Sabotage in Promotion Tournaments Chen (2003)

- When workers can sabotage each others in a promotion tournament, not only is there inefficiency in effort, but also inefficiency in picking winner, in the sense that higher ability agents are promoted with lower probability.
- Intuition: High-ability workers, being one with higher promotion probability, will be subject to more attacks. The total attack might over-weigh the advantage in ability.

Model

- One principal, *n* agents. All risk-neutral.
- Effort vector of agent i:

$$(e_i; a_{i1}, a_{i2}, \ldots, a_{i,i-1}, a_{i,i+1}, \ldots, a_{in});$$

where e_i is own-effort, and a_{ij} is *i*'s attack against *j*.

Output of agent i:

$$W_i = t_i e_i - g\left(\sum_{j\neq i} s_j a_{ji}\right) + \varepsilon_i;$$

where t_i is *i*'s ability in productive activity, and s_j is his ability in sabotage.

ε_i is a r.v. with density function f(·) and distribution function
 F(·). Assume f(·) is single-peaked and symmetric around 0.

- ▶ g(·) is the function that transforms total attack into loss of output.
- $r_i \equiv t_i/s_i$: *i*'s relative ability in productive activity.
- Incentives are provided by a promotion tournament: If
 W_i > W_j for all j ≠ i, then i is promoted and receives a utility
 u. Otherwise his utility is 0.
- Utility of agent i:

$$u_i(e,a) = p_i(W_i,\ldots,W_n)u - v(e_i + \sum_{j\neq i} a_{ij}); \qquad (1)$$

where $p_i(\cdot)$ is *i*'s promotion probability.

• $u_i(e, a)$ can be rewritten as

Ρ

$$\begin{split} \mathsf{rob}\Big(W_i + \varepsilon_i \geq W_j \geq \varepsilon_i, \ \forall j\Big) u - v\big(e_i + \sum_{j \neq i} a_{ij}\big) \\ &= \Big[\int_{-\infty}^{\infty} f(\varepsilon_i) \Big(\Pi_{j \neq i} \int_{-\infty}^{\varepsilon_i - W_i} f(\varepsilon_j) d\varepsilon_j \Big) d\varepsilon_i \Big] u \\ &- v\big(e_i + \sum_{j \neq i} a_{ij}\big). \end{split}$$

4

$$t_{i} \Big[\sum_{j \neq i} \int_{-\infty}^{\infty} f(\varepsilon_{i}) f(\varepsilon_{i} - W_{ji}) \big(\prod_{k \neq i, j} \int_{-\infty}^{\varepsilon_{i} - W_{ki}} f(\varepsilon_{k}) d\varepsilon_{k} \big) d\varepsilon_{i} \Big] u$$
$$- v' \big(e_{i} + \sum_{k \neq i} a_{ik} \big) = 0, \ i = 1, \dots, n.$$
(2)

$$s_{i}g'\left(\sum_{k\neq j}s_{k}a_{kj}\right)\left[\sum_{j\neq i}\int_{-\infty}^{\infty}f(\varepsilon_{i})f(\varepsilon_{i}-W_{ji})\right.\\\left(\prod_{k\neq i,j}\int_{-\infty}^{\varepsilon_{i}-W_{ki}}f(\varepsilon_{k})d\varepsilon_{k}\right)d\varepsilon_{i}\left]u-v'\left(e_{i}+\sum_{k\neq i}a_{ik}\right)=0,$$

for $i,j=1,\ldots,n, \ j\neq i.$ (3)

From (2) and (3) we can show that

$$g'\left(\sum_{k\neq j}s_ka_{kj}\right) = \frac{n-1}{\sum_{l=1}^n r_l^{-1} - (n-1)r_j^{-1}}.$$
 (4)

As a result

$$r_i > r_j$$
 implies $\sum_{k \neq i} s_k a_{ki} > \sum_{k \neq j} s_k a_{kj}$

Theorem: A worker with higher comparative productive activity is subject to greater total attack.

6

As a worker becomes more talented in negative activity, all his co-workers are subject to more attack:

$$g'' \left(\sum_{k \neq j} s_k a_{kj}\right) \frac{\partial \left(\sum_{k \neq j} s_k a_{kj}\right)}{\partial s_j}$$

= -(n-1) $\left[\sum_{l=1}^n r_l^{-1} - (n-1)r_j^{-1}\right]^{-2} t_i^{-1} < 0.$

 As a worker becomes more talented in sabotage, he himself will be less attacked

$$g'' \left(\sum_{k \neq j} s_k a_{kj}\right) \frac{\partial \left(\sum_{k \neq j} s_k a_{kj}\right)}{\partial s_j} \\= (n-1)(n-2) \left[\sum_{l=1}^n r_l^{-1} - (n-1)r_j^{-1}\right]^{-2} t_i^{-1} \ge 0.$$

As a worker becomes more productive, he will be attacked more and his co-workers less attacked: ∂∑_k s_ka_{kj}/∂t_i < 0, ∂∑_k s_ka_{kj}/∂t_j > 0.

