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Econometrica, Vol. 51, No. 1 (January, 1983)
AN ANALYSIS OF THE PRINCIPAL-AGENT PROBLEM

BY SANFORD J. GROSSMAN AND OLIVER D. HART!

Most analyses of the principal-agent problem assume that the principal chooses an
incentive scheme to maximize expected utility subject to the agent’s utility being at a
stationary point. An important paper of Mirrlees has shown that this approach is generally
invalid. We present an alternative procedure. If the agent’s preferences over income
lotteries are independent of action, we show that the optimal way of implementing an
action by the agent can be found by solving a convex programming problem. We use this
to characterize the optimal incentive scheme and to analyze the determinants of the
seriousness of an incentive problem.

1. INTRODUCTION

IT HAS BEEN RECOGNIZED for some time that, in the presence of moral hazard,
market allocations under uncertainty will not be unconstrained Pareto optimal
(see Arrow [1], Pauly [13]). It is only relatively recently, however, that economists
have begun to undertake a systematic analysis of the properties of the second-
best allocations which will arise under these conditions. Much of this analysis has
been concerned with what has become known as the principal-agent problem.
Consider two individuals who operate in an uncertain environment and for
whom risk sharing is desirable. Suppose that one of the individuals (known as the
agent) is to take an action which the other individual (known as the principal)
cannot observe. Assume that this action affects the total amount of consumption
or money which is available to be divided between the two individuals. In
general, the action which is optimal for the agent will depend on the extent of
risk sharing between the principal and the agent. The question is: What is the
optimal degree of risk sharing, given this dependence?

Particular applications of the principal-agent problem have been made to the
case of an insurer who cannot observe the level of care taken by the person being
insured; to the case of a landlord who cannot observe the input decision of a
tenant farmer (sharecropping); and to the case of an owner of a firm who cannot
observe the effort level of a manager or worker.?

Although considerable progress has been made in the recent literature towards
understanding and solving the principal-agent problem (see, in particular, Harris
and Raviv [6], Holmstrom [7], Mirrlees [10, 11, 12], Shavell [19, 20], as well as the
other references in footnote 2), the mathematical approach which has been
adopted in most of this literature is unsatisfactory. The procedure usually
followed is to suppose that the principal chooses the risk-sharing contract, or
incentive scheme, to maximize his expected utility subject to the constraints that

"'Support from the U.K. Social Science Research Council and NSF Grant No. SOC70-13429 is
gratefully acknowledged. We would like to thank Bengt Holmstrom, Mark Machina, Andreu
Mas-Colell, and Jim Mirrlees for helpful comments.

2These and other applications are discussed in a number of recent papers. See, for example, Harris
and Raviv [6], Holmstrom [7], Mirrlees [10, 11, 12], Radner [15], Ross [17], Rubinstein and Yaari [18],
Shavell [19, 20], Spence and Zeckhauser [21], Stiglitz [22], and Zeckhauser [24].
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FIGURE 1.

(a) the agent’s expected utility is no lower than some pre-specified level; (b) the
agent’s utility is at a stationary point, i.e., the agent satisfies his first-order
conditions with respect to the choice of action. That is, the agent’s second-order
conditions (and the condition that the agent should be at a global rather than a
local maximum) are ignored. Mirrlees [10], however, in an important paper, has
shown that this procedure is generally invalid unless, at the optimum, the
solution to the agent’s maximum problem is unique. In the absence of uniqueness
(and it is difficult to guarantee uniqueness in advance), the first-order conditions
derived by the above procedure are not even necessary conditions for the
optimality of the risk-sharing contract.?

3The reason for this can be seen quite easily in Figure 1 (we are grateful to Andreu Mas-Colell for
suggesting the use of this figure). On the horizontal axis, I represents the agent’s incentive scheme and
on the vertical axis a represents the agent’s action. The curve 4 BCDE is the locus of pairs of actions
and incentive schemes which satisfy the agent’s first order conditions, i.e., given I the agent’s utility is
at a stationary point. Of these points, only those lying on the segments 4B and DFE represent global
maxima for the agent, e.g. given the incentive scheme I the agent’s optimal action is at p;, not at p,
or p;. Indifference curves—in terms of a and I—are drawn for the principal (C is on a higher curve
than B). The true feasible set for the principal are the segments 4B and DE and the optimal outcome
for the principal is therefore B. However, B does not satisfy the first order conditions of the problem:
maximize the principal’s utility subject to (a, I) lying on ABCDE, i.e., subject to (a, I) satisfying the
agent’s first order conditions (the solution to this problem is at C). In other words, B does not satisfy
the necessary conditions for optimality of the problem which has been studied in much of the
literature. Note finally that perturbing Figure 1 slightly does not alter this conclusion.
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The purpose of this paper is to develop a method for analyzing the principal-
agent problem which avoids the difficulties of the “first-order condition” ap-
proach.* Our approach is to break the principal’s problem up into a computation
of the costs and benefits of the different actions taken by the agent. For each
action, we consider the incentive scheme which minimizes the (expected) cost of
getting the agent to choose that action. We show that, under the assumption that
the agent’s preferences over income lotteries are independent of the action he
takes, this cost minimization problem is a fairly straightforward convex program-
ming problem. An analysis of these convex problems as the agent’s action varies
yields a number of results about the form of the optimal incentive scheme. We
will also be able to analyze what factors determine how serious a particular
incentive problem is; i.e., how great the loss is to the principal from having to
operate in a second-best situation where the agent’s action cannot be observed
relative to a first-best situation where it can be observed.

The assumption that the agent’s preferences over income lotteries are indepen-
dent of action is a strong one. Yet it seems a natural starting point for an analysis
of the principal-agent problem. Special cases of this assumption occur when the
agent’s utility function is additively or multiplicatively separable in action and
reward. One or other of these cases is typically assumed in most of the literature.
In Section 6 we discuss briefly the prospects for the non-independence case.

In addition to providing greater rigor, the costs versus benefits approach also
provides a clear separation of the two distinct roles the agent’s output plays in
the principal-agent problem. On the one hand, the agent’s output contributes
positively to the principal’s consumption, so the principal desires a high output.
On the other hand, the agent’s output is a signal to the principal about the
agent’s level of effort. This informational role may be in conflict with the
consumption role. For example, there may be a moderate output level which is
achieved when the agent takes low effort levels and never occurs at other effort
levels. If the agent is penalized whenever this moderate output occurs, then he is
discouraged from taking these low effort actions. However, there may be lower
output levels which have some chance of occurring regardless of the agent’s
action. To encourage the agent to take high effort levels, it is then optimal to pay
the agent more in low output states than in moderate output states, even though
the principal prefers moderate output levels to low output levels.

The dual role of output makes it difficult to obtain conditions which ensure
even elementary properties of the incentive scheme, such as monotonicity. In
Section 3, sufficient conditions for monotonicity are given. It is also shown in this
section that a monotone likelihood ratio condition, which the “first-order condi-
tion” approach suggests is a guarantee of monotonicity, must be strengthened
once we take into account the possibility that the agent’s action is not unique at
the optimal incentive scheme.

The paper is organized as follows. In Section 2, we show how the principal’s
optimization problem can be decomposed into a costs versus benefits problem.

“Mirrlees [12] has identified a class of cases where the “first-order condition” approach is valid.
We will consider this class in Section 3.
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In Section 3, we use our approach to analyze the monotonicity and progressivity
of the optimal incentive scheme. In Section 4, we give a simple algorithm for
computing an optimal incentive scheme when there are only two outcomes
associated with the agent’s actions. In Section 5, we analyze the effects of risk
aversion and information quality on the incentive problem. Finally, in Section 6
we consider some extensions of the analysis.

2. STATEMENT OF THE PROBLEM

The application of the principal-agent problem that we will consider is to the
case of the owner of a firm who delegates the running of the firm to a manager.
The owner is the principal and the manager the agent. The owner is assumed not
to be able to monitor the manager’s actions. The owner does, however, observe
the outcome of these actions, which we will take to be the firm’s profit. It is
assumed that the firm’s profit depends on the manager’s actions, but also on
other factors which are outside the manager’s control—we model these as a
random component. Thus, in particular, if the firm does well, it will not generally
be clear to the owner whether this is because the manager has worked well or
whether it is because he has been lucky.’

We will simplify matters by assuming that there are only finitely many possible
gross profit levels for the firm, denoted ¢,, . . ., g,, where ¢, < ¢, < - - - < g,.
We will assume that the principal is interested only in the firm’s net profit, i.e.
gross profit minus the payment to the manager. We will also assume that the
principal is risk neutral—our methods of analysis can, however, be applied to the
case where the principal is risk averse (see Remark 3 and Section 6).

Let 4 be the set of actions available to the manager. We will assume that 4 is
a non-empty, compact subset of a finite dimensional Euclidean space. Let
S={x€R"|x>0, 3% ,x;=1}. We assume that there is a continuous function
7:A4— S, where 7(a) = (m(a), . . ., m,(a)) gives the probabilities of the n out-
comes ¢, ..., q, if action a is selected. It is assumed that, when the agent
chooses a € 4, he knows the probability function 7 but not the outcome which
will result from his action. We assume that the agent has a von Neumann-—
Morgenstern utility function U(a,I) which depends both on his action a and his
remuneration / from the principal. We include a as an argument in order to
capture the idea that the agent dislikes working hard, taking care, etc.

