CosPA 2006 (15/Nov/2006)

Probing the Distribution of Mass in Galaxy Clusters using Subaru Weak Lensing Observations

Keiichi Umetsu (AS, IAA)

+ M. Takada, N. Okabe, T. Futamase (Tohoku Univ., Japan) M. Oguri (Princeton, US) T. Broadhurst, E. Medezinski (Tel Aviv, Israel)

1. CDM Paradigm

Bullet cluster (1E0657)

Credit: Clowe+, Markevitch+

(h)

Cold Dark Matter (CDM):

- Probably heavy particle (~100GeV), but yet unknown
- Interact only via gravity
- Negligible interaction and self-interaction

Astrophysical evid

- Small scales: Spin fractions; collision
- Large scales: Large
 → needs DM (CC)

Standard CDM stru

- Initial conditions,
- Use an N-body sin formation
- Bottom-up: smalle mergers and mass-accretions

Characteristic of CDM Halos

→ Navaro, Frenk, & White 96, 97 (=NFW profile)

Final-state density slope, sensitive to the nature of DM

0.01

r/rm

$$\mathcal{O}_{3D}(r) \propto r^{-1} (1 + r/r_s)^{-2} \quad \text{Outer: } \rho \propto r^{-3}$$

$$\mathcal{O}_{vir}(M_{vir}, z_{vir}) \coloneqq r_{vir}/r_s \quad \text{Inner: } \rho \propto r^{-1}$$

106

105 104

10²

101

 $\rho(r)/\rho_{erlt}$ 10^{3}

LCDM prediction (Bullock+ 01)

$$< c_{vir} > = \frac{8}{1 + z_{vir}} \left(\frac{M_{vir}}{10^{14} M_{sun} / h} \right)^{0.13}$$

Galaxy Clusters – Most Massive Halos

Most massive bound structures:

- Mass = $10^{14} 10^{15} M_{sun}$
- DM plays a dominant role in cluster formation
- Baryons are important only on
 <10kpc ~ 0.5--1% of virial radii
- Suited for testing NFW profiles
- Constrain the nature of DM
- Small-scale (<1Mpc) test of the CDM paradigm</p>

Useful astrophysical probes:

 Observed in many wavelengths (Radio, Optical, X-ray)

Weak lensing

2. Gravitational Lensing

Weak and Strong Lensing

Cluster z = 0.77; Arc z = 4.89: Photo from H. Yee (HST/ACS)

$$\kappa = \frac{1}{2} \Delta \psi,$$

$$\boldsymbol{\gamma}_{ij} = \left(\partial_i \partial_j - \frac{1}{2} \delta_{ij} \Delta\right) \psi = \begin{pmatrix} +\gamma_1 & \gamma_2 \\ \gamma_2 & -\gamma_1 \end{pmatrix}$$

Simulated 3x3 degree field (Hamana 02)

3. Mass profile of A1689 (z=0.183)

Relaxed, round cluster

Less feature of substructures

Strong(est) lensing cluster

References:

- Broadhurst, Takada, Umetsu et al. 2005 (ApJL) [Strong+Weak lensing mass profile]
- Oguri, Takada, Umetsu, Broadhurst 2005 (ApJ) [projection effect of halo triaxiality]
- Umetsu, Takada et al. 2006 (in prep) [analysis, mapmaking]
- Medezinski, Broadhurst, Umetsu et al. 2006 (ApJ, accepted) [weak lensing dilution effect]
- Umetsu & Okabe 2006; Okabe & Umetsu 2006 (in prep) [Subaru+XMM study of 6 merging clusters]

HST and Subaru Telescope

Subaru telescope

D=2.4m

- Superb angular resolution
- ~ 3' x 3' Field-of-View (FoV)

Ideal instrument for strong lensing in the innermost region

D=8.3m

High image quality (PSF) among 8 10m ground-based telescopes

From NAOJ

■ Wide ~30' x 30' FoV (Suprime-Cam)

Ideal instrument for weak lensing out to cluster virial radii, r_vir

Subaru + HST for Lensing

Wide-field imaging of Subaru/Suprime-Cam

Revealing 106 lensed multiple images of 30 background galaxies (Broadhurst et al. 2004)

