Gravitational Lensing and Observational Cosmology

Umetsu, Keiichi (梅津敬一) ASIAA

1

Outline

- Lecture Source
 - Introduction
 - Structure in the Universe
 - Observational Cosmology
 - Evidence for Big Bang: Expanding Universe
 - Initial Seeds of Cosmic Structure
 - Lambda Cold Dark Matter Paradigm The Dark Side of the Universe
 - Gravitational Lensing by Clusters of Galaxies and Large Scale Structure
 - Gravitational Deflection
 - Lens Equation and Image Distortions
 - Strong and Weak Lensing in Clusters
 - Cosmic Weak Gravitational Shear by Large Scale Structure

1. Introduction

Structure in the Universe

Star Clusters

Elliptical Galaxy NGC 1132

Many² Distant Galaxies...

Hubble Deep Field

HST · WFPC2

PRC96-01a · ST Scl OPO · January 15, 1996 · R. Williams (ST Scl), NASA

Furthest Galaxies..

Hubble Ultra Deep Field

Group of Galaxies

Clusters of Galaxies (I)

A1689: Largest mass concentration in the Universe

Clusters of Galaxies (II)

Strong Gravitational Lensing Cluster Cl0024+17 at z=0.395

The Coma Cluster

The X-ray gas

Great Wall, Filaments, Voids

136,304 galaxy redshifts obtained by 2009

Universe

13.7Gyr after the Big-Bang:

Large Variety and Wealth of Hierarchical Structures:

How are they formed?

Major Pieces of Evidence for Big Bang

"That the universe is expanding and cooling is the essence of the big bang theory" by P.J.E. Peebles Redshift vs. Scale factor

- Hubble Expansion
 - Hubble's law (Edwin Hubble, 1929)
 - Distant galaxies are receding (redshifting): $V = H_0 r$
 - The universe (space) is expanding
 - Separation between 2 points: r(t) = a(t) x with no peculiar velocity, dx/dt=0
 - Then, V := dr/dt = (da/dt)/a r = Hr with the expansion rate, H := (da/dt)/a
 - Hubble constant: $H_0 := H(t_0) = 100 \text{ h km/s/Mpc}$ with h=0.71±0.025 (WMAP7)
- Abundances of Light Elements: Big Bang Nucleosynthesis (BBN)
 - About $\frac{1}{4}$ of the baryonic mass should be in the form of He⁴ (Y ~ 0.25)
- Cosmic Microwave Background Radiation (CMBR)
 - The universe should be filled with a relic uniform blackbody radiation (with Tγ ~ 2.7K) 7/27/2010

Now let's look back to the early universe by:

Cosmic Microwave Background radiation (**CMB**) from its last-scattering surface (z~1100, T~3000 K)– at which CMB photons decouple from matter (electrons) and start freely propagate to us.

Full Sky Microwave Map: COsmic Background Explore (COBE)

COBE/FIRAS (Far InfraRed Absolute Spectrophotometer)

Uniform blackbody

• T_{CMB}=2.725±0.002K (Mather et al. 1999)

Universe 380,000yr after the Big-Bang:

Almost perfectly smooth

The Early Universe:

Almost perfectly uniform and isotropic without any discernible structures..

"How did the present variety and wealth of structures emerge out of the smooth early universe???"

Temperature Anisotropies seen by COBE/DMR

T = 2.728 K

Uniform component

COBE/FIRAS: determined to $T_{CMB} = 2.725 \pm 0.002 [K]$ 0.1% accuracy $T(z) = T_{CMB}(1+z)$

Dipole component

Motion of the solar $\left(\frac{\delta T}{T_{CMB}}\right)_{180^{\circ}} \approx 10^{-3}$ system w.r.t. CMB: 371 km/s (cf. Galactic rotation: ~220km/s)

Multipole components

We Have Seen the Cosmic Seeds!!

Presence of tiny density perturbations in the early universe

- Origin: Quantum fluctuations expanded to super-horizon scales during "cosmic inflation"
- Patterns and strengths of primordial density and velocity perturbations visible as temperature anisotropy in CMB

 To form structure, an amplification by >10⁵ needed during the cosmic expansion to the present time → Dark Matter (DM) is needed!

