A Dynamic Model of Auctions with

Buy-Out: Theory and Evidences

Jong-Rong Chen

National Central University
Kong-Ping Chen
Academia Sinica \& National Taiwan University

Chien-Fu Chou

National Taiwan University
October 27,2006
Preliminarily

- Purpose of paper: To propose a dynamic model of English auction with buy-out.
- Buy-out price: A price (set by the seller) at which the buyer can obtain the object immediately (at any time during the auction) by paying that price.
- Two possible explanations for the existence of buy-out price:
(1) Time preference
(2) Risk-aversion
- We adopt the second approach
home | pay | register | sign in | site map
Buy \quad Sell My eBay Community ${ }^{\text {Help }}$Back to list of items Listed in category: Consumer Electronics $>$ DVD Players \& Recorders $>$ DVD Recorders $>\underline{\text { Panasonic }}$
Panasonic DMR-ES10S Prog Scan DVD Player / Recorder
Item number: 9728080446

Buyer or seller of this item? Sign in for your status

三Buy f/Now price:	US \$104.95 Buy It Now >
End time:	2 hours 53 mins (May-23-06 23:00:15 PDT)
Shipping costs:	US $\$ 29.95$ (discount available) UPS Ground
Ships to:	United States
Item location:	USA, United States
Quantity:	4 available
History:	Purchases
You can also:	Watch this item
	Email to a friend

Listing and payment details: Show

Watch this item in My eBay \| Email to a friend

Meet the seller

 me
Feedback: 99.4\% Positive
Member: since Jul-05-01 in United States

- Read feedback comments
- Ask seller a question
- Add to Favorite Sellers
- View seller's other items: Store | List
- Visit seller's Store: WeGotBetterDeals

Buy safely

1. Check the seller's reputation Score: 9258 | 99.4% Positive Read feedback comments
2. Learn how you are protected

[^0]

```
Auctions > Electronics & Cameras > Audio > Portable > MP3 Players > Players
```


APPLE U2 IPOD RARE 20GB FREE SHIPPING

[Report Terms of Service and Abuse Violations] [Email to a Friend] [Add to My C:

Seller Info

(!) Before you bid, review the seller's ratings and comments.

Learn more about auction safety.

Place a Bid

Minimum Bid: $\$ 130.00$
Maximum Bid: $\$ \square$ US
(-) Bid up to this amount on my behalf
Bid this exact amount
Preview Bid
Need Help? View the Bidders' Guide

Want to Buy it Now?

Buy Price: $\$ 275.00$
P Buy It Now
Questions? View Buy Price Help

- Intuition:

1. The seller can exploit the buyer's aversion toward uncertainty, and make more profit by setting a buy-out price.
2. The seller is risk-averse himself, and buy-out serves as an instrument to avoid price risk.

- Questions to ask:

1. What is the optimal buy-out price of the seller?
2. What is the optimal bidding strategy of buyer?
3. What is the equilibrium out-come?

- Results:
(1) Optimal buy-out price is in inverse (direct) relation to the seller's (buyer's) degree of risk aversion.
(2) Seller's expected utility is higher with buy-out.
(3) Buyer's expected utility is lower with buy-out.
(4) Transaction price is higher with buy-out.
(5) Transaction price is in reverse relationship with the time it takes to reach (contrary to usual ascending bid auction).

Model

- Two bidders $(i=1,2)$, one seller.
- The value of the object to bidders i is v_{i}.
- v_{1} and v_{2} are independently and uniformly drawn from $[0, \bar{v}]$.
- The utility of buyer i :
$\left(v_{i}-p\right)^{\alpha} / \alpha$; where p is the price paid, and $\alpha \in(0,1]$ is degree of risk-aversion.
- The utility of seller is x^{β} / β, where $\beta \in(0,1]$.

Equilibrium Buy-out Strategy

- Let v_{b} be the buy-out price set by the seller.
- One result of the standard English auction remains true: The bidder will stay active as long as the prevailing price is lower than his valuation of the object.
- But when to buy out?
- Let $p(v)$ be the but-out strategy of the buyer.

That is, a buyer with valuation v is willing to buy out the objective (by paying v_{b}) when the prevailing price is $p(v)$.

