### The Full Strength of Cluster Gravitational Lensing: Mass Distribution in and around Cosmic Giants from the CLASH Survey

Cluster Lensing And Supernova survey with Hubble



Keiichi Umetsu (ASIAA, Taiwan)

# Contents

### 1. Introduction

- Galaxy Clusters
- LCDM Key Predictions

### 2. Cluster Gravitational Lensing

- Strong Lensing
- Shear
- Magnification

## 3. Cluster Lensing Results from CLASH

# 4. Summary

# 1. Introduction

# Galaxy Clusters as Cosmological Probe

# **Clusters of Galaxies**

#### Strong and weak lensing



MACS1206 cluster at *z*=0.44 (Umetsu et al. 2012, *ApJ*, 755, 56)

### Clusters: the largest/rarest class of DM halos Halos = gravitationally-bound objects $\frac{1}{2}\ddot{I} = 2K + U - E^{(S)} \sim 0$



Clusters formed at the intersection of filaments and sheets

Typical formation epoch:  $z_{\rm f}$ =0.5-0.7

Young halos are prolate (collisionless nature)



Boylan-Kolchin+09

# **Clusters as Cosmological Probe**



# Key Predictions of nonlinear structure formation models

### (1) Quasi self-similar DM-halo density profiles

# Quasi self-similar DM halo density profiles

Spherically-averaged density profiles  $\rho_{\rm h}(r)$  of collisionless DM halos from numerical simulations  $\rho_{\rm h}(r) \sim \rho_s f(r/r_s)$ 

#### Cuspy, outwardly-steepening density profiles



### Theoretical models:

- **DARKexp** (Hjorth & Williams 10): Statistical mechanical arguments to describe the distribution of particle energies in finite, self-gravitating, collisionless systems, providing theoretical predictions for the structure of collisionless DM halos.
- <u>Pontzen & Governato 13</u>: Maximumentropy arguments to derive the phasespace distribution for an end product of violent relaxation
- <u>Adhikari, Dalal, & Chamberlain 14</u>: outskirt steepening associated with first apocentric passage after accretion

# Key Predictions of nonlinear structure formation models

### (2) Halo concentration-mass relation

# **Degree of Mass Concentration**

 $c_{200} \equiv \frac{r_{200}}{r_s} = \frac{\text{(Outer scale radius)}}{\text{(Inner scale radius)}}$ 



In hierarchical structure formation, <*c*> is predicted to correlate with *M* 

DM halos that are more massive collapse later on average, when the mean background density of the universe is correspondingly lower (e.g., Bullock+01)

### Concentration is sensitive to cosmology



Dutton & Maccio 2014

# Intrinsic Scatter in *c*(*M*): Mass Assembly Histories (MAH)



- Scatter is due to another DoF ( $\alpha$ ), related to MAH (Ludlow+13)
- Larger values of  $\alpha$  correspond to halos that have been assembled more rapidly than the NFW curve
- Halos with average  $c_{200}$  have the NFW-equivalent  $\alpha \sim 0.18$

# Key Predictions of nonlinear structure formation models

(3) Halo bias: surrounding large-scale structure



# Halo Bias Factor: b<sub>h</sub>

Clustering of matter around halos with *M*:

$$\xi_{\rm hm}(r \mid M) \equiv \left\langle \delta_{\rm h}(\mathbf{x} \mid M) \delta_{\rm m}(\mathbf{x} + \mathbf{r}) \right\rangle$$
$$= \frac{\left\langle \rho_{\rm h}(r \mid M) \right\rangle}{\overline{\rho}} + b_{\rm h}(M) \xi_{\rm mm}(r) \quad \text{2h term}$$



**Correlated matter distribution (2h term)** 

#### Matter correlation function:

$$\xi_{\rm mm}(\mathbf{r}) \equiv \left\langle \delta_{\rm m}(\mathbf{x}) \delta_{\rm m}(\mathbf{x} + \mathbf{r}) \right\rangle = \int \frac{d^3k}{(2\pi)^3} P(k) e^{i\mathbf{k}\cdot\mathbf{r}}$$