 \bullet CMB anisotropies observed on subdegree scales (e.g., WMAP) do indicate the existence of DM!! $_{20}$

COBE (1989-1993); WMAP (2001-2010)

Lambda Cold Dark Matter (ACDM) Paradigm

Current paradigm of structure formation: ACDM (CDM with a cosmological constant)

- Initial conditions (@ z~1100), precisely known from linear theory & CMB+ observations
- >70% of the "present-day" energy density is in the form of Dark Energy, leading to an accelerated cosmic expansion.
- ~85% of our "material universe" is composed of (non-relativistic, or cold) Dark Matter.
- Cosmic structure forms via gravitational instability in an expanding universe
- Bottom-up nature: smaller objects first formed, and larger ones form via mergers and mass accretions

Gravitational Instability

Tiny density perturbations have evolved into "cosmic web" structure

Clusters of Galaxies

Clusters of galaxies: largest

self-gravitating systems (aka, DM halos) with $\delta >>1$, composed of 10²⁻³ galaxies

23

$$R_{vir} \sim 1-2 \text{Mpc} / h \implies t_{dyn} = 3-5 \text{Gyr} < t_{H}$$

 $R_{B}T_{gas} \sim 5-10 \text{keV}$

Simulation of dark matter around a forming cluster (Springel et al. 2005)

Relevant Scales

Distances measured in Mpc/h (Mega per-sec per h)

• 1 Mpc/h = 3.18×10^{24} cm = $3.26 \times$ M light-year/h

~ typical size of clusters of galaxies

• 5 Mpc/h ~ R_g = typical separation of field galaxies

- Galaxy 2-point correlation function: $\xi_{gg}(R_g) := 1$

• 20 Mpc/h ~ typical separation of clusters of galaxies

- Cluster 2-point correlation function: $\xi_{cc}(R_c) := 1$

- 30 Mpc/h ~ R_{nl} = present-day nonlinear scale
 - $\delta(R_{nl}, z=0) := 1 \text{ with } \delta(\mathbf{x}, t) = \frac{\rho(\mathbf{x}, t) \overline{\rho}(t)}{\overline{\rho}(t)}$
 - On large scales $R > R_{nl}$, the universe is homogeneous ($\delta(R) <<1$)
 - Characteristic scales of large-scale structure: filaments, voids etc.
- 150 Mpc/h ~ R_{s.h.} = sound horizon at the decoupling epoch (z~1100)
- 3000 Mpc/h ~ c/H₀ ~ Horizon scale of the universe $\frac{7/27/2010}{7/27/2010}$

3. Gravitational Lensing by Clusters of Galaxies and LSS

My lecture note on

"Cluster Weak Gravitational Lensing"

from "Enrico-Fermi Summer School 2008, Italy" found @ arXiv:1002.3952 (also cited in The Net Advances of Physics)

Theoretical backgrounds and basic concepts on cosmological lensing and observational techniques are summarized in these lecture notes.

7/27/2010

Gravitational Lensing

Gravitationally lensed images of background galaxies carry the imprint of $\Phi(x)$ of intervening cosmic structure:

Gravitational Lensing is based only on gravity, so is the most direct method to study the Dark Side of the Universe!

Gravitational Bending of Light Rays

Gravitational deflection angle in the weak-field limit ($|\Phi|/c^2 < 1$)

Light rays propagating in an inhomogeneous universe will undergo **small transverse excursions** along the photon path: i.e., **light deflections**

Bending angle

7/27/2010

$$\left|\delta\hat{\alpha} \approx \frac{\delta p_{\perp}}{p_{\parallel}} = -\frac{2}{c^2} \nabla_{\perp} \Psi(x_{\parallel}, x_{\perp}) \delta x_{\parallel}\right|$$

Small transverse excursion of photon momentum

$$\hat{\alpha}^{\text{GR}} = 2\hat{\alpha}^{\text{Newton}} \rightarrow \frac{4GM}{c^2 r} = 1."75 \left(\frac{M}{M_{sun}}\right) \left(\frac{r}{R_{sun}}\right)^{-1}$$

27

Lens Equation (for galaxy cluster lensing)

Shape and Area Distortions Differential deflection due to tidal force causes a distortion in "area" and "shape" of an image θ Image Source Observer Lens ZS ŻL

Deformation of shape/area of an image

$$\delta\beta_i = (\delta_{ij} - \psi_{,ij})\delta\theta_j + O(\delta\theta^2)$$

Strong and Weak Lensing in Clusters

Strong Lensing: Multiple Imaging (I)

