- The paper considers market equilibrium of two competitive technologies which exhibit increasing returns.
- Under what condition will one technology dominate the market?
- What properties the equilibrium exhibit? In particular: (1) Can we predict the winner based on which technology is superior?
 - (2) Is the equilibrium stable?
 - (3) Can government policy influence technology selection?
- What are the differences to the usual cases with constant or diminishing returns?

- Two types of consumers (R and S). They adopt one of two types of technologies (A and B) sequentially. The order of adoption is random.
- Both technologies exhibit network effect, so that the more consumers using a technology, the more utilities the consumers using that technology get.
- ▶ The utility of R-type consumer adopting technology A (B) is $a_R + rn_A (b_R + rn_B)$. That for S-type is $a_S + sn_A (b_S + sn_B)$; where n_A and n_B are the number of consumers already adopting A and B.

	Technology A	Technology B	
R-agent	$a_R + rn_A$	$b_R + rn_B$	
S-agent	$a_S + sn_A$	$b_S + sn_B$	

Table 1. Returns to Choosing A or B given Previous Adoptions

- ▶ a_R > b_R and a_S < b_S. R-type has natural preference for A, and S-type for B.
- Technology is of constant return if r and s = 0; diminishing return if r and s < 0; increasing return if r and s > 0.

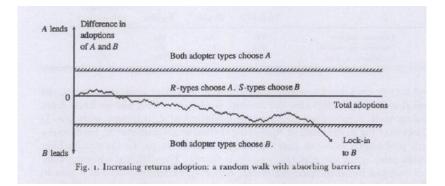
$$\blacktriangleright n \equiv n_A + n_B, \ x_n \equiv n_a/n, \ d_n \equiv n_A - n_B.$$

►
$$x_n = 0.5 + d_n/2n$$
.

The adoption process is

(1) <u>predictable</u> if the observer can ex-ante construct a forecasting sequence $\{x_n^*\}$ so that $|x_n - x_n^*| \to 0$;

(2) <u>flexible</u> if a given marginal adjustment g to the technologies returns can alter future choice;


(3) <u>ergodic</u> if, given two samples from the observer's set of possible historical events $\{x_n\}$ and $\{x'_n\}$, $|x_n - x'_n| \to 0$ with probability 1; (4) <u>path-efficient</u> if, whenever an agent chooses the more-adopted technology α , version of the lagging technology β would not have delivered more had they been developed and available for adoption. That is, $\prod_{\alpha}(m) \ge \max_j \{\prod_{\beta}(j)\}$ for $k \le j \le m$, where there have been *m* previous choices of α and *k* for β .

• Path of d_n :

(1) constant return: random walk.

(2) increasing return: random walk with absorbing boundaries.

(3) Diminishing return: random walk with reflecting boundaries.

Predictability:

(1) constant return: 50-50 split of market share. Predictability guaranteed.

(2) diminishing return: same.

(3) increasing return: one technology dominates, but don't know which one. Not predictable.

► Flexibility:

(1) constant return: Adjustments can not change the 50-50 market share outcome.

(2) diminishing return: Adjustment changes barriers. Since barriers are reflecting, it continues to affect future outcome.

(3) increasing return: Policy adjustment won't change thing after being locked-in absorbing state.

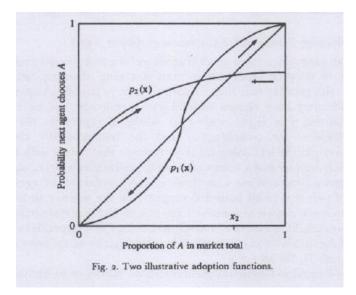
Ergodicity:

- (1) constant return: Still 50-50 market split after disturbance.
- (2) diminishing return: Small events change the future path.
- (3) increasing return: Small events change the future path.

Path-efficiency:

(1) constant return: Obvious.

(2) diminishing return: Even more so.


(3) increasing return: Consumers can all adopt (lock-in, that is) an inferior technology.

	Predictable	Flexible	Ergodic	Necessarily
				path-efficient
Constant returns	Yes	No	Yes	Yes
Diminishing returns	Yes	Yes	Yes	Yes
Increasing returns	No	No	No	No

Table 2. Properties of the Three regimes

- Extension: Story still true if there are K technologies, or more than 2 types of consumers.
- Consider a general framework which preserves two basic assumptions: Increasing return and chance event.

- ► K technologies. P_i(x) is the probability technology i is adopted when choice is made, i = 1,..., k. x = (x₁,...,x_n) is market share of technology.
- Take K = 2 as example. When x_i is higher (lower) than P_i, adoption probability of i is higher (lower) than its market share. Thus adoption rate of i tends to decrease.
 Intuitively, market will settle on a fixed-point.
- Moreover, the process will settle on "stable" fixed-point.

- Theorem 1: An adoption process is non-ergodic iff P has multiple stable fixed point.
- Theorem 2: It converges with probability 1 to a single technology iff \vec{P} only has unit vector stable as fixed points.
- It is not necessary that technologies with increasing return will result in a dominant technology.
- It is still not well-known to what degree economy is locked-in to inferior technology.
- General conclusion: The equilibrium for competition between technologies which exhibit increasing return is erratic: Hard to predict, inflexible, often inefficient.
- There is an example which nicely showcases the characteristics that chance matters and superior technology might not survive.

- QWERTY typewriter keyboard is currently the dominant design.
- This had not been the case in the past. Typewriter keyboard had involved in many designs.
- ► C. Sholes (1860's) → Densmore → Remington adoption → near universal dominance in 1905.
- QWERTY is not a superior technology (Dvorak and Apple adoption, DHIATENSOR), but was eventually the standard design.

- ► Features of keyboard:
 - (1) technical interdependence.
 - (2) economy of scale.
 - (3) quasi-irreversibility.
- Chance events matter.
- Similary phenomenon can be seen in competition between VHS and Beta video tapes.