 $\propto \sigma_8^2$ 

Linear halo bias:

$$b_{\rm h}(v) \approx 1 + \frac{v^2 - 1}{\delta_c}$$
$$v \equiv \frac{\delta_c}{\sigma(M, z)} \sim 3 - 4 \text{ for clusters}$$

Tinker+10 LCDM simulations

## 2. Cluster Gravitational Lensing



### Key Objectives

### **Cluster structure (1h)**

Halo mass, M Halo density profile, ρ(r) *c-M relation, c*(*M*,z)

### Surrounding LSS (2h)

Halo bias  $b_h(M,z)$ Clustering strength  $\sigma_8$ 

# Multiple Imaging (Strong Lensing)

$$\alpha = \partial \Psi$$

$$\partial := \partial_{x} + i\partial_{y} = e^{i\phi}\partial_{r}$$

$$\stackrel{1c}{=} 2d$$

$$\stackrel{1c}{=} 2$$

# **Gravitational Shear**

$$\gamma = \partial \partial \Psi / 2$$
$$\partial := \partial_x + i \partial_y = e^{i\phi} \partial_r$$

Cluster A2218 (NASA/ESA)

# **Gravitational Magnification**

 $\kappa = \partial \partial^* \Psi / 2 = \Delta \Psi / 2$  $\partial := \partial_x + i \partial_y = e^{i\phi} \partial_r$ 

MACSJ1149 (z=0.54) Zheng+CLASH. 2012, *Nature, 489, 406* 

# Shear and Magnification Effects



Shear

✓ Shape distortion:  $\delta e_+ \sim \gamma_+$ 

- Magnification
  - ✓ Flux amplification:  $\mu$ F

 $\checkmark$  Area distortion:  $\mu\Delta\Omega$ 

Sensitive to "modulated" matter density  $\Sigma_c \gamma_+ = \Delta \Sigma(R) \equiv \Sigma(\langle R \rangle - \Sigma(R))$ 

Sensitive to "total" matter density

 $\mu \approx 1 + 2\kappa; \quad \Sigma_c \kappa = \Sigma(R)$ 

# Tangential Shear, $\gamma_+$

A measure of azimuthally-averaged tangential coherence of elliptical distortions around a given point (Kaiser 95):

 $\gamma_+$   $\frown$ 

B mode

 $\Sigma(R) = \int dl \,\Delta$ 

$$\gamma_{+}(R) = \Delta \Sigma(R) / \Sigma_{c}$$
$$(\Gamma_{+})_{ij} = \left(\delta_{i}\delta_{j} - \frac{1}{2}\Delta^{(2)}\delta_{ij}\right)\psi_{+}$$

$$Y_{\times}(R) = 0$$
  
(\Gamma\_{X})\_{ij} = (\epsilon\_{kj} \partial\_{k} - \epsilon\_{ki} \partial\_{j} \partial\_{k}) \psi\_{X}

 $\Delta\Sigma(R)$  is radially-modulated surface mass density:

$$\Delta \Sigma(R) = \Sigma(< R) - \Sigma(R)$$

Sensitive to interior mass

# Shear doesn't see mass sheet

Averaged lensing profiles in/around LCDM halos (Oguri & Hamana 11)



- Tangential shear is a powerful probe of 1-halo term, or internal halo structure.
- Shear alone cannot recover absolute mass, known as *mass-sheet degeneracy:*

 $\gamma$  remains unchanged by  $\kappa \rightarrow \kappa + \text{const.}$ 

# Non-local substructure effect



Known 5%-10% negative bias in mass estimates from tangentialshear fitting, inherent to rich substrucure in outskirts (Rasia+12)