A source galaxy at z=1.675 has been multiply lensed into 5 apparent images

CL0024+1654 (z=0.395) HST/WFPC2 ₃

Strong Lensing: Critical Curves and Caustics

Elliptical lens potential (non-circularly symmetric case)

$$\mathbf{\beta} - \mathbf{\theta} = -\nabla \psi(\mathbf{\theta})$$

7/27/2010

Strong Lensing: Multiple Imaging (II)

■ Triple-images (I_1 , I_2 , I_3) of a z=3.9 source galaxy located in the vicinity of the cusp caustic

The lens is a z=0.83 chain cluster in the process of formation

Magnification factor is estimated as ~5

Clusters serve as Natural Gravitational Lensing Telescopes!

Umetsu et al. 2005

Strong Lensing: Giant Luminous Arcs

RCS0224, HST/ACS cluster z = 0.77, arc z = 4.89

Demonstration of Strong Lensing

"A lens moving across the background galaxies"

By Frank Summers (STScI)

7/27/2010

Spectacular Example of Tangential Arcs

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08 HST • WFPC2

Weak Lensing (1): Gravitational Shear

Cluster z = 0.77; Arc z = 4.89: Photo from H. Yee (HST/ACS)

Observable tangential alignment of background galaxy images, probing the underlying gravitational field of cosmic structure

Simulated 3x3 degree field (Hamana 02)

Example of WL Tangential Shear Measurement

$$\gamma_{+}(r) \propto \Delta \Sigma_{m}(r) \equiv \overline{\Sigma}_{m}(< r) - \Sigma_{m}(r)$$

Measure of tangential coherence of distortions around the cluster (Tyson & Fisher 1990)

Mean tangential ellipticity of background galaxies (g_+) as a function of cluster radius; uses typically (1-2) x 10⁴ background galaxies per cluster, yielding typically S/N=5-15 per cluster.

Weak Lensing (2): Magnification Bias

Magnification bias: Lensing-induced fluctuations in the background density field (Broadhurst, Taylor, & Peacock 1995)

$$\delta n(\mathbf{\theta}) / n_0 \approx -2(1 - 2.5\alpha) \Sigma_m(\mathbf{\theta}) / \Sigma_{\text{crit}}$$

with unlensed counts of background galaxies $n_0(< m) \propto 10^{\alpha m}$

When the count-slope is <0.4 (=lens invariant slope), a net deficit is expected.

unlensed

Example of Magnification Bias Measurement

Count depletion of "red" galaxies in CL0024+1654 (z=0.395)

Distortion of "blue+red" sample

Umetsu et al. 2010, ApJ, 714, 1470

Full Strong + Weak Lensing Analysis

Galaxy cluster: CL0024+1654 (z=0.395)

HST/ACS (2'x2' region)

SUBARU/Suprime-Cam R_{vir}=~ 1.8Mpc/h (~8 arcmin) Umetsu et al. 2010

Cluster DM Mass Profiles from Full Lensing

Combining Weak (Subaru) and Strong (HST/ACS) lensing data

 \rightarrow Probing full cluster mass profiles from 10kpc/h to 3000kpc/h

Results for Abell 1689 (z=0.183), CL0024+1654 (z=0.395), A1703 (z=0.281)

Umetsu+2010b, in prep (Full weak-lensing constraints from distortion + magnification MCMC analysis for 5 massive clusters)

Broadhurst, Takada, Umetsu+2005; Umetsu & Broadhurst 2008 (A1689); Zitrin, Broadhurst, Umetsu+arXiv.1004.4660: (A1703)

Umetsu+ 2010a (Cl0024+1654)

Weak Lensing by LSS: Cosmic Shear

Direct probe of matter distribution

- Governed solely by gravity
- No assumption about physical/dynamical state of the system

Sensitive probe of geometry of the

- $D_{A}(a)$, H(a), dV/da(a) vs. DE
- **Cosmic structure formation** *imprinted*

Weak Lensing Tomography

Hu 99; Huterer 02; Refregier et al. 03; Takada & Jain 04

Shear @ z=z1 & z2 is given by a LoS-integral of growth function $D_+(a)$ & distances over the matter distribution, $\delta(a)$

Lensing tomography probes "expansion kinematics" H(a) and "growth of structure" D₊(a), thereby sensitive to the background cosmology

Fin

7/27/2010