The crucial assumption that we will make about the form of U(a,[I) is:

ASSUMPTION Al: U(a,I) can be written as G(a) + K(a)V(I), where (1) Vis a
real-valued, continuous, strictly increasing, concave function defined on some
open interval § = (I, o) of the real line; (2) lim,%!V(I )= —o0; (3) G,K are

>The assumption that the principal cannot monitor the agent’s actions at all may in some cases be
rather extreme. For a discussion of the implications of the existence of imperfect monitoring
opportunities, see Harris and Raviv [6], Holmstrom [7] and Shavell [19, 20]. See also Remark 4 in
Section 2.
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real-valued, continuous functions defined on 4 and K is strictly positive; (4) for
all a;,a, € 4 and I, ey, G(a) + K(apV(1) > G(ay) + K(a) V()= G(a)) +
K(a)V(l) > G(a)) + K(a) V(D).

In the above, we allow for the case I = — .

The main part of Assumption Al has a simple ordinal interpretation. Assump-
tion Al implies that the agent’s preferences over income lotteries are independent
of his action (Assumption Al(1) tells us also that these preferences exhibit risk
aversion). The converse can also be shown to be true: if the agent’s preferences
over income lotteries are independent of a, then U can be written as G(a) +
K(a)V (1) for some functions G, K,V (for a proof, see Keeney [8]). Note that
Assumption Al does not imply that the agent’s preferences for action lotteries are
independent of income. We will insist, however, that the agent’s ranking over
perfectly certain actions is independent of income—this is condition (4) of
Assumption Al.

Note that if K(a) is not constant then (2) and (4) imply that V(1) must be
bounded from above. Further if it is also the case that G(a) =0, then V(1) must
be non-positive everywhere.

Two special cases of Assumption Al occur when K(a) = constant, i.e. U is
additively separable in @ and I, and when G(a) =0, i.e. U is multiplicatively
separable in a and I. In these cases the agent’s preferences over action lotteries
are independent of income, as well as preferences over income lotteries being
independent of action.®

An interesting special case of multiplicative separability is when V([) =
—e M K(a)=e* and A is a subset of the real line. Then U(a,l)=
— e kU=, je. effort appears just as negative income.

In the “flrst best” situation where the principal can observe g, it is optimal for
him to pay the agent according to the action he chooses. Let U be the agent’s
reservation price, i.e. the expected level of utility he can achieve by working
elsewhere, and let A = V($) = {v|v= V(I) for some I € §}. We make the
following assumption.

AsSUMPTION A2: [U — G(a)]/K(a) € U for all a € 4.

DEFINITION: Let Cpp: 4 —> R be defined by Cpz(a)=h(U — G(a)l/K(a)),
where h=V ..

Here C,p stands for first-best cost. Crgz(a) is simply the agent’s reservation
price for picking action a. To get the agent to pick a € 4 in the first-best

$The converse is also true: if preferences over action lotteries are independent of income as well as
preferences over income lotteries being independent of action, then U is additively or multiplicatively
separable (see Keeney [8] or Pollak [14]).
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situation, the principal will offer him the following contract: I will pay you
Cyp(a) if you choose a and I otherwise, where I is very close to I.

DerINITION: Let B: A — R be defined by B(a) = Y}_ 7 (a)g;. B(a) is the
expected benefit to the principal from getting the agent to pick a.

DEFINITION: A first-best optimal action is one which maximizes B(a) —
Crg(a) on 4.

The function Cpp induces a complete ordering on 4:a=a’ if and only if
Crg(a) > Cpg(a’). For obvious reasons we will refer to actions with higher
Crp(a)’s as costlier actions. It is easy to show, in view of Assumption A1(4), that
Crg(a) > Crp(a)e G(a) + K(a)o < G(a') + K(a’)v for all v €U G(a) +
K(a)v < G(a’) + K(a')v for some v € Q. This in turn implies that the ordering
= is independent of U. In the second-best situation where a is not observed by
the principal, it is not possible to make the agent’s remuneration depend on a.
Instead, the principal will pay the agent according to the outcome of his action,
i.e. according to the firm’s profit. An incentive scheme is therefore an n-
dimensional vector I = (I, 1,, . .., I,) €9", where I, is the agent’s remuneration
in the event that the firm’s profit is ¢;. Given the incentive scheme Z, the agent
will choose a € 4 to maximize >)]_ 7, (a)U(a, I,).

We will assume that the principal knows the agent’s utility function U(a,[),
the set A and the function 7:A4 — S. In other words, the principal is fully
informed about the agent and about the firm’s production possibilities. The
incentive problem which we will study therefore arises entirely because the
principal cannot monitor the agent’s actions.’

The principal’s problem can be described as follows. Let F be the set of pairs
of incentive schemes I* and actions a* such that, under I'*, the agent will be
willing to work for the principal and will find it optimal to choose a*, i.e.
max, ., S"_ 7 (a)U(a,I¥)=S"_ \m,(a*)U(a*,1¥)> U. Then the principal
chooses (1,a) € F to maximize >)_ m,(a)(g; — I,). It simplifies matter considera-
bly if we break this problem up into two parts. We consider first, given that the
principal wishes to implement a*, the least cost way of achieving this. We then
consider which a* should be implemented. Thus, to begin, suppose that the
principal wishes the agent to pick a particular action a* € 4. To find the least
(expected) cost way of achieving this, the principal must solve the following

TThis distinguishes our study from the literature on incentive compatibility; see, e.g., the recent
Review of Economic Studies symposium [16]. The incentive compatibility literature has been con-
cerned with incentive problems arising from differences in information between individuals rather
than with those arising from monitoring problems. In cases of differential information, there is a role
for an exchange of information through messages, whereas in the model we study messages would
serve no purpose.
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problem:

h
(2.1)  Choose I,, ..., I, to minimize D>, m,(a*)l;
i=1
subject to > m(a*)U(a*,1,) > U,

> m(a*)U(a*1,) > > m(a)U(a,I;)  forall a€ A,
i=1 i=1

I.eg for all i.

This problem can be simplified considerably in view of Assumption Al. It will
be convenient to regard v, = V(I,),...,v,= V(I,) as the principal’s control
variables. Recall that A = V(9) = {v|v = V(1) for some I € ¢}. By Assumption
Al, @ is an interval of the real line (—oo0,?). Thus we may rewrite (2.1) as
follows:

n
(22)  Choose v, ..., v, to minimize >, m(a*)h(v;)

=
n

subject to  G(a*) + K(a*)( > wi(a*)v,-) > G(a) + K(a)(’i1 wi(a)o,.)

i=1 i =

forall a€ A,

G(a*) + K(a*) 3 m(a*)u) >
k=1
v EAU for all 7,

where h =V L.

The important point to realize is that the constraints in (2.2) are linear in the
v;’s. Furthermore, V' concave implies 2 convex, and so the objective function is
convex in the v;’s. Thus (2.2) is a rather simple optimization problem: minimize a
convex function subject to (a possibly infinite number of) linear constraints. In
particular, when A is a finite set, the Kuhn—Tucker theorem yields necessary and
sufficient conditions for optimality. These will be analyzed later.

It is important to realize that, in the absence of Assumption Al, it is not
generally possible to convert (2.1) into a convex problem in this way.

DerINtTION: If I=(1,,...,1,) satisfies the constraints in (2.1) or v =
(v, - - . , v,) satisfies the constraints in (2.2), we will say that I or v implements
action a*. (We are assuming here that if the agent is indifferent between two
actions, he will choose the one preferred by the principal.)
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Consider the set of v’s which implement a*. For some a*, this set may be
empty, in which case action a* cannot be implemented by the principal at any
cost. If the set is non-empty, then, since /4 is convex,

S m,(a*)h W 3 matyo) s af L20E)
S m(ah(e) 2 h( 3 m(at)o) > b~
by (2.2), and so the principal’s objective function is bounded below on this set.
Let C(a*) be the greatest lower bound of 3Yi_ 7,(a*)h(v;) on this set.

DEerFINITION: Let C(a*) = inf{3>7_ 7, (a*)h(v,) |0 = (v), . . . , v,) implements
a*} if the constraint set in (2.2) is non-empty. In the case where the constraint set
of (2.2) is empty, write C(a*) = oo. This defines the second-best cost function
C:A—> Ru{x}.

The above constitutes the first step(s) of the principal’s optimization problem:
for each a € 4, compute C(a). The second step is to choose which action to
implement, i.e. to choose a € 4 to maximize B(a) — C(a). This second problem
will not generally be a convex problem. This is because even if B(a) is concave in
a, C(a) will not generally be convex. Fortunately, a significant amount of
information about the form of the optimal incentive scheme can be obtained by
studying the first step alone.

DEFINITION: A second-best optimal action 4 is one which maximizes B(a) —
C(a) on A. A second-best optimal incentive scheme I is one that Jimplements a
second-best optimal action 4 at least expected cost, i.e. 37_,7,(4)1; = C(4).

Note that for a second-best optimal incentive scheme to exist, the greatest
lower bound in the definition of C(a) must actually be achieved. In order to
establish the existence of a second-best optimal action and a second-best optimal
incentive scheme, we need a further assumption.

ASSUMPTION A3: Foralla€ A4 andi=1,...,n, m,(a)>0.

Since there are only finitely many possible profit levels, Assumption A3
implies that 7,(a) is bounded away from zero. Hence Assumption A3 rules out
cases studied by Mirrlees [12] in which an optimum can be approached but not
achieved by imposing higher and higher penalties on the agent which occur with
smaller and smaller probability if the agent chooses the right action.

PROPOSITION 1: Assume A1-A3. Then there exists a second-best optimal action
4 and a second-best optimal incentive scheme I.
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Proor: It is helpful to split the proof up into two parts. Consider first the case
where V is linear. Then it is easy to see that the principal can do as well in the
second-best as in the first-best where the agent can be monitored. For let a*
maximize B(a) — Crg(a) on A. Let the principal offer the agent the incentive
scheme [; = ¢, — t, where ¢t = B(a*) — Cgz(a*). Then the principal’s profit will
be B(a*)— Cgz(a*) whatever the agent does. On the other hand, by picking
a = a*, the agent can obtain expected utility U. Hence Proposition 1 certainly
holds when V is linear.