## Negative Magnification Bias Depletion of Number Counts Geometric shear-magnification consistency

Deep counts of red quiescent galaxies at <z>~1 are highly depleted



Subaru/Suprime-Cam data

Umetsu et al. 2011a, ApJ, 729, 127

### **Combining Shear and Magnification**

### Joint likelihood approach Tangential distortion Inverse magnification

# $L(\mathbf{\kappa}) = L_g(\mathbf{\kappa} \mid \mathbf{g}_+) L_\mu(\mathbf{\kappa} \mid \mathbf{\mu})$ $g_+(R) = \frac{\kappa(\langle R \rangle - \kappa(R)}{1 - \kappa(R)},$ $\mu^{-1}(R) = [1 - \kappa(R)]^2 - [\kappa(\langle R \rangle - \kappa(R)]^2$



- Mass-sheet degeneracy broken
- Total statistical precision improved by ~20-30%
- Calibration uncertainties marginalized over:  $c = \{\langle W \rangle_s, f_{W,s}, \langle W \rangle_\mu, \overline{n}_\mu, s_{eff}\}.$

# Multi-probe Lensing Approach: Combining azimuthally-averaged lensing observables

 $\{M_{2\mathrm{D},i}\}_{i=1}^{N_{\mathrm{SL}}}, \{\langle g_{+,i} \rangle\}_{i=1}^{N_{\mathrm{WL}}}, \{\langle n_{\mu,i} \rangle\}_{i=1}^{N_{\mathrm{WL}}}.$ 

 $L(\mathbf{\kappa}) = L_{\rm SL}(\mathbf{\kappa} \,|\, \mathbf{M}_{2\mathbf{D}}) L_g(\mathbf{\kappa} \,|\, \mathbf{g}_{+}) L_{\mu}(\mathbf{\kappa} \,|\, \mathbf{\mu})$ 



### Cluster Lensing And Supernova survey with Hubble



### PI. Marc Postman (STScI) http://www.stsci.edu/~postman/CLASH/Home.html

# **CLASH Objectives & Motivation**

Before CLASH (2010), deep-multicolor Strong (*HST*) + Weak (*Subaru*) lensing data only available for a handful of "**super lens" clusters** 



**Total mass profile shape:** consistent w self-similar NFW (cf. Newman+13; Okabe+13) **Degree of concentration**: predicted superlens correction not enough if <c<sub>LCDM</sub>>~3?

# **CLASH Objectives & Motivation**

Before CLASH (2010), deep-multicolor Strong (*HST*) + Weak (*Subaru*) lensing data only available for a handful of "**super lens" clusters** 



**Total mass profile shape:** consistent w self-similar NFW (cf. Newman+13; Okabe+13) **Degree of concentration**: predicted superlens correction is just enough if <c<sub>LCDM</sub>>~4



# CLASH: Observational + Theory Efforts

A 524-orbit *Hubble* Treasury Program to observe 25 clusters in 16 filters (0.23-1.6 µm) (Postman et al. 2012)









MUSIC-2 (hydro + N-body re-simulation) provides an accurate characterization of CLASH sample with testable predictions (Meneghetti et al. 2014, *ApJ*, 797, 34)

# SUBARU (S-Cam) multi-color imaging for wide-field weak

High-resolution space imaging with *HST* (ACS/WFC3) for strong lensing



#### 34 arcmin

#### **F**

# CLASH HST Dataset



The final HST observation for CLASH was on 9-July-2013 ··· 963 days, 15 hrs, 31 min after first obs.