- $p(v)$ is decreasing in v.
- Let $v(p)$ be the inverse of $p(v)$:
$v(p)=p^{-1}(v)$.
- $v(p)$ is decreasing in p.
- Suppose at price p, both bidders are still active.
- This implies $v_{i} \in[p, \bar{v}]$ for all i.
- Hasn't been bought-out by any bidder yet, implying $v_{i} \notin[v(p), \bar{v}], i=1,2$.
- Thus the posterior of v_{i} is $U N I[p, v(p)]$.
- If the buyer (with valuation v) buys out the object, his utility is $u\left(v, v_{b}\right)=\left(v-v_{b}\right)^{\alpha} / \alpha$.
- If he waits until $p+d p$ to buy out, then there are three consequences (Figure 1):
(1) His opponent buys out during $[p, p+d p]$. This occurs with probability $-d v(p) /(v-p)$, and his utility is 0 .
(2) His opponent drops out during $[p, p+d p]$. This occurs with probability $d p /(v-p)$, and his utility is $(v-p)^{\alpha} / \alpha$.
(3) None of the above, which occurs with probability $1-\left(\frac{-d v(p)}{v-p}+\frac{d p}{v-p}\right)$, and his utility is $\left(v-v_{p}\right)^{\alpha} / \alpha$.
outcome 2 (opponent drops out), outcome 1 (opponent buys out), if opponent's valuation lies here if opponent's valuation lies here

Figure 1: Possible outcomes of waiting.

- The total utility to buy out at $p+d p$ is thus

$$
\frac{d p}{v-p} \frac{(v-p)^{\alpha}}{\alpha}+\left[1+\frac{d v(p)}{v-p}-\frac{d p}{v-p}\right] \frac{\left(v-v_{b}\right)^{\alpha}}{\alpha} .
$$

- Total change in utility by postponing buy-out from p to $p+d p$:

$$
d u=\frac{d p}{v-p} \frac{(v-p)^{\alpha}}{\alpha}+\frac{d v(p)-d p}{u-p} \frac{\left(v-v_{b}\right)^{\alpha}}{\alpha} .
$$

- $v(p)$ being optimal implies $\frac{d u}{d p}=0$:

$$
(v-p)^{\alpha}-\left(v-v_{b}\right)^{\alpha}=-\left(v-v_{b}\right)^{\alpha} \frac{d u}{d p}
$$

- Let $y=v-v_{b}$ and $x=v-p$, this becomes $(x+y)^{\alpha}-y^{\alpha}=y^{\alpha} \frac{d u}{d p}$.
- Let $x=\mu y$, then this again becomes
$\left(1+\frac{1}{\mu^{*}}\right)^{\alpha}=1+\frac{1}{\mu^{*}}, \mu^{*} \in[1, \infty)$.

- We thus have $v(p)=\left(1+\frac{1}{\mu^{*}}\right) v_{b}-\frac{p}{\mu^{*}}$.
- $p(\mu)=\left(1+\mu^{*}\right) v_{b}-\mu^{*} v$.
$\left(1+\frac{1}{\mu^{*}}\right) v_{b} \stackrel{\stackrel{1}{2}}{v(p)=\left(1+\frac{1}{\mu^{*}}\right) v_{b}-\frac{p}{\mu^{*}}}$
- We are interested in symmetric equilibrium, i.e., $p_{1}(v)=p_{2}(v)=p(v)$.
- In this case bidder 1 (2) wins if and only if $v_{1}>v_{2}\left(v_{2}>v_{1}\right)$.
- Bidder i wins by competitive bidding if $v_{i}>v_{j}$ and $v_{j}<p\left(v_{i}\right)$.
- Bidder i wins by buy-out if $v_{i}>v_{j}$ and $v_{j}>p\left(v_{i}\right)$.

Optimal Buy-out Price

- Trade-off for seller in setting up buy-out price:

Region OAD unchanged: sold with $p=v_{2}$
Region AEB loses: $v_{2}<v_{b}$
Region ABCD gains: $v_{2}>v_{b}$

- Expected utility of seller:

$$
\pi\left(v_{b}\right)=\frac{v_{b}^{\beta}}{\beta}\left[1-\frac{\beta(3+\beta)\left(1+u^{*}\right)}{(\beta+1)(\beta+2) u^{*}}\left(\frac{v_{b}}{\bar{v}}\right)^{2}\right] .
$$

- FOC:

$$
\frac{\partial \pi}{\partial v_{b}}=v_{b}^{\beta-1}\left[1-\frac{(3+\beta)\left(1+u^{*}\right)}{(1+\beta) u^{*}}\left(\frac{v_{b}}{\bar{v}}\right)^{2}\right]=0
$$