On the other hand, suppose V is not linear. We show first, that, if the
constraint set is nonempty for an action a* € 4, then problem (2.2) has a
solution, i.e. 37_,m;(a*)h(v;) achieves its greatest lower bound C(a*). Note that
S_,m,(a*)v, is bounded below on the constraint set of (2.2). It therefore follows
from a result of Bertsekas [2] that unbounded sequences in the constraint set
make 37_,m(a*)h(v;) tend to infinity (roughly because the variance of the
v;—> oo while their mean is bounded below, and % is convex and nonlinear—
Assumption A3 is important here). Hence, we can artificially bound the con-
straint set. Since the constraint set is closed, the existence of a minimum
therefore follows from Weierstrass’ theorem.

We show next that C(a) is a lower semicontinuous function of a. If 4 is finite,
then any function defined on A4 is continuous and hence lower semicontinuous.
Assume therefore that 4 is not finite. Let (a,) be a sequence of points in A4
converging to a. Assume without loss of generality (w..o0.g.) that C(a,)— k.
Then, if k = oo, we certainly have C(a) < lim,_, C(a,). Suppose therefore that
k < . Let (I], ..., I)) be the solution to (2.1) when a* = a,. Then Bertsekas’
result together with Assumption A3 shows that the sequence ((I{, ..., I,)) is
bounded (otherwise C(a,)—> o). Let (I,,...,1,) be a limit point. Then
clearly (I, ..., I,) implements ¢ and so C(a) <> 7 (a)l;=lim,  C(a,).
This proves lower semicontinuity.

Given that C(a) is lower semicontinuous and A is compact, it follows from
Weierstrass’ theorem that max, ,[B(a) — C(a)] has a solution, as long as C(a)
is finite for some a € 4. To prove this last part, we show that C(a*) = Crg(a*) if
a* minimizes Crz(a) on 4. To see this, note that the a* which minimizes Crz(a)
can be implemented by setting I, = Cgz(a*) for all i.

We have thus established the existence of a second-best optimal action, 4,
when V is nonlinear. Since we have also shown that (2.2) has a solution as long
as the constraint set is non-empty and V is nonlinear, this establishes the
existence of a second-best optimal incentive scheme. Q.E.D.

It is interesting to ask whether the constraint that the agent’s expected utility
be greater than or equal to U is binding at a second-best optimum. The answer is
no in general, i.e. for incentive reasons it may pay the principal to choose an
incentive scheme which gives the agent an expected utility in excess of U. One
case where this will not happen is when the agent’s utility function is additively
or multiplicatively separable in action and reward:
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PROPOSITION 2: Assume Al, A2, and either K(a) is a constant ﬁ{nction on A or
G(a)=0 for all a € A. Let d be a second-best optimal action and I a second-best
optimal incentive scheme which implements a. Then >{_ \m(d)U(4,1) = U.

PrOOF: Suppose not. Write 6, = V(IA,). Then G(4)+ K(4)S ;- m(a)d) > U
in (2.2). But it is clear that the principal’s costs can be reduced and all the
constraints of (2.2) will still be satisfied if we replace &, by (6, — €) for all i in the
additively separable case and by v,(1 +¢€) for all i in the multiplicatively
separable case where € > 0 is small (note that in the multiplicatively separable
case, it follows from (2)—(4) of Assumption Al that V(/) <O for all I € §, and
so ¥, < 0). In other words, 4 can be implemented at lower expected cost, which
contradicts the fact that we are at a second-best optimum. Q.E.D.

REMARK 1: The proof of Proposition 1 establishes that C(a*) = Cpz(a*) if a*
minimizes Cpz(a) on A. This is a reflection of the fact that there is no trade-off
between risk sharing and incentives when the action to be implemented is a
cost-minimizing one (i.e. involves the agent in minimum “effort”).

REMARK 2: In general, there may be more than one second-best optimal
action and more than one second-best optimal incentive scheme. It is clear from
(2.2), however, that, if V' is strictly concave, there is a unique second-best optimal
incentive scheme which implements any particular second-best optimal action.

DEFINITION: Let L = max, . ,(B(a) — Crz(a)) — sup,c 4(B(a) — C(a)) be the
difference between the principal’s expected profit in the first-best and second-
best situations.

L represents the loss which the principal incurs as a result of being unable to
observe the agent’s action (we write sup(B(a) — C(a)) rather than max(B(a) —
C(a)) to cover cases where the assumptions of Proposition 1 do not hold).
Proposition 3 shows that, while there are some special cases in which L =0, in
general L > 0.

PROPOSITION 3: Assume Al and A2. Then: (1) C(a)> Cgg(a) for all a € A,
which implies that L >0. (2) If V is linear, L = 0. (3) If there exists a first-best
optimal action a* € A satisfying: for each i, m(a*) > 0=>m,(a)=0 for all a € A4,
a # a*, then L = 0. (4) If A is a finite set and there is a first-best optimal action a*
which satisfies: for some i, w,(a*) =0 and w,(a) >0 for all a € A, a + a*, then
L = 0. (5) If there is a first-best optimal action a* € A which minimizes Cpz(a) on
A, L =0. (6) If Assumption A3 holds, every maximizer @ of B(a) — Crz(a) on A
satisfies Crp(d) > min,c , Crg(a), and V is strictly concave, then L > 0.

Proor: (1) is obvious since anything which is second-best feasible is also
first-best feasible. (2) follows from the first part of the proof of Proposition 1. (5)
follows from the proof of Proposition 1 (see also Remark 1). (3) and (4) follow
from the fact that a* can be implemented by offering the agent I, = C,,(a*) for
those i such that #;(a*) > 0 and I close to I otherwise.
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To prove (6), note that, if V is strictly concave,
n
G(a*)+ K(a*) > m(a*) V(1) > U
i=1

implies
n

C(a*) = X m(a*)h(V (L))

i=1

> h( i 7, (a*) V(I,.)) > h((U—G(a*)/K(a"))

i=1
= CFB (a*)

unless I; = constant with probability 1. But, since x;(a*) >0 for all i, I, =
constant with probability 1= I; is independent of i. However, in this case, the
constraints of problem (2.2) imply that C5z(a) is minimized at a*. Q.E.D.

Most of Proposition 3 is well known. Proposition 3(2) and (6) can be under-
stood as follows. In the first-best situation, if the agent is strictly risk averse, the
principal bears all the risk and the agent bears none. In the second best situation,
this is generally undesirable. For if the agent is completely protected from risk,
then he has no incentive to work hard; i.e., he will choose a € 4 to minimize
Crg(a). Hence the second-best situation is strictly worse from a welfare point of
view than the first-best situation. The exception is when the agent is risk neutral,
in which case it is optimal both from a risk sharing and an incentive point of
view for him to bear all the risk, or when the first-best optimal action is cost
minimizing.

In the case of Proposition 3(3) and 3(4), a scheme in which the agent is
penalized very heavily if certain outcomes occur can be used to achieve the first
best. This relates to results obtained in Mirrlees [12].

REMARK 3: We have assumed that the principal is risk neutral. Our analysis
generalizes to the case where the principal is risk averse, however. In this case,
instead of choosing v to minimize > 7;(a*)h(v;) in problem (2.2), we choose v to
maximize ¥ m,(a*)U,(q; — h(v)), where U, is the principal’s utility function.
Note that (2.2) is still a convex problem. Although we can no longer analyze
costs and benefits separately, we can, for each a* € 4, define a net benefit
function max,> m,(a*)U,(g; — h(v;)). An optimal action for the principal is now
one that maximizes net benefits. See also Section 6 on this.

REMARK 4: We have taken the outcomes observed by the principal to be profit
levels. Our analysis generalizes, however, to the case where the outcomes are
more complicated objects, such as vectors of profits, sales, etc., or to the case
where profits are not observed at all but something else is (see, e.g., Mirrlees
[11]). The important point to realize is that profit does not appear in the cost
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minimization problem (2.1) or (2.2). Thus, if the principal observes the realiza-
tlons of a signal 6, then I, refers to the payment to the agent when § = 0,. Let
C (a, 0) be the cost of 1mp1ement1ng a when the information structure is § (e.g. if
f reveals a exactly, then ¢ (a, 0) = Cgg(a)). Note that if the distribution of output
is generated by a production function f(a, W), such that the marginal distribu-
tion of W is independent of the information structure, then B(a) = Ef(a,W)
= E[E[f(a,w)|0]] is independent of the information structure, given a. It
follows that the effect of changes in the information structure is summarized by
the way that C(a, 0) changes when the information structure changes. As will be
seen in Section 5, this is quite easy to analyze.

3. SOME CHARACTERISTICS OF OPTIMAL INCENTIVE cCHEMES

It is of interest to know whether the optimal incentive scheme is monotone
increasing (i.e., whether the agent is paid more when a higher output is observed)
and whether the scheme is progressive (i.e., whether the marginal benefit to the
agent of increased output is decreasing in output). These questions are quite
difficult to answer because of the informational role of output. As we noted in
the introduction, the agent may be given a low income at intermediate levels of
output in order to discourage particular effort levels. Nevertheless, some general
results about the shape of optimal schemes can be established. We begin with the
following lemma.

LeMMA 1: Assume A1-A3. Let (I1))]_,,(1);_, be incentive schemes which cause
a and a' to be optimal choices for the agent, respectively, and minimize the
respective costs (i.e. (2.1) or (2.2) is solved). Let v; = V(I;) and v = V(I}). Then,
if G(a)+ K(a)Zi-m(a)v) = G(a') + K(a')Z ;= 7m(a')v])), i.e. the agent’s ex-
pected utility is the same under both schemes, we must have

@G Y[m(a) - m(a)](v — 0) > 0.