Zitrin et al. 2015, ApJ, 801, 44



# Subaru Weak-lensing Dataset





### CLASH X-ray-selected Subsample (0.18<z<0.9)

### • High-mass clusters with smooth X-ray morphology

- $T_x > 5 \text{keV} (M_{200} > 5 \text{e} 14 M_{\text{sun}}/h)$
- Small BCG to X-ray-peak offset,  $\sigma_{\rm off} \simeq 10 {\rm kpc}/h$
- Smooth regular X-ray morphology

### $\rightarrow$ Optimized for radial-profile analysis

### • CLASH theoretical predictions (Meneghetti+14)

- Composite relaxed (70%) and unrelaxed (30%) clusters
- Mean < $c_{200}$ >=3.9,  $c_{200}$ =[3, 6]
- Small scatter in  $c_{200}$ :  $\sigma(\ln c_{200}) = 0.16$
- Largely free of orientation bias (~2% in  $\langle M_{3D} \rangle$ )
- >90% of CLASH clusters to have strong-lensing features

# CLASH: Joint Analysis of Strong-lensing, Weak-lensing Shear and Magnification Data for 20 CLASH Galaxy Clusters

Umetsu et al. 2015b (to be submitted by July 17)



### Joint Analysis of Multi-probe Lensing Profiles

 $\{M_{2\mathrm{D},i}\}_{i=1}^{N_{\mathrm{SL}}}, \{\langle g_{+,i}\rangle\}_{i=1}^{N_{\mathrm{WL}}}, \{\langle n_{\mu,i}\rangle\}_{i=1}^{N_{\mathrm{WL}}}.$ 

### Inner *HST* strong-lensing constraints on $M_{2D}(<R)$ (Zitrin et al 15) Strong-lensing integration radii:

 $\Delta = 10'' (R_{\rm Ein}/22'')^{1/2} (N/17)^{-1/2}$  sampling,  $R_{\rm max} \simeq 2 < R_{\rm Ein} > \simeq 40''$ 



# CLASH Stacked Full-lensing Analysis of the X-ray-selected Subsample

Umetsu et al. 2015b



# Averaged Halo Density Profile $\Sigma(R)$

Stacking lensing signals of individual clusters by

$$\langle\!\langle \mathbf{\Sigma} \rangle\!\rangle = \left(\sum_{n} \mathcal{W}_{n}\right)^{-1} \left(\sum_{n} \mathcal{W}_{n} \mathbf{\Sigma}_{n}\right),$$

Summing over clusters (n=1, 2, ..)

with individual "sensitivity" matrix

$$(\mathcal{W}_n)_{ij} \equiv \Sigma_{(\mathbf{c},\infty)n}^{-2} \left( C_n^{-1} \right)_{ij},$$

defined with total covariance matrix  $C = C^{\text{stat}} + C^{\text{sys}} + C^{\text{lss}} + C^{\text{int}},$ 

With "trace-approximation", averaging (stacking) isinterpreted as $\langle \langle M_{\Delta} \rangle \rangle = \frac{\sum_{n} \operatorname{tr}(\mathcal{W}_{n}) M_{\Delta,n}}{\sum_{n} \operatorname{tr}(\mathcal{W}_{n})}$ Umetsu et al. 2014,ApJ, 795, 163



# **Ensemble-averaged Error Budget**

Diagonal elements ( $C_{ii}$ ) averaged over all CLASH clusters





# Ensemble-averaged Surface Mass Density Profile



 $33\sigma$  detection of the ensemble-averaged mass profile out to  $\sim 2r_{200m}$ 



### Characterizing the Averaged Mass Profile Shape



$$\Sigma(R) = \int dl \, \Delta \rho(r),$$

### Models:

1. No 2-halo term, no truncation  $(f_t=1, \rho_{2h}=0)$ 2. With 2-halo term (Tinker+10)

$$\Delta \rho(r) = f_{\rm t}(r) \,\rho_{\rm h}(r) + \rho_{\rm 2h}(r),$$
$$f_{\rm t}(r) = \left[1 + \left(\frac{r}{r_{\rm t}}\right)^2\right]^{-2},$$



