Price Discrimination: Case of Monopoly

- The firm charges different prices to different consumers, or different prices for different units purchased.
- Prevelent in reality.
- Examples:

1. tickets (airline, movie, ...)
2. bulk rate discount
3. Disneyland pricing (two-part tariff)
4. same good with different prices in different places
5. hardbound vs paperback books
6. bundling

- Conditions needed for successful price discrimination:

1. Market power of the firm (here we are mainly concerned with monopoly).
2. Information on different willingness-to-pays.
3. Prevention of resale.

- Three types of price discrimination: 1st degree, 2nd degree, and 3rd degree.

First degree price discrimination:

- The monopolist charges every unit with a price which equals a consumer's maximum willingness to pay for that unit. Moreover, it does so for every (presumably different) consumer.
- Let $P(Q)$ be the demand curve of a consumer. Assume zero cost. The price charged for that consumer is $P^{M}(Q)=\int_{0}^{Q} p(x) d x$ if Q units are purchased.
- Also called perfect price discrimination.
- Requires strong information on the part of the monopolist.
- Must also be legally implementable.
- A discrete example:

Let demand schedule of a consumer be

unit	willingness to pay
1	10
2	9
3	8
4	7
\vdots	\vdots

- One way to implement 1st degree price discrimination is bulk rate
$P^{M}(1)=10$
$p^{M}(2)=10+9=19$, unit price is thus $19 / 2=9.5: 50 \%$ off.
$P^{M}(3)=10+9+8=27$, unit price is thus $27 / 3=9: 10 \%$ off.
$P^{M}(4)=10+9+8+7=34$, unit price is thus $34 / 4=8.5: 15 \%$ off.
- What if there is cost of production for the monopolist, $C(Q)$? (Homework \#1)
- Since all the consumer surplus is exploited, social welfare is actually maximized.

2nd degree price discrimination:

- Also called non-linear pricing.
- The monopolist still charges different prices for different units purchased, but it has only one price schedule.
- Suppose there are two types of consumers. Utility of consumer i is $U_{i}(x)+y, i=1,2$; where y is income and x is units of good consumed.
- Assume $u_{2}(x)>u_{1}(x)$ and $u_{2}^{\prime}(x)>u_{1}^{\prime}(x)$ for all x.
- Let $p(x)$ be the price schedule. Let consumer x_{i} demand i units of good, and thus spends $r_{i}=p\left(x_{i}\right) x_{i}$ on it.
- The monopolist actually offers $\left(r_{i}, x_{i}\right)$ to consumer i. If consumer i buys x_{i} rather than x_{j}, then it must be

$$
\begin{align*}
& u_{1}\left(x_{1}\right)-r_{1} \geq 0, \tag{1}\\
& u_{2}\left(x_{2}\right)-r_{2} \geq 0,(\mathrm{IR}) \tag{2}\\
& u_{1}\left(x_{1}\right)-r_{1} \geq u_{1}\left(x_{2}\right)-r_{2}, \tag{3}\\
& u_{2}\left(x_{2}\right)-r_{2} \geq u_{2}\left(x_{1}\right)-r_{1},(\mathrm{IC}) \tag{4}
\end{align*}
$$

- We can rewrite the constraints as

$$
\begin{align*}
& r_{1} \leq u_{1}\left(x_{1}\right) \\
& r_{1} \leq u_{1}\left(x_{1}\right)-u_{1}\left(x_{2}\right)+r_{2}, \\
& r_{2} \leq u_{2}\left(x_{2}\right) \\
& r_{2} \leq u_{2}\left(x_{2}\right)-u_{2}\left(x_{1}\right)+r_{1} .
\end{align*}
$$

- Since optimality requires r_{1} and r_{2} to be as large as possilbe, one of (1') and (2') must be binding, and one of (3') and (4') must be binding.
- Want to show (1) and (4) are binding:

If $u_{2}\left(x_{2}\right)=r_{2}$, then by (4) we know that $r_{1} \geq u_{2}\left(x_{1}\right)>u_{1}\left(x_{1}\right)$, a contradiction. Thus we must have $u_{s}\left(x_{s}\right)>r_{2}$. (4') is thus binding. If (3) holds as equality, then

$$
\begin{aligned}
& r_{1}=u_{1}\left(x_{1}\right)-u_{1}\left(x_{2}\right)+r_{2}=u_{1}\left(x_{1}\right)-u_{1}\left(x_{2}\right)+u_{2}\left(x_{2}\right)-u_{2}\left(x_{1}\right)+r_{1}, \text { i.e., } \\
& u_{1}\left(x_{2}\right)-u_{1}\left(x_{1}\right)=u_{2}\left(x_{2}\right)-u_{2}\left(x_{1}\right) . \text { But since } u_{2}^{\prime}(x)>u_{1}^{\prime}(x), \text { we have }
\end{aligned}
$$

$$
\int_{x_{1}}^{x_{2}} u_{2}^{\prime}(t) d t>\int_{x_{1}}^{x_{2}} u_{1}^{\prime}(t) d t
$$

which means $u_{2}\left(x_{2}\right)-u_{2}\left(x_{1}\right)>u_{1}\left(x_{2}\right)-u_{1}\left(x_{1}\right)$, a contradiction. Thus (3) must hold as strict inequality.