PrOOF: From (2.2) and the assumption that the agent’s expected utility is the
same, we have

n

G(a)+ K(a’)( > wi(a')oi) < G(a) + K(a)(é1 w,.(a)u,.)

i=1

G+ K(a,)( é wi(a’)vi'),

G(a) + K(a)( > m(a)v] ) <G(a)+ K(a')(lé1 77,-(0')01{)

= 6(a) + K(a) Zm(a)n).
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It follows from the first of these that >}_ 7, (a’)(v; — v;) > 0 and from the second
that >7_,m;(a)(v; — v}) > 0 (since K(a) > 0 by Assumption A1(3)). Adding yields
@3.1). Q.E.D.

We now use Lemma 1 to show that an optimal incentive scheme will have the
property that the principal’s and agent’s returns are positive related over some
range of output levels; i.e., it is not optimal to have, for all output levels ¢,
q,:1;> I,=q;, — I, < q; — I,. The proof proceeds by showing that, if the princi-
pal’s and agent’s payments are negatively related, then a twist in the incentive
schedule which raises the agent’s payment in high return states for the principal
and lowers it in low return states for the principal can make the principal better
off. The reason is that such a twist will be good for incentives since it gets the
agent to put more probability weight on states yielding the principal a high
return, and it is also good for risk-sharing since it raises the agent’s return in low
return states for the agent and lowers the agent’s return in high return states for
the agent. Since the incentive and risk-sharing effects reinforce each other, the
principal is made better off.

In order to bring about both the incentive and risk-sharing effects, the twist in
the incentive scheme must be chosen carefully. It is for this reason that the proof
of the next proposition may seem rather complicated at first sight.

PROPOSITION 4: Assume Al1-A3 and V strictly concave. Let (I, ..., 1)) be a
second-best optimal incentive scheme. Then the following cannot be true: I, > I,
=q,— ;< q— I for all 1 < i, j < n and for some i, j, I, > I, and q; — I; < q; —
1.

PRrROOF: Suppose that
(3.2) L >L=q—-L<qg -1

forall 1 <i, j < nand for some i, j, I, > I; and ¢, — I, <g-—1.

Let (1], ..., I,) be a new incentive scheme satisfying
3.3) o] +M(v)) =1, +Ag, — for alli
where v, = V(I)), v; = V(I/), A >0, and p is such that
34 Amax (g, — h(v,)) > p > Amin(g;, — k(v,)).

If A= p =0, then v/ = v; solves (3.3). The implicit function theorem therefore
implies that (3.3) has a solution as long as A, p are small. (Even if 4 is not
differentiable it has left and right hand derivatives.)

It follows from (3.2) and (3.4) that the change to the new incentive scheme has
the effect of increasing the lowest /,’s and decreasing the highest ones. For each A
pick p so that G(a) + K(@)Som(a)e)) = hax, 4[G(a) + K(a)(S= 7,(a)
v))] = max, 4[G(a) + K(a)(S;-m;(a)v,)]. This ensures that the agent’s expected
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utility remains the same. We now show that the principal’s expected profit is
higher under the new incentive scheme than under the old, which contradicts the
optimality of (1, ..., I).

Substituting (3.1) of Lemma 1 into (3.3) yields:

27’:‘(“')(% — h(v)) > zm(a)(q,. = h(v}))-
If we can show that > m,(a)h(v)) < S 7,(a)h(v,), it will follow that

Zm(a’)(q,- = h(v))) >27’i(“)(‘11 = h(v))s

1.e., the principal is better off.
To see that Y m;(a)h(v)) < > m(a)h(v;), note that

Zm(@)(h(v) = h(e))) 2 Zm(a)h'(v])(v; — ©])

by the convexity of 4 (here A’ is the right-hand derivative if 4 is not differentia-
ble). It suffices therefore to show that the latter expression is positive. By (3.3),

2 m(@)k (0))(v; = o) = Zm(a)h' (o)) (M (v]) = Ag; + p).-

Suppose that this is nonpositive for small A. Divide by A and let A—> 0. Assuming
without loss of generality u/A converges to ji (we allow { infinite) and that A'(v])
converges to 4;, and using the fact that v/ > v;, we get

35 Sm(ayki(h(v) - g+ i) <O.

However, from the fact that 4/(v) is nondecreasing in v; and v/ > v,, #'(v)) > h:’ ,
it follows that v, > v;= h’ > h’ Hence by (3.2) h’ and (h(v;) — g;) are similarly
ordered in the sense of Hardy, L1ttlewood and Polya [5]; i.e., as one moves up so
does the other. Therefore, by Hardy, Littlewood, and Polya [5, p. 43], hA,’ and
(h(v;) — g;) are positively correlated, i.e.,

36 Sm(a)h(h(v) = g+ i) > (Sm(a)h)(Sm(@)(h(v) - ¢+ 1))

>0,
where the last inequality follows from the fact that (1) A’ > 0; (2) G(a) + K(a)
(S7(a)v) < G(a) + K(a'\(Sm,(a)v)) = G(a) + K(a)(S,(a)v,) (since the
agent’s expected utility stays constant), which implies that

}l\in(l)(l/k)Zwi(a)(u,- — /) >0.
(3.6) contradicts (3.5).

This proves that > «,(a)h(v)) < 3 m(a)h(v,), which establishes that the princi-
pal’s expected profit is higher under (I, . . ., I)). Contradiction. Q.E.D.

REMARK 5: Another way of expressing Proposition 4 is that there is no
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permutation i, . . ., i, of the integers 1, . .., n such that /, is nondecreasing in
k, and (g, — 1,) is nonincreasing in k, with [, <1, ,(q, — L) >(q;,, — 1, )
for some k. Note that there is an interesting contrast between Proposition 4 and
results found in the literature on optimal risk sharing in the absence of moral
hazard. In this literature (see Borch [4]), it is shown that (if the individuals are
risk averse) it is optimal for the individuals’ returns to be positively related over
the whole range of outcomes, whereas here we are only able to show that this is
true over some range of outcomes.

Proposition 4 may be used to establish the following result about the monoton-
icity of the optimal incentive scheme.

PROPOSITION 5: Assume A1-A3 and V strictly concave. Let (I,,...,1,) be a
second-best optimal incentive scheme. Then (1) there exists 1 <i < n — 1 such that
I, < I, with strict inequality unless I, =1,= --- =1 (2) there exists 1< j

<n—1suchthat gy — I, < g,y — I, .

ProoF: (1) follows directly from Proposition 4. So does (2) once we rule out
the case g, — I, =¢q,— I, = - - - = q,— I,. We do this by a similar argument to
that used in Proposition 4. Suppose that I is an optimal incentive scheme
satisfying

Gn a-h=q-L=-=9q,~-1,=k
Then I <1, < --- < I, Consider the new incentive scheme I' = (I, + ¢,1, +
€&..., I, +¢€l, — pe) where € >0 and p is chosen so that max,. ,[G(a) +

K(a)Sm(a)V(I})] = max, 4[G(a) + K(@)(Sm(a)V()], ie. the agent’s ex-
pected utility is kept constant. We show that the principal’s expected profit is
higher under I’ than under 7 for small €. Suppose not. Then

2m(a)g— 1)< Xm(a) g — L) =k

where a’ (resp. a) is optimal for the agent under I’ (resp. I). Substituting for I’
yields

—(1 -7, (a’))e+ m,(a’) pe <0.
Take limits as e —> 0. Without loss of generality a’— 4. Hence we have
3.8) — (1= 7,(@)) + 7, (a)n<O.

Now since a’ is an optimal action for the agent under I’, it follows by
uppersemicontinuity that 4 is optimal under I. Hence we have

G(d) + K(@)( Zm(a)V(I})) < G(a) + K(a)( Sm(a) V(1))

= G(4) + K(@)( Zm(a)V(1,))-
Hence 3 7;(&)(V(I;) — V(1)) > 0. Using the concavity of ¥ and taking limits as
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e—>0, we get

n—1

S (@) V(1) = 1@V (1) 1k <O.

I=

But since V’([,) is decreasing in i, this contradicts (3.8). (If ¥ is not differentiable,

V'’ denotes the right-hand derivative.)
This proves that the principal does better under I’ than under I. Hence we
have ruled out the case ¢, — I, = - - - = g, — I,,. This establishes Proposition 5.
Q.E.D.

Proposition 5 says that it is not optimal for the agent’s marginal reward as a
function of income to be negative everywhere or to be greater than or equal to
one everywhere.® However, the proposition does allow for the possibility that
either of these conditions can hold over some interval. To see when this may
occur, it is useful to consider in more detail the case where A4 is a finite set. When
A is finite, we can use the Kuhn-Tucker conditions for problem (2.2) to
characterize the optimum. If Assumption A3 holds and 4 is differentiable, these
yield:

69 Hw)=p+ T plK@)- T p,jK(aj)( Z’((ﬂ))) for all

a #a* a*a*

where A, ( 1) are nonnegative Lagrange multipliers and g, > 0 only if the agent is
indifferent between a* and a; at the optimum. The following proposition states
that p, > 0 for at least one action which is less costly than a*. This implies that at
an optimum the agent must be indifferent between at least two actions (unless a*
is the least costly action, i.e. where there is no incentive problem).

PROPOSITION 6: Assume A1-A3 and A finite. Suppose that (2.2) has a solution
for a* € A. Then if Crg(a*) > min,c , Crz(a), this solution will have the property
that G(a*) + K(a*)(X= m(a*)v) = G(a) + K(a)(X - m(a))v,) for some a;, € A
with Crg(a;) < Crg(a*). Furthermore, if V' is strictly concave and differentiable, the
Lagrange multiplier p; will be strictly positive for some a; with Cpg(a;) < Cpg(a*).