# **Comparison of Best-fit Models**

#### Acceptable fits: *p* values (PTE) > 0.05

 Table 4

 Best-fit models for the stacked mass profile of the CLASH X-ray-selected subsample

| Model                     | M200c                             | $c_{200c}$             | Shape/structural parameters                                         | $b_{ m h}$           | $\chi^2/{ m dof}$ | PTE <sup>a</sup> | Notes                               |
|---------------------------|-----------------------------------|------------------------|---------------------------------------------------------------------|----------------------|-------------------|------------------|-------------------------------------|
|                           | $(10^{14} M_{\odot} h_{70}^{-1})$ |                        |                                                                     |                      |                   |                  |                                     |
| NFW                       | $14.4^{+1.1}_{-1.0}$              | $3.76^{+0.29}_{-0.27}$ | $\gamma_c = 1$                                                      |                      | 11.3/11           | 0.419            | No truncation                       |
| gNFW                      | $14.1^{+1.1}_{-1.1}$              | $4.04^{+0.53}_{-0.52}$ | $\gamma_{\rm c} = 0.85^{+0.22}_{-0.31}$                             |                      | 10.9/10           | 0.366            | No truncation                       |
| Einasto                   | $14.7^{+1.1}_{-1.1}$              | $3.53^{+0.36}_{-0.39}$ | $\alpha_{\rm E} = 0.232^{+0.042}_{-0.038}$                          | _                    | 11.7/10           | 0.306            | No truncation                       |
| DARKexp $-\gamma^{b}$     | $14.5^{+1.2}_{-1.1}$              | $3.53^{+0.42}_{-0.42}$ | $\phi_0 = 3.90^{+0.41}_{-0.45}$                                     |                      | 13.5/10           | 0.198            | No truncation                       |
| Pseudo isothermal         | —                                 |                        | $V_{\rm c} = 1762^{+40}_{-39}$ km/s, $r_{\rm c} = 69^{+7}_{-7}$ kpc | _                    | 23.6/11           | 0.015            | No truncation                       |
| Burkert                   | $11.6^{+0.8}_{-0.8}$              |                        | $r_{200c}/r_0 = 8.81^{+0.42}_{-0.41}$                               | _                    | 29.9/11           | 0.002            | No truncation                       |
| Power-law sphere          | $12.5^{+0.8}_{-0.8}$              |                        | $\gamma_{\rm c} = 1.78^{+0.02}_{-0.02}$                             | _                    | 93.5/11           | 0.000            | No truncation                       |
| Halo model <sup>e</sup> : |                                   |                        |                                                                     |                      |                   |                  |                                     |
| NFW+LSS (i)               | $14.1^{+1.0}_{-1.0}$              | $3.79^{+0.30}_{-0.28}$ | $\gamma_c = 1$                                                      | 9.3                  | 10.9/11           | 0.450            | $\Lambda CDM b_h(M)$ scaling        |
| NFW+LSS (ii)              | $14.4^{+1.4}_{-1.3}$              | $3.74^{+0.33}_{-0.30}$ | $\gamma_c = 1$                                                      | $7.4^{+4.6}_{-4.7}$  | 10.8/10           | 0.377            | $b_{ m h}$ as a free parameter      |
| Einasto+LSS (i)           | $14.3^{+1.1}_{-1.1}$              | $3.69^{+0.36}_{-0.42}$ | $\alpha_{\rm E} = 0.248^{+0.051}_{-0.047}$                          | 9.3                  | 10.7/10           | 0.385            | $\Lambda \text{CDM} b_h(M)$ scaling |
| Einasto+LSS (ii)          | $14.5^{+1.9}_{-1.6}$              | $3.65^{+0.47}_{-0.61}$ | $\alpha_{\rm E} = 0.245^{+0.061}_{-0.053}$                          | $8.7^{+5.3}_{-5.6}$  | 10.6/9            | 0.301            | $b_{\rm h}$ as a free parameter     |
| DARKexp+LSS (i)           | $14.2^{+1.2}_{-1.1}$              | $3.64^{+0.44}_{-0.46}$ | $\phi_0 = 3.89^{+0.51}_{-0.54}$                                     | 9.3                  | 11.7/10           | 0.308            | $\Lambda CDM b_h(M)$ scaling        |
| DARKexp+LSS (ii)          | ) $14.0^{+1.8}_{-1.6}$            | $3.69^{+0.53}_{-0.57}$ | $\phi_0 = 3.85_{-0.61}^{+0.57}$                                     | $10.1^{+4.9}_{-5.1}$ | 11.6/9            | 0.235            | $b_{\rm h}$ as a free parameter     |