- $v_{b}^{*}=\sqrt{\frac{\mu^{*}(1+\beta)}{\left(1+\mu^{*}\right)(3+\beta)}} \bar{v}$.
(1) v_{b}^{*} is in inverse relation with α.
(2) v_{b}^{*} is in direct relation with β.
- Plugging v_{b}^{*} into $\pi\left(v_{b}^{*}\right)$ we get the utility of the seller is the function of $\beta: \pi(\beta)$.
- The expected utility of seller's without buy-out price

$$
\pi^{0}(\beta)=\frac{2 v^{-\beta}}{\beta(\beta+1)(\beta+2)}
$$

- $\pi(\beta)-\pi^{0}(\beta) \geq 0$; equality holds only if $\alpha=\beta=1$.
- Proposition 1: If either buyer or seller is risk-averse, then
(1) Expected price is higher with buy-out. (2) Expected utility of seller is higher with buy-out.
- Proposition 2: Buyer's expected utility is lower, unless he is close to risk-neutral and the seller is very risk-averse (in this case bidders with high valuations gain).
- Empirical Implications:
(1) If we look at auctions of identical objects, but some with buy-out prices and some without, then the average transacted price is higher in the former.
(2) For items that are sold, average transaction price is increasing in buy-out price.
(3) Transaction price is in inverse relationship with the time it takes to be sold.
- Data: Digital cameras in Taiwan's Yahoo! auction site.
- Empirical Result: Confirmative

Table 1. Sample Distribution of Brands.

Brand Name Number of Observations

BenQ
Canon
Casio
Fujifilm
Kodak
Konica
Kyocera
Nikon
Olympus
Panasonic
Pentax
Ricoh
Sanyo
Total

124
336
215
407
79
137
21
315
59
232
177
28
52

Table 2. Bidding Outcome
Total number of observations $(2,171)$

Auction resulted in a sale (1,166)			Auction did not result in a sale (1,005)	
Auctions with buyout option (936)		Auctions without buyout option (230)	Auctions with buyout option (805)	Auctions without buyout option (200)
Transacted with	Transacted with			
buyout price (744)	highest bid (192)			
Average transaction price: NT\$9,674.874 Average buyout price: NT\$9,674.874	Average transaction price: NT\$6,293.33 Average buyout price: NT\$7,859	Average transaction price: NT\$6,594.9	Average buyout price: NT\$10,963.02	

Table 3. Summary Statistics of Related Variables in Tobit Model

Variables	Definition	Mean	Std. Dev.	Min	Max
REP	Seller's reputation	461.054	963.958	-25	5806
NEW	A dummy variable with the value one if the item is new; zero otherwise.	. 550	. 498	0	1
BUYOUT	Buyout price	9.062	. 581	4.605	11.086
BUYOUTD	A dummy variable with the value one if the auction has buyout option; zero otherwise.	. 802	. 399	0	1
MINIBID	Minimum bid	8.572	1.891	0	11.082
LENGTH	Length of auction in terms of the number of days	7.609	3.097	0	2.398
TRADE	A dummy variable with the value one if the auction results in a sale; zero otherwise.	. 537	. 499	0	1
PRICE	Transaction price	8.951	. 695	0	11.082
	Number of Observations		2,171		

Table 4. Regression Results of Tobit Model

Independent Variable	Transaction Price Equation
Constant	$8.1263^{* * *}$
	$(.1072)$
Buyout Dummy	$.1006^{* *}$
	$(.0512)$
Reputation	$.0001^{* * *}$
	$(.0000)$
Length of Auction	$-.0675^{* * *}$
	$(.0092)$
New Subject Dummy	$.2828^{* * *}$
	$(.0532)$
Brand Dummy 1	.0562
	$(.0838)$
Brand Dummy 2	$.6391^{* * *}$
	$(.0575)$
Brand Dummy 3	$.5287^{* * *}$
	$(.0623)$
Brand Dummy 4	$.2927^{* * *}$
	$(.0612)$

Table 4. Regression Results of Tobit Model (continued)
Independent Variable Transaction Price Equation

Brand Dummy 5	.0975
Brand Dummy 6	$(.0699)$
	$.6629^{* * *}$
Brand Dummy 8	$(.0592)$
	$.5451^{* * *}$
Brand Dummy 9	$(.0570)$
	$.4065^{* * *}$
Brand Dummy 10	$(.0558)$
	$.6032^{* * *}$
Brand Dummy 11	$(.0597)$
	$.4804^{* * *}$
Brand Dummy 12	$(.0643)$
	$.3395^{* * *}$
Brand Dummy 13	$(.0629)$
	$.6476^{* * *}$

Number of Observations $\quad 2,171$
Notes: ${ }^{*}$ denotes significance at the 10% level,
${ }^{* *}$ at the 5% level, ${ }^{* * *}$ at the 1% level.