PrOOF: Suppose that the agent strictly prefers a* to all actions less costly than
a* at the solution. Then, since (2.2) is a convex problem, we can drop all the
constraints in (2.2) which refer to less costly actions without affecting the

8 Among other things, Proposition 5 shows that it is not optimal to have g, — I, = ¢, — I, = - - -
= g, — I,. This result has also been established by Shavell [20] under stronger assumptions.
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solution. In other words, we can substitute 4’ = {a € A|a is at least as costly as
a*} for 4 in (2.2) and the solution will not change. But since a* is now the least
costly action, we know from the proof of Proposition 1 that it is optimal to set
I; = I for all i, j. However, [, = 1; is not optimal for the original problem since,
under these conditions, the agent w111 pick an a which minimizes Crz(a), and by
assumption Cpg(a*) > min, ., Crp(a). Contradiction.

That I > 0 follows from the fact that 1f all the p; = 0, then A’(v,) is the same

for all i, which implies that I, = however, this means that the agent
will choose a cost-minimizing action, contradicting Crp(a*) > min, ¢ , Crp(a).
Q.E.D.

It should be noted that Proposition 6 depends strongly on the assumption that
A is finite.

The simplest case occurs when p; > 0 for just one a; with Crp(a) < Crg(a*)
(this will be true in particular if 4 contalns only two actions). In thls case, we can
rewrite (3.9) as

a;(a;
(3.10) A (v)=(A+ p)K(a*) - 1K (a) ?(ai)s .
We see that what determines v;, and hence I, in this case is the relative
likelihood that the outcome g = g, results from g rather than from a*. In
particular, since 4 convex = A’ nondecreasing in v;, a sufficient condition for the
optimal incentive scheme to be nondecreasing everywhere, ie. I, < I, <
<I,, is that m,(a;)/m,(a*) is nonincreasing in i, i.e. the relative likelihood that
a = g, rather than a = a* produces the outcome g = g; is lower the better is the
outcome i.

This observation has led some to suggest that the following is a sufficient
conditon for the incentive scheme to be nondecreasing.

MONOTONE LIKELIHOOD RaTIO ConDITION (MLRC): Assume A3. Then
MLRC holds if, given a,a’ € 4, Cpz(a’) < Cpg(a) implies that m,(a’)/7,(a) is
nonincreasing in i.

It should be noted that the “first-order condition” approach described in the
introduction, which is based on the assumption that the agent is indifferent
between a and a + da at an optimum, does yield MLRC as a sufficient condition
for monotonicity.” We now show, however, that, once we take into account the
possibility that the agent may be indifferent between several actions at an

9See Mirrlees [11] or Holmstrom [7]. Milgrom [9] has shown that MLRC, as stated here, implies
the differential version of the monotone likelihood condition which is to be found in Mirrlees [11] or
Holmstrom [7].
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optimum, i.e. > 0 for more than one a;, MLRC does not guarantee monotonic-
ity.

EXAMPLE 1: 4 = {a,,ay,a;}, n=3. w(a)) = (%,1,5), 7(ay) =(5,3,3), 7(as)
=(3%,4.2). Assume additive separability with G(a,) =0, G(ay) = —(ﬁ\/f

+17/4), G(ay)= —4V1/4, V(I)=@BI)'"? (ie. h(v)=1v>),K(a)=1 and
U=1y2 + 47/4 . Note that MLRC is satisfied here.'’ B

We compute C(a,), C(a,), C(a;). Obviously, C(a,) = Crg(a;)=3(U — G(a))’
= 0.033. To compute C(a,), we use the first-order conditions (3.9). These are

2
oy =A—p+ 3,
2

oy =A+ g tg,,
2

V3 =A+ G

plus the complementary slackness conditions. These equations are solved by
setting A=3, p, =2, p, = 1. This yields v, =0, v,=v2, v;=v7/4, and the
agent is then indifferent between a,, a,, and a;:

jo 0+ o3+ G(a) =40, + 30, + 10, + G(ay)
=Ho+i0 3o+ G(a) = U.

Since the first-order conditions are necessary and sufficient, we may conclude
that C(a,) = 1 (30} + o3 + 1 03) = 0.571.

Note that the incentive scheme which implements a,, I, =0, I,=12%2
I, =1(3)*?, is not nondecreasing.

Observe that C(a;) > Crg(as) = %(l_f — G(ay))? =0.635 > C(a,). Since C(ay)
> C(a,) > C(ay), it is easy to show that we can find ¢, < ¢, < ¢; such that
B(a,) — C(ay) > max[B(a;) — C(a;), B(a;) — C(a,)]. But this means that it is
optimal for the principal to get the agent to pick a,. Hence the optimal incentive

scheme is as described above. It is not nondecreasing despite the satisfaction of
MLRC.

The reason that monotonicity breaks down in Example 1 is because, at the
optimum, the agent is indifferent between a,, the action to be implemented, a, a
less costly action, and a, a more costly action. By MLRC ;(a,)/m;(a,), m,(a,)
/m(a;) are decreasing in i. However, p,(7,(a,)/m(ay)) + p,(m,(as)/ m(a,)) need
not be monotonic.

This observation suggests that one way to get monotonicity is to strengthen
MLRC so that it holds for weighted combinations of actions as well as for the

19The function ¥ violates (2) of Assumption Al, but this is unimportant for the example.
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basic actions themselves. In particular, suppose that

(3.11)  given any finite subset {a,, ..., a,} of 4, a € 4,

and nonnegative weights w,, . . ., w,, summing to 1,
m
it is the case that ( . lvtyw,(aj)/wi(a))
j=

is either nondecreasing in i or nonincreasing in i.

Then, by the first-order conditions (3.9),

G12) Ke)=P+ 3 plK@)-| 3 wK@)|| 3 vvj(:i(ai) )
a,€A a €A a €A i(a

* * *
a,7+a aF#a a#a

where

w; = ,qu(aj)/ 2 w, K (ay).
a, €A
a, +a*

But, by (3.11), the right-hand side (RHS) of (3.12) is monotonic. Hence, the v,’s
are either monotonically nondecreasing or nonincreasing. By Proposition 5,
however, they cannot be nonincreasing; hence they are nondecreasing.

Unfortunately, (3.11) turns out to be a very strong condition. In fact, it is
equivalent to the following spanning condition.

SPANNING CONDITION (SC): There exists #,%4’ € S such that (1) for each
a € A, m(a) =Na)# + (1 — Ma))#' for some 0 <Aa)<1; (2) 4;,/# is nonin-
creasing in i.

That SC implies (3.11) is easy to see. We are grateful to Jim Mirrlees for
pointing out and proving the converse.'!

PROPOSITION 7: Assume Al1-A3, V strictly concave and differentiable. Suppose
that SC holds. Then a second-best optimal incentive scheme satisfies I, < I, < - - -
<lI,.

Proor: If A4 is finite, the argument following (3.12) establishes the result. To
establish the result for the case A infinite, let 4 € 4 be a second-best optimal

"'"To prove the converse, define a S @’ if 7,(a’)/7,(a) is nondecreasing in i. (3.11) implies that < is
a complete pre-ordering on 4. Furthermore, << is continuous. Since 4 is compact, there exist g, a € 4
such thata S a S afor all a € 4. Given a € A, consider A(7,(a)/m,(a)) + (1 — A)(7,(a)/ 7,(a)). When
A = 1, this is nondecreasing in i/, and when A = 0, it is nonincreasing in i. Furthermore, (3.11) implies
that it is monotonic in i for all 0 < A < 1. It follows by continuity that it is independent of i for some
O<A< L.



26 S. J. GROSSMAN AND O. D. HART

action and let I be the second-best optimal incentive scheme which implements
it. By Remark 2 of Section 2, I is unique. Let 4, be a finite subset of A
containing 4 such that the Euclidean distance between 4, and A is less than
(1/r). Let I, be the second-best optimal incentive scheme which implements 4
when the agent is restricted to choosing from A4,. From Proposition 7 for the
finite 4 case, we know that I, is nondecreasing. Take limits as r— co. It is
straightforward to show that I, — I. It follows that I is nondecreasing. Q.E.D.

An alternative sufficient condition for monotonicity may be found in the work
of Mirrlees [12], who establishes a similar result to Proposition 8 below. For each
a € A, let F(a) = (m(a), 7 (a) + 7x(a), ..., m(a)+ - - - + 7,(a)). In the follow-
ing proposition, the notation F(a) > F'(a) is used to mean F,(a) > F/(a) for all
i=1,...,n

CoNcaAviTy ofF DisTRIBUTION FuncTioN ConpiTioN (CDFC): CDFC holds if
a,a’,a” € A, and

U-Ga)\ [U-G() U—-G(a")
N R o MU e |
0<A< 1,
imply that F(a) <AF(a’) + (1 — M)F(a”).

PROPOSITION 8: Assume A1-A3, V strictly concave and differentiable. Assume
also that U is additively or multiplicatively separable, i.e., either G(a)=0 or
K(a) = constant. Suppose that MLRC and CDFC hold. Then a second-best
optimal incentive scheme (I, . .., 1) satisfies I, < I, < --- <1I,.