- Lower-demand consumer (consumer 1) is fully exploited, while higher demand consumer has positive surplus.
- Profit of firm is thus (assuming constant unit cost)

$$
\begin{aligned}
& r_{1}-c x_{1}+r_{2}-c x_{2} \\
& =u_{1}\left(x_{1}\right)-c x_{1}+u_{2}\left(x_{2}\right)-u_{2}\left(x_{1}\right)+u_{1}\left(x_{1}\right)-c x_{2} .
\end{aligned}
$$

- FOC:

$$
\begin{aligned}
& u_{1}^{\prime}\left(x_{1}\right)-c-u_{2}^{\prime}\left(x_{1}\right)+u_{1}^{\prime}\left(x_{1}\right)=0 \\
& u_{2}^{\prime}\left(x_{2}\right)-c=0
\end{aligned}
$$

This implies $u_{1}\left(x_{1}\right)=c-u_{1}^{\prime}\left(x_{1}\right)+u_{2}^{\prime}\left(x_{1}\right)>c$. The consumption of consumer 1 is not efficient.

Third degree price discrimination

- Different consumers are charged different prices, but each unit is charged exactly the same unit price, no matter how many units are purchased.
- A two-consumer example: Assuming constant unit cost, and $p_{i}\left(x_{i}\right)$ is the demand function of consumer i. Then the problem of the monopolist is

$$
\max _{x_{1}, x_{2}} p_{1}\left(x_{1}\right) x_{1}+p_{2}\left(x_{2}\right) x_{2}-c x_{1}-c x_{2}
$$

- FOC:

$$
\begin{aligned}
& p_{1}\left(x_{1}\right)+p_{1}^{\prime}\left(x_{1}\right) x_{1}=c, \\
& p_{2}\left(x_{2}\right)+p_{2}^{\prime}\left(x_{2}\right) x_{2}=c .
\end{aligned}
$$

- We thus have

$$
\begin{aligned}
& p_{1}\left(x_{1}\right)\left\{1-\frac{1}{\left|\varepsilon_{1}\right|}\right\}=c \\
& p_{2}\left(x_{2}\right)\left\{1-\frac{1}{\left|\varepsilon_{2}\right|}\right\}=c
\end{aligned}
$$

This implies

$$
p_{1}>p_{2} \quad \text { iff } \quad\left|\varepsilon_{2}\right|>\left|\varepsilon_{1}\right| .
$$

- Consumers who have lower demand elasticity are exploited more heavily in the sense that they are charged higher prices.

Two-part tariff

- The monopolist charges a fixed fee T, plus unit price p for every unit purchased.
- Consumers are indexed by $\alpha . f(\alpha)$ is the number of consumer of type α. $\alpha \in[\underline{\alpha}, \bar{\alpha}]$. Consumer with higher value of α has higher valuation of the good.
- Let $s(p, \alpha)$ is consumer surplus of type α when the fixed fee is zero.
- Define α^{*} such that $s\left(p, \alpha^{*}\right)=T . \alpha^{*}$ called the marginal consumer.
- The number of consumers who purchase the good is

$$
\int_{\alpha}^{\bar{\alpha}} f(\alpha) d \alpha \equiv N(p, T)
$$

- Let $q(p, \alpha)$ be the demand function of type α consumer. Then total demand for the monopolist's good is $\int_{\alpha}^{\bar{\alpha}} q(p, \alpha) f(\alpha) d \alpha \equiv Q(p, T)$.
- Assume constant unit cost m. The profit of the monopolist is
$T N(p, T)+(p-m) Q(p, T)$.
- FOC (Homework \#2):

$$
\frac{p-m}{p}=-\frac{1}{\varepsilon}\left\{1-\frac{q^{*}}{\bar{q}}\right\}
$$

where $q^{*}=q\left(p, \alpha^{*}\right), \bar{q}=Q(p, T) / N(p, T)$,
and

$$
\varepsilon=\int_{\alpha}^{\bar{\alpha}} \frac{q(p, \alpha)}{Q(p, T)} \frac{\partial q(p, \alpha)}{\partial p} f(\alpha) d \alpha
$$

which is the demand elasticity of purchasing consumers.

- Recall that for a simple monopolist, $(p-m) / p=-1 / \varepsilon$.
- If consumers are identical, then $q^{*}=\bar{q}$, and $p=m$. All profit comes from T.
- It is possible to have $p<m$. This occurs when consumers who have very high surplus buy little, and who have low surplus buy a lot.
- Impossible that $T<0$.