<sup>a</sup> Probability to exceed the observed  $\chi^2$  value.

<sup>b</sup> We use Dehnen–Tremaine  $\gamma$ -models with the central cusp slope  $\gamma_c = 3 \log_{10} \phi_0 - 0.65 (1.7 \le \phi_0 \le 6)$  as an analytic fitting function for the DARKexp density profile. <sup>c</sup> For halo model predictions, we decompose the total mass overdensity  $\Delta \rho(r) = \rho(r) - \overline{\rho}_m$  as  $\Delta \rho = f_t \rho_h + \rho_{2h}$  where  $\rho_h(r)$  is the halo density profile,  $\rho_{2h}(r) = \overline{\rho}_m b_h \xi_m^L(r)$  is the two-halo term, and  $f_t(r) = (1 + r^2/r_t^2)^{-2}$  describes the steepening of the density profile in the transition regime around the truncation radius  $r_t$ , which is assumed to be  $r_t = 3r_{200c}$ .

- Consistent with cuspy density profiles (NFW, Einasto, DARKexp)
- Cuspy models that include  $\Lambda$ CDM 2-halo term ( $b_h$ ~9.3) give improved fits
- The best model reproduces the observed Einstein radius,  $R_{\text{Ein}} \sim 20''$  at  $z_s=2$



# **Einasto Shape Parameter**





## **Einasto Shape Parameter**





# **Interpreting Effective Halo Mass**



Sensitivity-weighted composite-halo profile (Umetsu+14)

$$\langle\!\langle M_{\Delta} \rangle\!\rangle = \frac{\sum_{n} \operatorname{tr}(\mathcal{W}_{n}) M_{\Delta,n}}{\sum_{n} \operatorname{tr}(\mathcal{W}_{n})}$$

 $(\mathcal{W}_n)_{ij} \equiv \Sigma_{(\mathbf{c},\infty)n}^{-2} \left( C_n^{-1} \right)_{ij}$ 

# CLASH Concentration-Mass Relation for the X-ray-selected Subsample

Umetsu et al. 2015b



# CLASH c-M Scaling Relation

Consider a power-law scaling relation of the form:

$$c_{200c} = 10^{\alpha} \left(\frac{M_{200c}}{M_{\text{piv}}}\right)^{\beta} \left(\frac{1+z}{1+z_{\text{piv}}}\right)^{\gamma},$$

with pivot mass and redshift  $M_{piv} = 10^{15} M_{sun} / h$ ,  $z_{piv} = 0.34$ 

Define new independent (X) and dependent (Y) variables:

$$Y \equiv \log_{10} \left[ \left( \frac{1+z}{1+z_{\text{piv}}} \right)^{-\gamma} c_{200c} \right], \qquad \mathbf{Y} = \mathbf{\alpha} + \mathbf{\beta} \mathbf{X}$$
$$X \equiv \log_{10} \left( \frac{M_{200c}}{M_{\text{piv}}} \right).$$

Redshift slope is fixed to the theoretical prediction for the CLASH sample,  $\gamma$ =-0.668 (Meneghetti+14)



# **Bayesian Regression Analysis**

We take into account

- Covariance between observed *M* and *c*
- Intrinsic scatter in c
- Non-uniformity in mass probability distribution P(logM)