PrROOF: Assume first that 4 is finite. Let a* maximize B(a) — C(a). Let
A’ ={a € A|Crg(a) < Crg(a*)}. Consider the cost minimizing way of getting
the agent to pick a* given that he can choose only from A’. It is clear from (3.9)
that, since m(a;) /m,(a*) is nonincreasing in i by MLRC, the incentive scheme
(I, ..., 1) is nondecreasing. We will be home if we can show that (/,, ..., )
is optimal when A’ is replaced by 4. Since adding actions cannot reduce the cost
of implementing a*, all we have to do is to show that (1, ..., I,) continues to
implement a*, i.e. there does not exist a”, Crg(a”) > Crg(a*), such that

(3.13)  G(a")+ K(a")(Zm(a")0) > G(a*) + K(a*)( D m(a*)v,).
However, we know from Propositions 2 and 6 that

(3.14)  G(a*) + K(a*)( S m(a*)v) = G(a') + K(a)( D m(a')o;) = U
for some a’ with Cpz(a’) < Crg(a*). Writing

U - G(a*) =}\( U-G(a") ) p _}\)( U—G(a’))

K(a*) K(a") K(d)
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and using CDFC and the fact that v, < v, < - - - <v,, we get

. U - G(a*)
2 m(a*)o,— (T(‘T)

U—-G(a*
>N m(a")o+ (1 - >‘)(277:‘(‘{)05) - ( Ta(*‘)z—) )

U—-G(a")
=A ZWi(a//)Di - ( W)_ )

U-G(a
+(1-2) {Zwi(a’)vi - (T,()) )}

But this contradicts (3.13) and (3.14).
To prove the result for 4 finite, one again proceeds by way of finite approxi-
mation. Q.E.D.

To understand CDFC, consider, for each a € 4, V(Crp(a)) = (U — G(a))
/K(a)). In utility terms V' (Crz(a)) is a measure of the first-best cost of getting
the agent to pick a. CDFC says that if a is a convex combination of @’ and a” in
terms of this measure of cost then the distribution function of outcomes corre-
sponding to a dominates in the sense of first degree stochastic dominance the
corresponding convex combination of the distribution functions corresponding to
a’ and a”. It is worth noting that under the assumption of additive or multiplica-
tive separability in Proposition 8, the A in the CDFC definition is independent
of U.

So far we have considered only the monotonicity of the optimal incentive
scheme. One would also like to know when the optimal incentive scheme is
progressive, ie. (I, — 1,)/(g;+, — ¢;) is nonincreasing in i, or regressive, i..
(L1 — 1) /(g4 — g;) is nondecreasing in i. To get results about this, one needs
considerably stronger assumptions, as the following proposition indicates.

PROPOSITION 9: Assume A1-A3, V strictly concave and differentiable. Assume
also that U is additively or multiplicatively separable, i.e., either G(a)=0 or
K(a) = constant. Suppose that MLRC and CDFC hold and that (Gis1— q) is
independent of i, | < i < n — 1. Then a second-best optimal incentive scheme will be
regressive (resp. progressive) if

(3.15) (1/ V(1)) is concave (resp. convex) in I and a,a’ € A,

Crp (@") < Crp (a), implies that (m,,\(a')/ 7, (a)) — (m(a")/ 7 (a))

is nonincreasing (resp. nondecreasing) in i.
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PrROOF: Assume first that 4 is finite. Let a* be a second-best optimal action.
Let a’ maximize Crg(a) subject to Crp(a) < Crg(a*), i.e. a’ is the next most
costly action after a*. Consider the cost minimizing way of implementing a*
given that a’ is the only other action that the agent can choose. Using the same
concavity argument as in the proof of Proposition 8, we can show that the

resulting incentive scheme ([, . . ., I,) also implements a* when the agent can
choose from all of 4. Hence (/,, . .., I,) is an optimal incentive scheme.
By (3.10),
1 - h/(D') — (}\ + [.L)K(a*) _ #K(a') '”i(a’)
V(L) ’ m;(a*)

and so

1 1 _ Nf Tixi(@)  m()
Vil VAL _“K(“)(m(a*) 7(a¥) )

(3.15) now follows immediately. To prove the result for the A infinite case, one
again proceeds by way of a finite approximation. Q.E.D.

Note that 1/V’ is linear if ¥V =logl; is concave if V= —e~ % a >0, or
V=I0<a<l;isconvexif V=—1"% a>1.

It should also be noted that Mirrlees [12] has shown that if CDFC holds, the
“first-order condition” approach referred to in the introduction is valid. Thus
Propositions 8 and 9 can also be proved by. appealing to the characterization of
an optimal incentive scheme to be found in much of the literature (see, e.g.,
Holmstrom [7] and Mirrlees [11]).

Let us summarize the results of this section. We have shown that an optimal
incentive scheme will not be declining everywhere, but that only under quite
strong assumptions (SC or MLRC plus concavity) will it be nondecreasing
everywhere. We have also shown that it is not optimal for the agent’s marginal
remuneration for an extra pound of profit to exceed one everywhere, although it
may exceed one sometimes. Finally, we have obtained sufficient conditions for
the incentive scheme to be progressive or regressive.

The conclusion that only under strong assumptions will the optimal incentive
scheme be monotonic may seem disappointing at first sight. One feels that
monotonicity is a minimal requirement. This may not be the right reaction,
however. There are many interesting situations where it is clear that the optimal
scheme will not be monotonic. We have described one example in the introduc-
tion. Another example is the following. Suppose that actions are two dimen-
sional, with one dimension referring to how hard the agent works and the other
dimension to how cautious he is—greater caution might lead to a lower variance
of profit but also to a lower mean. The optimal action for the principal might
involve the agent working fairly hard and also not being too cautious. The best
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way to implement this may be to pay the agent high amounts for both very good
outcomes (to encourage high effort) and very bad outcomes (to discourage
excessive caution). This example seems far from pathological. In fact, one might
argue that a number of real world incentive schemes operate in this way. In view
of examples like this, the difficulty of finding general conditions guaranteeing
monotonicity may become less surprising.'?

In the next section, we show that considerably stronger results than those of
this section can be proved for the case n = 2. We also provide a simple algorithm
for computing optimal incentive schemes when n = 2.

4. THE CASE OF TWO OUTCOMES

When #n =2, we will refer to g, as the “bad” outcome and ¢, > g, as the
“good” outcome. In this case, the agent’s incentive scheme can be represented
simply by a fixed payment w and a share of profits, s, where w + sq, = I,
w+sq,=1,,1e,s=(,—1))/(q, — q,). Proposition 5 of the last section shows
that it is not optimal for I; to be everywhere declining in ¢;. When »n = 2, this
means that s > 0.'% Similarly the proposition implies that s < 1 when n = 2. This
has a number of interesting implications.

DEeFINITION: Let n = 2. We say that a € 4 is efficient if there does not exist
a’ € A satisfying Crp(a’) < Crg(a) and my(a’) > m,(a), with at least one strict
inequality.

In other words, an action is efficient if the probability of a good outcome can
only be increased by incurring greater cost.

PROPOSITION 10: Assume A1-A3 and V strictly concave. Let n = 2. Then every
second-best optimal action is efficient.

ProOOF: Let a be a second-best optimal action. Then a maximizes G(a) + K(a)
[7,(a@)v, + 7,(a)v,]. Suppose Crg(a’) < Crg(a) and 7,(a’) > 7,(a), with at least
one strict inequality. Then, by the definition of Cpp,

G(a)+ K(a)V(Crp(a)) = U= G(a')+ K(a')V(Crp (a'))

< G(a') + K(a')V(Crp(a)),

12There are some cases where monotonicity may be a constraint on the optimal incentive scheme.
An example is where the agent can always make a better outcome look like a worse outcome by
reducing the firm’s profits after the outcome has occurred. This case can be analyzed by adding the
(linear) constraints v; < v, < - - - < v, to the problem (2.2).

13Shavell [19] also proves that s > 0 when n = 2, but under stronger assumptions.
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since Cpp(a’) < Crp(a). Hence, by Assumption A1(4), G(a) + K(a)v < G(a’) +
K(a')v for all v € Q. Therefore using the fact that v, < v, since s >0, and the
fact that 7,(a’) > m,(a), we have

G(a) + K(a)[ 7 \(a)v, + my(a)v, ]
< G(a) + K(a')[ 7 (a)v, + my(a)v, ]
<G(a)+ K(a’)[wl(a’)v, + wz(a’)vz]

with at least one strict inequality unless Crz(a) = Crp(a’) and v, = v,. This
contradicts the optimality of a unless Crz(a) = Crp(a’) and v, = v,. However, in
this case, the agent is indifferent between a and a’, while the principal prefers a’,
again contradicting the optimality of a. Q.E.D.

We may use Proposition 10 to prove that when n =2 it will never pay the
principal to offer the agent an expected utility in excess of U (recall that when
n > 2 this is only generally true when U(a, ) is additively or multiplicatively
separable—see Proposition 2).

PROPOSITION 11: Assume A1-A3 and V strictly concave. Let n=2. Let 4 be a
second-best optzmal action and 1 a second-best optimal incentive scheme which
implements &. Then S'_ \w(4)U(4, 1) =

PROOF: Suppose not, ie., 37 7(4)U(4, I) > U. Consider a new incentive
scheme (1,,1,) = (I €, 12) where € > 0 is small. Let a be an optimal action for
the agent under the new scheme, i.e., a maximizes G(a) + K(a)[7,(a) V(I \— €+
7y(a) V(12)] Then,

mi(a)(qy — 11 + €) + my(a)(qy — 1)) > mi(a)(q, — 1)) + my(a)(q, — 1)
> m(d)(qy — 1)) + mo(@)(q: — 1)

as long as 7,(d) < 7m,(a) (since 0<s < 1). Thus, if we can show that 7,(4)
< my(a), we will have contradicted the optimality of (I 1,12) since the principal’s
profits will be higher under (/,, I,) than under d, l,12)

Suppose 7,(d) > m,(a). Now the same argument as in Proposition 10 shows
that a is efficient. Thus we must have Crz(d) > Cpp(a). Hence G(a) + K(a)
V(Crg(@) = U= G(&) + K@)V (Crp(d)) > G(&) + K(&)V(Cpp(a)), and so, by
Assumption A1(4),

@.1)  G(a)+ K(a) > G(4) + K(&)v

forallv e = {V(I)|I €9}. Since AU contains arbitrarily large negative num-
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bers, we may conclude from (4.1) that K(a) < K(4). Now by revealed preference,
@2  G(a)+ K(@)[m(a)V (1)) + my(a)V (L))

< G(d) + K(@)[ 7,(4) V(i) + m(a) V(L))
43)  G(a)+ K(@)[m(a)V (], — €) + my(a)V(L))]

> G(@) + K(a)[m(a)V (I, — €) + 7y(a) V(fz)].
Subtracting (4.3) from (4.2) yields K(a)7,(a) < K(d)7,(a). Hence, since m,(4)
> m,(a) by assumption, K(a) < K(4). However, rewriting (4.2), we obtain

G(a) + K(ayp + K (a)[ my(a)(V(])) = B) + my(a)(V(L;) = )]
< G(&) + K(ays + K(@)[ m(@)(V (1)) = B) + my(@)(V (L) ~ D)]

where © = sup Q. (Note that © < oo, for © = 0 and K(a) < K(4) violate (4.1).)
Setting v = © in (4.1), we may conclude that

K(aym(a)(V (1)) — B) + K(aymy(a)(V (L) — B)
< K(@)m(8)(V (1)) — B) + K(a)my(a)(V (L) — ©).