Table 5. Summary Statistics of Related Variables in Sample Selection Model

Variables	Definition	Mean	Std. Dev.	Min	Max
REP	Seller's reputation	544.228	1054.446	-25	5806
NEW	A dummy variable with the value one if the item is new; zero otherwise.	. 624	. 485	0	1
BUYOUT	Buyout price	9.062	. 581	4.605	11.086
BUYOUTD	A dummy variable with the value one if the auction has buyout option; zero otherwise.	1	0	0	1
MINIBID	Minimum bid	8.770	1.538	0	11.082
LENGTH	Length of auction in terms of the number of days	7.502	3.133	0	11
TRADE	A dummy variable with the value one if the auction results in a sale; zero otherwise.	. 538	. 499	0	1
PRICE	Transaction price	9.013	. 613	4.605	11.082
	Number of Observations		1,741		

Table 6. Regression Results of Sample Section Model

Independent Variable	Transaction Price Equation	Selection Equation
Constant	.1398	$3.5643^{* * *}$
Buyout Price	$(.2257)$	$(.9813)$
Reputation	$.9734^{* * *}$	
	$(.0250)$	$.0003^{* * *}$
Length of Auction	$.0000^{*}$	$(.0000)$
	$\left.-.0183^{*}-06\right)$	$-.1921^{* * *}$
New Subject Dummy	$(.0073)$	$(.0155)$
	$.0623^{* * *}$	$-.2331^{* *}$
Minimum Bid	$(.0177)$	$(.0946)$
		$-.2510^{*}$
Brand Dummy 1	-.0113	$(.1289)$
	$(.0154)$	$.6642^{* * *}$
Brand Dummy 2	$.0934^{* * *}$	$(.0810)$
Brand Dummy 3	$(.0153)$	$.2439^{*}$
	$.0825^{* * *}$	$(.1356)$
	$(.0149)$.0310
		$(.1524)$

Table 6. Regression Results of Sample Section Model (continued)

Independent Variable	Transaction Price Equation	Selection Equation
Brand Dummy 4	$.0457^{* * *}$.1609
	$(.0083)$	$(.1192)$
Brand Dummy 5	$.0397^{* * *}$.1763
	$(.0110)$	$(.0973)$
Brand Dummy 6	$.1081^{* * *}$.2904
	$(.0189)$	$(.1529)$
Brand Dummy 8	$.0941^{* * *}$.1503
	$(.0118)$	$(.1327)$
Brand Dummy 9	$.0794^{* * *}$	$.6579^{* * *}$
	$(.0127)$	$(.0482)$
Brand Dummy 10	$.0923^{* * *}$.0893
	$(.0145)$	$(.1628)$
Brand Dummy 11	$.0999^{* * *}$	$.2250^{*}$
	$(.0156)$	$(.1365)$
Brand Dummy 12	$.0876^{* * *}$	$.4916^{* * *}$
	$(.0172)$	$(.0462)$
Brand Dummy 13	$.0987^{* * *}$.2163
	$(.0197)$	$(.1473)$
Number of Observations	1,713	1,713

Extension to n-Bidder Case

- In the 2-bidder case, when a bidder drops out, the auction ends.
- In a general n-bidder auction, when a bidder drops out, the remaining bidders will update their information.
- Information updating will lead to change in buy-out strategy.
- Theorem : In an n-bidder auction, the bidder's optimal but-out strategy is

$$
\begin{equation*}
\left[p_{i}(v)=\left(1+\mu_{i}\right)-\mu_{i} v\right]_{i=2}^{n} ; \tag{1}
\end{equation*}
$$

where $\mu_{i+1}>\mu_{i}$.

- That is, when the prevailing price is p and when these are still i active bidders in the auction, an ative bidder will buy out the item as soon as price reaches $p_{i}(v)$.
- The greater the number the bidders, the more willing a bidder is to buy-out (since $p_{i}(v)>p_{i+j}(u)$ for $\left.j \geq 1\right)$.
- When some bidders drop out, the remaining bidders respond with increasing the prevailing price at which they are willing to buy out.

[^0]: PayPal]' Free PayPal Buyer Protection.
 See eligibility

