Answer to Homework 2
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 has a limit point 0, but 
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 does not interest any other point is A if 
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 is small enough. Thus A is neither open nor closed.

(2) limit points: 
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; interior points (0,1). Neither open nor closed.

(3) limit points: 
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; interior points: 
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. Neither open nor closed.

(4) Let 
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 Want to show y is an interior points of A. Let 
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, by triangular inequality we know that 
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. That means 
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. That is, any 
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 is in A. We thus find a nbd of y that is contained in A, and y is thus an interior point of A. A is thus an open set because all of its points are interior.

(5) 
[image: image16.wmf](

)

{

}

1

0

,

|

2

£

Â

Î

=

x

d

x

A

 is closed. We show this by proving that 
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 is open. Let 
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. By triangular inequality we know 
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. That is, we find a nbd of y which is interior in 
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, and y is thus an interior point. 
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 is thus open and A is closed.

(6) limit point = interior point = 
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; N is not open and is closed.

(7) interior point = limit point = 
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. 
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 is both closed and open..

2. Let 
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. Show that 
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 is open.
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