But this is impossible since K(a)m(a) < K(d)7(d), K(a) < K(4), my(a) < m5(d),
V(1) - <0, V(I) —©<0. We have thus shown that m,(a)> a,(4), which
contradicts the optimality of (/,, 1,). Q.E.D.

Proposition 11 tells us that the agent’s fixed payment w is determined once s is.
In particular, w will be the unique solution of

max [ G(a) + K(a)(mi(@)V(w + sq1) + m(@) V(w + 5,)) ] = T.

We have shown that one implication of Proposition 5 for the case n = 2 is that
gvery second-best optimal action is efficient. We consider now a second impli-
cation. Suppose that we start off in the situation where the agent has access to a
set of actions 4, and now some additional actions become available, so that the
new action set is A’ D A. Then, if the new actions are all higher cost actions for
the agent than those in A—in the sense that their Crp’s are higher—the principal
cannot be made worse off by such a change.

PROPOSITION 12: Assume Al and A2. Let n = 2. Suppose that A’ D A and that
a€A,a € ANA= Crz(a’) > Crg(a). Assume that A3 holds for both A and A’.
Then max,c {B(a)— C'(a)] > max,c 4[B(a) — C(a)], where C’ is the second-
best cost function under A'.

Proor: Suppose (I,,],) is an optimal second-best incentive scheme when the
action set is 4. Let the principal keep this incentive scheme when the new actions
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A'\A are added. The only way that the principal can be made worse off is if the
agent now switches from @ € A to @’ € A’\A. But a’ must then provide higher
utility for the agent, i.e., G(a’) + K(a')[7(a")v, + m(a’)v,] > G(a) + K(a)[7(a)
v, + m(a)v,]. Since Crz(a’) > Crg(a), however, G(a’) + K(a')v < G(a) + K(a)v
for all v € (by Assumption Al(4)). Hence = (a")v, + my(a’)v, > w(a)v, +
a,(a)v,, which implies, since v, > v, by Proposition 5, that 7,(a’) > 7,(a). But it
follows that the principal’s expected profits =, (¢, — I,) + m,(q, — I,) rise when
the agent moves from a to a’ since, again by Proposition 5, s < 1, i.e. g, — I,
>q,— 1. Q.E.D.

As a final implication of Proposition 5, when n =2, consider a manager-
entrepreneur who initially owns 100 per cent of a firm, i.e. w =0, §= 1. In the
absence of any risk-sharing possibilities the manager will choose a to maximize
7 (a)U(a,q,) + m(a)U(a,q,). Let @ be a solution to this. Clearly 4 is efficient.
Now suppose a risk neutral principal appears with whom the manager can share
risks. We know from Proposition 5 that at the new optimum s < 1 = §. There-
fore, by Lemma 1 and Proposition 11, 7,(a*) < 7,(4). In addition, Cgg(a*)
< Crp(a) by Proposition 10. Thus, the existence of risk-sharing possibilities leads
the agent to choose a less costly action with a lower probability of a good
outcome.

We may use Propositions 10-12 to develop a method for computing a
second-best optimal incentive scheme when n = 2. Consider the case where 4 is
finite. Recall that Proposition 6 states that, in this case, the agent will be
indifferent between a* and some less costly action. This fact makes the computa-
tion of an optimal incentive scheme fairly straightforward. We know from
Proposition 10 that it is never optimal to get the agent to choose an inefficient
action. Hence we can assume without loss of generality that Crz(a;) < Crz(a,)
< o < Crgla,) and my(a)) < my(ay) < - -+ < my(a,). The computation of
C(a,) is easy: by Remark 1 of Section 2 it is just Crg(a,). To compute C(a,),
k > 1, we use Propositions 6 and 11. For each action a;, j < k, find I}, 1, so that
the agent is indifferent between @, and g; and the agent s expected utility is U.
This means solving

G(a,) + K(a,)(m(a)v, + wz(ak)vz) =U,

G(a) + K(a)(7i(a)v1 + my(a))0;) =
which yields
my(a)((U = G(ax))/ K(a)) = ma(a)((U — G(a))/ K(4))
m(a) — m(a;) ’

m(a)((U = G(a))/K(a)) = m(a)((U ~ G(a))/K(a ))
7y @) — 7y(a)

We then set I, = h(v,), I, = h(v,). Note that v, < v, in (4.5) so that I, < I,.

(4.4)

v =

4.5)

Uy, =
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vo A
(@) vy + my(ap) va = (U—Glapy)) / Kiap)
T (@) vy + mylay vy = (U=Gla)) ) / Kay)
A
B
7 () vy + mola) v = (U — Glay) ) / K(ay)
45°
_
FIGURE 2.
Doing this for each j=1,...,k—1 yields (k — 1) different (v,,v,) (and

(1,,1,)) pairs, each with v; < v,. This is illustrated in Figure 2 for the case k = 3,
where the (v,,v,) pairs are at 4, B. We know from Proposition 6 that one of these
pairs is the solution to (2.2). In fact, the solution must occur at the (v,,v,) pair
with the smallest v, (and hence, by (4.4), with the largest v,)—denote this pair by
(6,,9,). To see this, suppose that the agent is indifferent between a, and a; under
(6,,0,). Consider the expression

(4.6) 71(a,)0; + 7@ )v, — ()0, — my(a;)v,
= (mi(a) — m(@))o1 + (Ta(@) — 7))o, -

When v, = 6;, v, =5,, this express1on equals (U - G(a)/K(a)] - (U -
G(a) /K (a;)]. Suppose now that v; > Dy, v, < ¥,. Then (4.6) falls since 7,(a;)
< my(a;). Hence the agent now prefers g, to g, and so g, is not implemented.

In Figure 2, the solution is at A. (The solution could not be at B since it is
clear from the diagram that, at B, a a;, gives the agent an expected utility greater
than U, i.e. q, is not implemented at B.) Note that it is possible that the (¢,,4,)
picked in this way does not lie in A X AU; i.e., A(D,) or A(5,) may be undefined.
In this case, the constraint set of (2.2) is empty and so C(a,) = oo. If (¥,,0,)
€A X A, then the principal’s minimum expected cost of getting the agent to
pick a, is C(ay) = 7 (a)h(D,) + 7,(a,)h(D,). The expected net benefits of imple-
menting aq, are B(a,) — C(a,). This procedure must be undergone for each q,
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k=1,...,m. Finally, the overall optimum is determined by selecting the a
which maximizes B(a,) — C(a).

REMARK 6: In computing the cost of implementing a,, we have ignored
actions which are more costly for the agent than ag,. This means that the cost
function which we have computed is not the true cost function C(a) but a
modified cost function C(a). Clearly, C(a) < C(a) for each a since more actions
can only make implementation more difficult. On the other hand, Proposition 12
tells us that max,c4[B(a)— é(a)] < max,c,[B(a) — C(a)]. Combining these
yields max, ¢ 4[B(a) — C(a)] = max,¢ ,[B(a) — é(a)], which means that we are
justified in working with C(a) instead of C(a).

Another case where computation is quite simple is when A is infinite and
{Crg(a)|a € A} is an interval [c, ¢] of the real line. For reasons of space, we do
not cover this case.

Unfortunately, the computational techniques presented above do not appear
to generalize in a useful way to the case n > 2. In order to compute an optimum
when n > 2, in the finite action case, it seems that we must, for each a € 4, solve
the convex problem in (2.2) and then, by inspection, find the a € 4 which
maximizes B(a) — C(a). If 4 is infinite, one takes a finite approximation. These
steps can be carried out on a computer, although the amount of computer time
involved when the number of elements of 4 is large may be considerable.

