ in SDSS/BOSS
- Very low systematic error budget
- More sensitive to clustering 2h-term than shear

Upcoming redshift surveys

- Completed BOSS (10,000deg^2) \rightarrow S/N~15
- BigBOSS (14,000deg^2, 18M gals) → S/N~60
- Euclid (15,000deg^2, 50M gals) → S/N~100
- Subaru PFS (1,400deg^2, 4M gals), up to zs=2 (high res), with high-z clusters from HSC [unique]

CLASH:

Cluster Lensing And Supernova survey with Hubble

An HST Multi-Cycle Treasury Program designed to place new constraints on the fundamental components of the cosmos: dark matter, dark energy, and baryons.

Wide-field Subaru imaging (0.4 - 0.9 μm) plays a unique role in complementing deep HST imaging of cluster cores.

My talk will focus on CLASH-WL based primarily on Subaru data. See Marc, Elinor, and other CLASH talks.

X-ray selected CLASH clusters

WL mass maps: 15 clusters completed

X-ray maps: 20 CLASH clusters are purely X-ray selected, mostly "relaxed" (Allen+04,08, Mantz+10)

	0	ð		0
Abell 209	Abell 383	Abell 611	Abell 1423	Abell 2261
			9	
MACS 0329-0211	MACS 0429-0253	MACS 0744+3927	MACS 1115+0129	MACS 1206-0847
•		0		o
CL1226+3332	MACS 1311-0310	RXJ 1347-1145	MACS 1423+2404	RXJ 1532+3020
MACS 1720+3536	MACS 1931-2634	RXJ 2129+0005	MS-2137	RXJ 2248-4431
Postman+CLASH 12, ApJS				

Toward unbiased mass measurements

- Stack WL signals around many clusters to average out projection effects due to halo asphericity, substructure, and cosmic shear, providing the net 1-halo constraint (this talk)
- 2. Multi-probe lensing approaches (individual clusters):
 - Combine shear + magnification to get κ (this talk)
 - Combine shear + SL to get κ (SaWLenS by Julian Merten: Marc's talk)
 - Combine shear + magnification + SL to get κ (CLASH in progress)

Stacked WL-shear analysis

CLASH-WL vs. DM simulations

Data: Total mass vs. matter concentration **Theory:** DM mass vs. DM concentration Nontrivial baryonic feedback (Duffy+10; De Boni+13)

CLASH-WL: Stacked mass profile from combined shear + magnification

- Measuring 1h + 2h term out to R=2r_{vir} around 15 X-ray clusters with $<M_{vir}>=1.1e15Msun/h at <z>=0.36 \rightarrow b_{h}(M,z) = 9 (Tinker+10)$
- Testing shear vs. magnification consistency

CLASH-WL: Stacked mass profile from combined shear + magnification

- Measuring 1h + 2h term out to R=2r_{vir} around 15 X-ray clusters with $<M_{vir}>=1.1e15Msun/h at <z>=0.36 \rightarrow b_{h}(M,z) = 9 (Tinker+10)$
- Testing shear vs. magnification consistency

CLASH-WL: Stacked mass profile from combined shear + magnification

- Measuring 1h + 2h term out to R=2r_{vir} around 15 X-ray clusters with $<M_{vir}>=1.1e15Msun/h at <z>=0.36 \rightarrow b_h(M,z) = 9 (Tinker+10)$
- Testing shear vs. magnification consistency

CLASH-WL Summary (1)

- Stacked shear constraint from 15 X-ray clusters in good agreement with recent LCDM predictions (Bhattacharya+13)
 - 2-paramter NFW form (3-para Einasto, ok)
 - <c_vir >~5 (<c_200c} >~4) for "relaxed" <M_vir >~1.6e15Msun clusters at z=0.36
 - $c(CLASH-WL)/c(Bhat13)|_{relax} = 1.1 + 0.2 (Umetsu+CLASH)$
 - c(LoCuSS-WL)/c(Bhat13)|_{full} = 1.1 +/- 0.1 (Okabe+13)
 - CLASH-WL in agreement with CLASH-SaWLenS (Merten+CLASH 13, in prep). See Marc's talk.
- An apple-to-apple comparison with theory requires:
 - Apply CLASH sample selection to theory (Massimo's talk)
 - Include baryons in sim (AGN feedback, gas cooling, SF)
 - Or subtract baryonic components from data (Claudio's talk)

CLASH-WL Summary (2)

- A model-independent, averaged mass profile
 <Σ(R)> is derived from WL shear+magnif data,
 for a sample of 15 X-ray clusters out to R=2r_{vir}
 - The <Σ(R)> profile is consistent with LCDM (1h+2h) predicted from stacked shear analysis of the same sample.
- CLASH in progress to combine full lensing constraints: i.e., SL, shear and magnification.