**Conditional probability** P(y|x): (x,y) = observed (X,Y)

$$\ln \mathcal{P}(\boldsymbol{y}|\boldsymbol{x}) = -\frac{1}{2} \sum_{n} \left[ \ln \left( 2\pi \sigma_n^2 \right) + \left( \frac{y_n - \langle y_n | x_n \rangle}{\sigma_n} \right)^2 \right],\tag{35}$$

where  $\langle y_n | x_n \rangle$  and  $\sigma_n^2 \equiv \operatorname{Var}(y_n | x_n)$  are the conditional mean and variance of  $y_n$  given  $x_n$ , respectively:

$$\langle y_n | x_n \rangle = \alpha + \beta \mu + \frac{\beta \tau^2 + C_{xy,n}}{\tau^2 + C_{xx,n}} (x_n - \mu),$$
  
$$\sigma_n^2 = \beta^2 \tau^2 + \sigma_{Y|X}^2 + C_{yy,n} - \frac{(\beta \tau^2 + C_{xy,n})^2}{\tau^2 + C_{xx,n}},$$
(36)

where  $\sigma_{Y|X}$  is the intrinsic scatter in the Y-X relation;



# Marginalized Posterior Distributions





# **Observations vs. Predictions**



Normalization, slope, & scatter are all consistent with LCDM when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account



0.2

0.25

0.3

Ω\_

0.35

# **Comparison with LCDM Models**

 Table 5

 Comparison of measured and predicted concentrations for the CLASH X-ray-selected subsample

| Author                                                                                                              | Sample        | 3D/2D | Function <sup>a</sup> | $c^{(obs)}/c^{(pred}$ | l)<br>d | $\chi^2$ | PTE <sup>b</sup> |                          |
|---------------------------------------------------------------------------------------------------------------------|---------------|-------|-----------------------|-----------------------|---------|----------|------------------|--------------------------|
|                                                                                                                     |               |       |                       | Average               | 0       |          |                  |                          |
| Theory:                                                                                                             |               |       |                       |                       |         |          |                  |                          |
| Duffy et al. (2008)                                                                                                 | full          | 3D    | c-M                   | $1.331 \pm 0.108$     | 0.334   | 22.6     | 0.046            | VVIVIAPS                 |
| Duffy et al. (2008)                                                                                                 | relaxed       | 3D    | c-M                   | $1.165 \pm 0.094$     | 0.290   | 13.6     | 0.399            |                          |
| Prada et al. (2012)                                                                                                 | full          | 3D    | $c-\nu$               | $0.733 \pm 0.065$     | 0.244   | 24.6     | 0.026            | 0.95                     |
| Bhattacharya et al. (2013)                                                                                          | full          | 3D    | $c-\nu$               | $1.169 \pm 0.095$     | 0.292   | 14.1     | 0.369            |                          |
| Bhattacharya et al. (2013)                                                                                          | relaxed       | 3D    | $c-\nu$               | $1.131 \pm 0.092$     | 0.277   | 12.4     | 0.494            |                          |
| Dutton & Macciò (2014)                                                                                              | full          | 3D    | c-M                   | $1.061 \pm 0.086$     | 0.262   | 10.4     | 0.659            | 0.9 Millennium • • WMAP1 |
| Meneghetti et al. (2014)                                                                                            | full          | 3D    | c-M                   | $1.061 \pm 0.089$     | 0.279   | 10.2     | 0.675            | F 7                      |
| Meneghetti et al. (2014)                                                                                            | relaxed       | 3D    | c-M                   | $0.990 \pm 0.083$     | 0.249   | 9.2      | 0.760            | Г 1                      |
| Diemer & Kravtsov (2015)                                                                                            | full (median) | 3D    | $c-\nu$               | $1.021 \pm 0.083$     | 0.330   | 14.4     | 0.349            |                          |
| Diemer & Kravtsov (2015)                                                                                            | full (mean)   | 3D    | $c-\nu$               | $1.060 \pm 0.086$     | 0.326   | 13.8     | 0.391            | 5 Bolshoi                |
| Meneghetti et al. (2014)                                                                                            | full          | 2D    | c-M                   | $1.087 \pm 0.092$     | 0.336   | 13.5     | 0.413            |                          |
| Meneghetti et al. (2014)                                                                                            | relaxed       | 2D    | c-M                   | $1.040 \pm 0.086$     | 0.283   | 10.8     | 0.628            |                          |
| Meneghetti et al. (2014)                                                                                            | CLASH         | 2D    | c-M                   | $0.988 \pm 0.078$     | 0.227   | 9.6      | 0.730            |                          |
| Observations:                                                                                                       |               |       |                       |                       |         |          |                  | 0.75 - •WMAP3 -          |
| Merten et al. (2015)                                                                                                | CLASH         | 2D    | c-M                   | $1.133 \pm 0.087$     | 0.209   | 9.2      | 0.754            |                          |
| $c-M$ : power-law $c(M, z)$ relation; $c-\nu$ : halo concentration given as a function of peak height $\nu(M, z)$ . |               |       |                       |                       |         |          |                  |                          |

