
Hölmström (1982)

I Two contributions:

(1) Identifying free-riding as the main cause preventing

efficiency in team production, and the role of the

principal to break the budget balance constraint to

overcome this problem.

(2) The importance of relative performance evaluation to

extract information, rather than to enhance competition

or share risk, in order to improve efficiency in team

production.
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Model

I A team consists of n agents, i = 1, . . . , n.

I Effort level of every agent i , ei ∈ Ai ≡ R+, is unobservable.

I Cost of effort: vi (·), with v ′i , v ′′i >0, and vi (0) = 0.

I Only joint output, y : A→ R, is observable, which is strictly

increasing, concave, with y(0) = 0.
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I Utility of agent i :

ui (mi , ei ) = mi − vi (ei );

where mi is income.

I si (y): Agent i ’s share of output y .

I Balance of budget requires that

n∑
i=1

si (y) = y ∀y . (1)
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Case I: Certainty

I Output is a deterministic function of effort: y = f (e).

I Assume that there exists e such that f (e)−
∑n

i=1 vi (e) > 0.

I In equilibrium, every agent i chooses the level of ei to maximize

si
(
y(e)

)
− vi (ei ).

I FOC:

s ′i
(
y(e)

)
yi (e) = v ′i (ei ); ∀i (2)
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I Pareto optimality requires the effort, e∗, to satisfy

e∗ = arg max
e

(
y(e)−

n∑
i=1

vi (ei )
)
.

I FOC:

yi (e
∗) = v ′i (e∗i ); ∀i . (3)

I If e∗ is an equilibrium, then (2) and (3) together implies that

s ′i (y) = 1 ∀i .

I However, this contradicts with (1), since (1) implies that

n∑
i=1

s ′i (y) = 1. (4)

5



I Theorem 1: There does not exist a budget-balancing sharing rule

which attain production efficiency as an equilibrium outcome in a

team.

I Note that we’ve only proved Theorem 1 for differentiable sharing

rules. For general case look up the paper.
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I Any way out?

(1) Hire a principal to monitor the agent. The principal must

share output to give him incentive to monitor. (Alchian

and Demsetz, 1972)

(2) This paper proposes a simpler solution.

I Key: The budget-balancing constraint.

I Suppose the sharing rule is such that

n∑
i=1

si (y) ≤ y , ∀y . (5)

That is, no need to balance budget.
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I Theorem 2: Without budget-balance, there exists a sharing rule in

which e∗ is the equilibrium effort level.

I Proof: Let

si (y) =

{
bi (y) if y ≥ y(e∗)

0 if y < y(e∗).
(6)

The value of bi ’s are chosen so that bi > vi (e
∗
i ) and∑n

i=1 bi = y(e∗). This is possible because y(e∗)−
∑n

i=1 vi (e
∗) > 0.

Obviously agent i ’s best response is ei = e∗i . (Note that si (y)’s do

not always add up to y .)

I The role of (5), that is, the assumption that budget is not required

to balance, is to allow group penalty that deters free-riding.
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Case II: Uncertainty

I Let f (y ; e) be the density function of output, with F (·) its

distribution function.

I We can still prove inefficiency of equilibrium when budget has to be

balanced:

Pareto optimality requires that

ei ∈ arg max
e′i

∫
yf (y ; e′i , ei )dy −

n∑
i=1

vi (e
′
i );

whose FOC requires∫
yfei (y ; e)dy − v ′i (ei ) = 0, ∀i .

By (1) we know

n∑
i=1

∫
si (y)fei (y ; e)dy − v ′i (ei ) = 0. (7)
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I However, every agent i choose ei to maximize∫
si (y)f (y ; e)dy − vi (ei ),

whose FOC requires∫
si (y)fei (y ; e)dy − v ′i (ei ) = 0 ∀i .

This contradicts (7).
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I Any way out?

Assume that

A 1: F is convex in e.

A 2: limy→−∞ Fi/F = −∞.

I A2 means that at a very low output, change in effort is easy to

detect by checking output.
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I Theorem 3: Assuming A1 and A2, Pareto optimum can be

arbitrarily approximated by using group penalty.

I Proof: Let

si (y) =

{
siy , if y ≥ ȳ

siy − ki , if y < ȳ ;
(8)

where ki > 0,
∑

si = 1, and ȳ is a fixed output. In order that e∗ be

a equilibrium effort level, FOC requires that, for all i ,

si

∫
yfei (y ; e∗)dy − kiFei (ȳ ; e∗)− v ′i (e∗i ) = 0. (9)

A1 guarantees (9) is necessary and sufficient for e∗ to be

equilibrium.
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For any fixed ȳ choose ki so that (9) holds.

There always exists ki to satisfy (9) because
∫
yfei (y ; e∗)dy > 0 and

Fei ≤ 0. (Both by FOSD of f (·).)

Note that the expected loss of the team under this sharing rule is∑
i kiF (ȳ , e∗). From (9) we know that

ki =

∫
siyfei (y ; e∗)dy − v ′i (e∗i )

Fei (ȳ ; e∗)
≡ Ai

Fei (ȳ ; e∗)
.

Let ȳ decreases while adjusting ki so that (9) always holds. The loss

is
n∑

i=1

AiF (ȳ ; e∗)

Fei (ȳ ; e∗)
;

which, by A2, approaches zero when ȳ decreases.