34'(4.4Mpc/h)

Strong+Weak lensing analysis by Broadhurst, Takada, Umetsu et al. (2005) -> this study

Superb angular resolution of HST/ACS

~4'(450kpc/h)

27'(3.5Mpc/h)

Weak Lensing Analysis Method

- Make a secure selection of the background population (z>z_lens), identified above the red-sequence of cluster-member galaxies
- Combine WL (1) shape-distortion and (2) area-distortion [magnification bias] measurements to derive a model-independent, mass density profile, κ(θ)
 - Distortion alone

 mass-sheet degeneracy (no constraint on I=0 mode)
 - Magnification bias
 breaking the degeneracy (noisier in general)
- Combine SL (10<r<200kpc/h) and WL (130<r<2000 kpc/h) mass profile to test the NFW model on 10<r<2000 kpc/h for a direct comparison with CDM models.

Measurement (I): tangential shear

• Significant S/N of 12σ (

Underestimates signal by a factor of 2 - 5 without a secure background selection
 (x) (cf., Clowe & Schneider 01; Bardeau et al. 04)

Good agreement with
 ACS @ r < 3', but the signal strength @ r > 3' is weaker
 than expected

• Null-detection of B-mode signal, $g_X \rightarrow$ No systematics

Measurement (II): magnification bias

Significant detection
 of a depletion of red
 galaxy counts (9.3 σ)

 Signal @ r>3' is weaker than expected from the ACS result

Masking effect by member galaxies corrected (

Mass-Density Profile: 0.005r_{vir} to r_{vir}

 $r_c = 214^{+99}_{-78} \,\mathrm{kpc} \,/\,h$

•Cored SIS

Strongly rejected (10σ!!)

NFW Halo Parameters: M_{vir} vs. C_{vir}

■ Very large M_{vir} : M_{vir}~ 10^15 M_{sun}

■ Mass discrepancy with X-ray ($M_{lens} \sim 2 M_{X-ray}$) @ 5 σ

■ Very high concentration: factor >3 larger than the CDM prediction for a massive halo ($c_{CDM} \sim 4$ by Bullock et al. 01)

Too Steep Mass Profile !?

Selection Effect?

- Selection bias for Strong Lensing Clusters?
 - the largest Einstein radius (50") on the sky!!
- Early cluster formation?
- Only 1-2% CDM halos show c~14 (Hennawi+ 05)

Dark Matter Nature?

- − Self-interaction? [σ /m=0.5-5 cm²/g] (Spergel & Steinhardt 00; Yoshida+ 00) → α ↓
 - \rightarrow Constraints by Markevitch+ 04, $\sigma/m < 1$ cm²/g
- Baryon contraction? (Gnedin+ 04; Lin+ 06) $\alpha \uparrow c_{vir} \uparrow$
 - → important @ small scales <10kpc ← > r_s = 145kpc/h

Projection Effect of the Cluster Halo itself?

 DM halos being highly triaxial due to collisionless nature of DM and filamentary nature of structure formation (Jing & Suto 02)

Projection Effect by Halo Triaxiality

Spherical

Tri-axial

Hennawi, Dalal, Bode, Ostriker 05

CDM Halo Triaxial Prior (N-body) relaxing the cluster Mass/Concentration

Solid: with prior info on the CDM halo triaxial shapes (Jing & Suto 02)

(Andersson & Madejski 04)

M,

 $M_{\rm x}$ consistent with lensing within 3σ confidence region

OTUB 2005

Halo Triaxiality cures the problem?

- Projection Effect of Tri-axial Halo (OTUB 05)
 - About 6% of triaxial CDM halos being consistent with A1689 @ 2 sigma, using prior information of triaxial shapes found from N-body simulations (Jing & Suto 02)
 - Elongated structure along the Line-of-Sight

Future Prospects

International collaboration: "The Ultimate Gravitational Lensing Study of Galaxy Clusters"

Subaru observations (PI. Prof. Futamase): have collected data for ~15 clusters

- HST/ACS (PI: G.P. Smith): Will observe the central region of 143 clusters
- X-ray/radio data available for a sub-sample of clusters
- Aim to constrain the nature of DM