<sup>b</sup> Probability to exceed the measured  $\chi^2$  value assuming the standard  $\chi^2$  probability distribution function.

<sup>c</sup> Weighted geometric average of observed-to-predicted concentration ratios.

<sup>d</sup> Standard deviation of the distribution of observed-to-predicted concentration ratios.

- Consistent with models that are calibrated for more recent cosmologies (WMAP7 and later)
- Better agreement is achieved when selection effects (overall degree of relaxation) are taken into account

### **Ensemble Calibration of Cluster Masses**

Umetsu et al. 2015b

# Planck13 CMB vs. Cluster Cosmology

*b*=0.2?? – 0.4??



suggested explanations:

- mass bias underestimated (and no accounting for uncertainties)
- 2.9 $\sigma$  detection of neutrino masses:  $\Sigma m_v = (0.58 + 0.20) \text{ eV}$ (Planck+WMAPpol+ACT+BAO:  $\Sigma m_v < 0.23 \text{ eV}$ , 95% CL)

Slide taken from Anja von der Linden's presentation

# Comparison with *Planck* Masses: *It's not so simple!!!*

Mass-dependent bias (20-45%) observed for Planck mass estimates





# **CLASH Internal Consistency**

*M*(*<r*) de-projected assuming spherical NFW density profiles



Internal systematic uncertainty in the overall mass calibration, empirically derived to be < 5% +/- 6%



# **Comparisons with Other Surveys**





# Summary

### Ensemble-averaged mass profile shape

- Data favor cuspy density profiles predicted for collisionless-DM-dominated halos in gravitational equilibrium (NFW, Einasto, DARKexp)
- The highest-ranked model is the 2-parameter NFW+LSS model including the 2-halo term using the LCDM *b-M* relation (*b*<sub>h</sub> ~ 9.3)
- $c_{200c} = 3.8 + 0.3$  at  $M_{200c} = 10^{15} M_{sun}/h$ , z=0.34
- Concentration vs. mass relation
  - Fully consistent with LCDM when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account
- Mass calibration
  - Internal consistency better than 5% +/- 6% by comparison with the WL-only analysis of Umetsu et al. (2014)



# Future/ongoing Work

- Calibrating Planck SZE cluster masses using the CLASH mass measurements
- Characterization of individual cluster  $\Sigma$  profiles
  - Mass dependence of Einasto shape parameter
  - Inner density slopes vs. cluster properties
- Testing modified gravity models (e.g., Narikawa & Yamamoto 12)
- Comparison with dynamical Jeans analyses from the CLASH-VLT survey (e.g., Biviano et al. 13)

# **CLASH Products released**

http://archive.stsci.edu/prepds/clash/

- Calibrated and co-added images [HST, Subaru]
- Object catalogs [HST, Subaru]