I Intuition: Make “target” ȳ , easy to meet, while setting stiff

punishment to prevent shirk, which is easy to detect at low level of

ȳ (A2).
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Adding role of Principal I: Sufficient Statistic

I Since principal is needed to break budget constraint, suppose there

is indeed a risk-neutral principal and n risk-averse agents.

I Suppose, in addition to y , a vector of signal x is observed (and

verifiable). This x may or may not contain y .
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I Let G (x ; e) be distribution function of x given e, with g(x ; e) its

density function.

I Principal’s problem:

max
e,si (x)

∫ (
E (y |x ; e)−

∑
i

si (x)
)
g(x ; e)dx ,

s.t.

∫
ui
(
si (x)

)
g(x ; e)dx − vi (ei ) ≥ ui ,

ei ∈ arg max
e′i

∫
ui
(
si (x)

)
g(x ; e′i , ei )dx − vi (e

′
i ),

where E (y |x ; e) is the expected value of y given x and e.
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I Definition (extension of Hölmström 1979): A function Ti (x) is

sufficient for x with respect to ei , if there exists functions hi (·) ≥ 0

and pi (·) ≥ 0 such that

g(x ; e) = hi (x ; e−i )pi (Ti (x), e). (10)

I Note that hi (x ; e−i ) does not change with ei . Also, as long as the

value of Ti (x) remains the same, variations in x does not change

the value of pi (·).

I T (x) =
(
T1(x), . . . ,Tn(x)

)
is sufficient for x w.r.t. e if Ti (x) is

sufficient for ei ∀i .
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I Theorem 4 Let T (x) be sufficient for x w.r.t. e. Then given an

incentive scheme {si (x)}, there exists {ŝi (Ti )} which weakly Pareto

dominates it.

I Intuition: If Ti (x) is sufficient for x w.r.t. ei , then paying agent i by

the values of Ti (x), rather than x , loses nothing in information.

Moreover, if agent i is paid the fixed average utility whenever x falls

into a region of x ’s whose Ti (x) are same, then wage bill will be

smaller since agent is risk averse.

17



Proof. Consider the case of a single agent. Define ŝ(T ) so that

u
(
ŝ(T )

)
=

∫
T (x)=T

u
(
s(T )

)
g(x , e)dx

p(T , e)

=

∫
T (x)=T

u
(
s(x)

)
h(x)dx . (11)

(11) implies that, for all e, the agent has the same expected utility

under s(x) and ŝ(T ).

The agent will therefore exert same effort under s(x) and ŝ(T ).

From Jensen’s inequality, (11) implies∫
ŝ
(
T (x)

)
g(x , e)dx ≤

∫
s(x)g(x , e)dx .

The principal’s wage payment is therefore less under ŝ(T ) than s(x).

The case with more than one agent is identical, as other agent’s

effort can be inferred from equilibrium.
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I Define T (x) to be sufficient at e if for all i and Ti ,

gei (x1, e)

g(x1, e)
=

gei (x2, e)

g(x2, e)
for all x1, x2 ∈ {x |Ti (x) = Ti}. (12)

I Obviously, (12) is implied by (10). Moreover, (12) implies (10) if it

holds for all e.

I Definition: T (x) is globally sufficient if (12) is true for all e and i ;

and is globally insufficient if for some i , (12) is false for all e.
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I Theorem 5 Assume T (x) is globally sufficient for x . Let

{si (x) = ŝi (T (x))} be a nonconstant incentive scheme. Then there

exists sharing rule {s̄i (x)} which strictly Pareto dominates

{si (x) = ŝi (T (x))}. Moreover, {s̄i (x)} can be chosen to induce the

same equilibrium effort as {si (x)}.

Proof: See paper.
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Adding the Role of Principal II: Relative Performance

Evaluation

I Suppose information system is richer so that individual

performances can be observed.

I Specifically, assume

y(e, θ) =
∑
i

yi (ei , θi ).

I Outputs are said to be independent if

f (y , e) =
n∏

i=1

fi (yi , ei ),

which implies that Ti (y) = yi is sufficient for y w.r.t. ei .
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I Theorem 6 Suppose yi are monotonic in θi for all i . Then the

optimal sharing rule for agent i depends on i ’s output alone iff

outputs are independent.
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Proof. Sufficiency: Since Ti (y) = yi is sufficient for y w.r.t. ei , the

optimal sharing rule si depends on yi alone.

Necessity: Suppose, say, θ1 and θ2 are dependent. Without loss of

generality we can assume y2 = θ2. Keeping e2 constant at the

equilibrium value, the joint density of y1 and y2(= θ2), conditional

on e1, is
f (y1, θ2, e1) = f̃

(
y−11 (e1, y1), θ2

)
,

where y−11 is the inverse of y1(e1, θ1), and f̃ (θ1, θ2) is joint density
for (θ1, θ2).

fe1(y1, θ2, e1)

f (y1, θ2, e1)
=

f̃1
(
y−11 (e1, y1), θ2

)
f̃
(
y−11 (e1, x2), θ2

) ∂y−11 (e1, y1)

∂e1
.

Since θ1 and θ2 are dependent, f̃1/f̃ depends on θ2. Therefore, (12)

does not hold, and Theorem 5 implies that agent i ’s sharing

depends both on y1 and y2.
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