- Proposition 1: The total attack a worker receives (i) decreases in her own negative ability and his opponent's productive ability; and (ii) increases in the negative ability of any of his co-worker and his own productive ability.
- A person with highest (either absolute or negative) productive ability is not necessarily one with the highest promotion chance.

► If a new worker with ability r_{n+1} = t_{n+1}/s_{n+1} enters the firm. Then (4) becomes

$$g'\left(\sum_{k=1}^{n+1} s_k a_{kj}\right) = \frac{n}{\sum_{l=1}^{n+1} r^{-1} - nr_j^{-1}}$$

Consequently,

$$\frac{n}{\sum_{l=1}^{n+1} r_l^{-1} - n_j^{-1}} - \frac{n-1}{\sum_{l=1}^{n} r_l^{-1} - (n-1)r_j^{-1}} = \frac{\sum_{l=1}^{n} + r_l^{-1} - (n-1)r_{n+1}^{-1}}{\left(\sum_{l=1}^{n+1} r_l^{-1} - nr_j^{-1}\right)\left(\sum_{l=1}^{n} r_l^{-1} - (n-1)r_j^{-1}\right)},$$

which is positive if r_{n+1} is large, and is negative if r_{n+1} is small.

Proposition 2: Every worker is subject to more (less) attack when a new entrant relatively more (less) talented in sabotage joins the organization.

- Suppose a_{ij} and e_i can only be 0 or 1.
- ε_i can only be 1 or -1, with equal probability.

▶
$$r_1 = 5$$
, $r_2 = 4$, $r_3 = 1$. $v(0) = 0$, $v(1) = 1$, $v(2) = 3$,
 $v(3) = 8$.

11

•
$$g(o) = 0, g(1) = 2.5, g(2) = 4$$

Appendix B

Table B1. Utility	Levels of Member 1
-------------------	--------------------

θ1	a ₁₂	a ₁₀	W_{21}	W21	$v(\theta_1 + a_1)$	$u_1(a_1, e_1, a_{-1}^*, e_{-1}^*)$
1	1	0	0.5	-1	3	$\frac{1}{2}u - 3$
1	1	1	0.5	-3.5	8	$\frac{1}{2}u - 8$
1	0	1	3	-3.5	3	-3
1	0	0	3	-1	1	-1
0	1	0	5.5	4	1	-1
0	1	1	5.5	1.5	3	-3
0	0	1	8	1.5	1	-1
0	0	0	8	4	0	0

Table B2. Utility Levels of Member 2

θ2	a21	823	W12	W ₃₂	$v(\theta_2 + a_2)$	$U_2(\Theta_2, \Theta_2; \Theta^*_{-2}, \Theta^*_{-2})$
1	1	0	-0.5	-1.5	3	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> − 3
1	1	1	-0.5	-4	8	± 2 <i>u</i> −8
1	0	1	1	-4	3	$\frac{1}{4}u - 3$
1	0	0	1	-1.5	1	$\frac{1}{4}u - 1$
0	1	0	3.5	2.5	1	-1
0	1	1	3.5	0	3	-3
0	0	1	5	0	1	-1
0	0	0	5	2.5	0	0

Table B3. Utility Levels of Member 3

θ.	821	a22	W_{12}	W ₂₀	$v(\theta_2 + \beta_2)$	$U_2(\theta_2, \theta_2; \theta^*_{-2}, \theta^*_{-2})$
0	1	0	1	1.5	1	$\frac{1}{2}u - 1$
0	1	1	1	0	з	$\frac{3}{4\pi}u - 3$
0	0	1	2.5	0	1	-1
0	0	0	2.5	1.5	0	0
1	1	0	0	0.5	з	$\frac{3}{16}u - 3$
1	1	1	0	-1	8	$\frac{7}{16}u - 8$
1	0	1	1.5	-1	з	$\frac{1}{4}u - 3$
1	0	0	1.5	0.5	1	$\frac{1}{2}u - 1$

•
$$e_1^* = e_2^* = 1$$
, $e_3^* = 0$, $a_{21}^* = a_{31}^* = a_{12}^* = 1$,
 $a_{13}^* = a_{23}^* = a_{32}^* = 0$ is a NE.

• However,
$$W_{21} = 0.5 > 0$$
.

- ▶ Pay equality: Reducing the value of *u*.
- Seniority promotion system: Partially severing the link between promotion and W_i.
- Group incentives: One's pay depends partially on group performance.
- Early designation of successor: Successor is named before promotion occurs.
- External recruitment: The higher position has positive probability of being filled by an outsider.