One case where a considerable simplification can be achieved when n > 2 is
where MLRC and CDFC hold. Then the solution to (2.2) has the property that
(1) if A is finite, the agent is indifferent only between a*, the action the principal
wants to implement, and a’, where @’ maximizes Crz(a) subject to Crg(a)
< Crg(a*), ie. a’ is the next most costly action after a* (see the proof of
Proposition 8); (2) if A is convex, then a* is the unique maximizer of G(a) +
K(@)Sm(a)V (1)), and [d(G(a*) + K(a*)(Zm(a*)V(1)))/da]l =0 is a neces-
sary and sufficient condition for the agent to pick a*. In the latter case, Mirrlees
[12] has shown that the first-order condition approach referred to in the introduc-

_tion is valid. ' '

One may ask also whether Propositions 10 and 12 hold in the case n > 2. The
answer is no (but see Remark 7 below). Second-best optimal actions may be
inefficient; i.e., there may exist lower cost actions which dominate the optimal
action in the sense of first degree stochastic dominance.'* Also the addition of
actions costlier than the second-best optimal action may make the principal
worse off (in Example 1, the principal’s expected profits increase if action a;

“Let A = {a,,a,,a3}, n = 3. Assume Crg(a;) < Crpg(a,) < Crp(as), and that w(a;) = (3/4, 1/8,
1/8), w(a,)=(1/3, 1/3, 1/3), m(as)=(1/2, 1/2, 0) (Assumption A3 is violated, but this is
unimportant.) Then C(a,) = Crg(a,) since a, is the least cost action, and C(a3) = Crp(a;) since a;
can be implemented by setting I, = I,, I = — . However, C(a,) > Crp(a,) and, in fact, if the
agent is very risk averse, C(a,) will be so big that it is profitable for the principal to implement a;
rather than a, (the effect of risk aversion on C(a) is discussed in Section 5). This is in spite of the fact
that a; is inefficient relative to a,.
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becomes unavailable to the agent). Finally, as Shavell [19] has noted the agent
may choose a higher cost action when there are opportunities to share risks with
a principal than in the absence of these opportunities.

REMARK 7: It is interesting to note that it is possible to extend all the results of
the n = 2 case to the n > 2 case when the spanning condition (SC) holds. This is
because when SC holds, both the principal and the agent are essentially choosing
between lotteries of the probability vectors # and #'.

In particular, let I,(v,) = min(,j}2¥=,7?ili subject to >7_ 7, V(1) > v;; I,(v,)
= min, I \2i—17/1; subject to 37_ 7V (I)> v,. Now consider the principal’s
minimum cost problem as: for each a*, choose v, and v, to minimize A(a*)
I,(v)) + (1 = Ma*))I,(vy) subject to (1) G(a*) + [AM(a*)v, + (1 — A(a*))v,]K(a*)
> G(a) + [Ma)v; + (1 — Ma))v,]K(a) for alla € 4; (2) G(a*) + [AM(a*)v, + (1 —
A(a*))v,]K(a*) > U. Then the principal’s problem looks exactly the same as in
the n =2 case. Note that from stochastic dominance (i.e. part (2) of the SC
condition) >7_ m;q; < Si_ 7/ q;, so “state 2” is the good state. We are grateful to
Bengt Holmstrom for alerting us to the fact that all of the results for the n =2
case hold when # > 2 and the Spanning Condition is satisfied.

5. WHAT DETERMINES HOW SERIOUS THE INCENTIVE PROBLEM IS?

In previous sections, we have studied the properties of an optimal incentive
scheme. We turn now to a consideration of the factors which determine the
magnitude of L, the loss to the principal from being unable to observe the agent’s
action.

One feels intuitively that the worse is the quality of the information about the
agent’s action that the principal obtains from observing any outcome, the more
serious will be the incentive problem. This idea can be formalized as follows.
Suppose that we start with an incentive problem in which the agent’s action set is
A, his utility function is U, his reservation utility is U, the probability function is
7, and the vector of outputs is ¢ =(q;,...,q,). We denote this incentive
problem by (4, U, U,, q). Consider the new incentive problem (4, U, U, q)
where 7'(a) = Ru(a) for all a € 4 and R is an (n X n) stochastic matrix (here
w(a), 7’'(a) are n dimensional column vectors and the columns of R sum to one).
Below we show that C’(a) > C(a) for all a € A, where unprimed variables refer
to the original incentive problem and primed variables to the new incentive
problem.

The transformation from «(a) to Rw(a) corresponds to a decrease in informa-
tiveness in the sense of Blackwell (see, e.g., Blackwell and Girshick [3]).!* That is,
if we think of the actions a € 4 as being parameters with respect to which we

15The possibility of using Blackwell’s notion of informativeness to characterize the seriousness of
an incentive problem was suggested by Holmstrom [7].
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have a prior probability distribution, then an experimenter who makes deduc-
tions about a from observing gy, . . ., g, would prefer to face the function # than
the function Rz.

PROPOSITION 13: Consider the two incentive problems (A, U, U,7,q), (4,U, U,
7',q’) and assume that Assumptions A1-A3 hold for both. Suppose that u'(a)
= Rw(a) for all a € A, where R is an (n X n) stochastic matrix. Then C’(a)
> C(a) for all a € A. Furthermore, if V is strictly concave and R >0, then
Crp(a*) > min, ¢ ,Crp(a) and C(a*) < 00 = C'(a*) > C(a*).

ProoF: Let (1], ..., I)) be the cost minimizing way of implementing a in the
primed problem. Suppose that in the unprimed problem, the principal offers the
agent the following random incentive scheme: for each i, if ¢, is the outcome, an
n-sided die will be thrown where the probability of side j coming up is r,, the
(j,Hthelementof R (j =1, ..., n). If side j then comes up, you get I/. With this
random incentive scheme, the probability of the agent getting I if he chooses a
particular action is the same as in the primed problem. Therefore the agent’s
optimal action will be a. Furthermore, the principal’s expected costs are the same
as in the primed problem. This shows that the principal can implement a at least
as cheaply in the unprimed problem as in the primed problem by using a random
incentive scheme. The final part of the proof is to note that the principal can
reduce his expected cost further and continue to implement a by offering the
agent the perfectly certain utility level v, = 3%_,r,V(I/) if the outcome is g;
rather than the above lottery. That is, there is a deterministic incentive scheme
which is better for the principal than the above random incentive scheme.

Q.E.D.

REMARK 8: The last part of the proof of Proposition 13 shows that it is never
desirable under our assumptions for the principal to offer the agent an incentive
scheme which makes his payment conditional on a particular outcome a lottery
rather than a perfectly certain income.!” This result may also be found in
Holmstrom [7].

Note that if 7’ = R7 and ¢'R = ¢, the random variable ¢’ will have the same
mean as ¢. In this case the following is true:

COROLLARY 1: Make the hypotheses of Proposition 13. If, in addition, q' is such
that ¢ R = q, we have L' > L.

PrOOF: Obvious since B'(a) = q'n’(a) = g'Rw(a) = gn(a) = B(a).

16We use this notation to mean that every element of R is strictly positive.
"This result depends strongly on our Assumption Al that attitudes to income risk are indepen-
dent of action. In the absence of this assumption, random incentive schemes may be desirable.
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In the case n =2, the transformation # > 7' = Rz is easy to interpret. Take
any two actions a,,a, € A, and consider the likelihood ratio vector (m(a,)
/m(ay), m(a;)/m(a,)). Assume without loss of generality that =,(a,)/m(a,)
< my(a,)/my(ay). Then it is easy to show that

mi(a;) m(ay) } C[ (@) 772(‘11)]

7i(ay) " mH(a,) m(ay) " my(ay)

5.1 {

where [x, y] is the interval between x and y. In other words, the likelihood ratio
vector becomes less variable in some sense when the stochastic transform R is
applied. In fact the converse to this is also true: if (5.1) holds, then there exists a
stochastic matrix R such that #' = Rw (see Blackwell and Girshick [3]). When
n > 2, a simple characterization of this sort does not seem to exist, however.

One might ask whether a converse to Proposition 13 holds. That is, suppose
C’(a) > C(a) for all a € A and all concave utility functions V. Does it follow
that #'(a) = Rw(a) for all a € A, for some stochastic R? A converse along these
lines can in fact be established when n = 2. Whether it holds for n > 2, we do not
know.

Corollary 1 gives us a simple way of generating worse and worse incentive
problems: repeatedly apply stochastic transforms to «. Suppose that we do this
using always the same stochastic transform R, when R > 0 and is invertible. That
is, we consider a sequence of incentive problems 1,2, ..., where in the mth
problem 7,,(a) = R™ 'w(a) for all a € 4, and the gross profit vector g, satisfies
g,,R™ ' = g (this has a solution since R is invertible). We know from Corollary 1
that L, will be increasing in m. The next proposition says that in the limit the
loss from not being able to observe the agent reaches its maximal level.

DEerFINITION: Let L* = max,c ,(B(a) — Crp(a)) — max{B(a’) — Crz(a’)|a’
minimizes Cpg(a) on 4}.

Since C(a’) = Crp(a’) if @’ minimizes Crz(a), L* is an upper limit on the loss
to the principal from being unable to observe the agent. The next proposition
shows that as the information g reveals about a gets smaller and smaller, the
principal loses control over the agent, i.e., the agent chooses the least-cost action.

PROPOSITION 14: Consider the sequence of incentive problems (A, U, U, T> Gon)s

m=12,..., where w,(a)= R’"“w,(a) for all a € A, qu’"_’ = g, for some
invertible stochastic matrix R >0. Assume Al, A2, and m;(a) >0 for all i
=1,...,n,and a € A. Then if V is not a linear function, lim,,_, L, = L*.

Proor: It suffices to show that lim,_,  C(a*)= oo for all a* with Cggz(a*)
> min, . , Crz(a). Suppose not for some such a*. Let (Z,,;, . . ., I,,) be the cost
minimizing way of implementing a* in problem m. Then 3 ,=,.(a*)I,, and
> (@*)V(I,) are both bounded in m. It follows from Bertsekas [2] that the
(1,;) are bounded. Hence without loss of generality we may assume /,,, — I, for



38 S. J. GROSSMAN AND O. D. HART

each i. It is easy to show that, since R is a strictly positive stochastic matrix,
lim, ,  R™ '= R* where R* has the property that all of its columns are the
same. Therefore lim, , m,(a) = R*m(a)=7 is independent of a. But this
means lim,_, > .7,.(a*V({,)=>7V{I)=I1lm,_ >, (a)V({,) for all
a € A. Hence the agent will prefer actions a with Crg(a) < Crg(a*) to a*. This
contradicts the assumption that the incentive scheme implements a*. Q.E.D.

We turn now to a consideration of another factor which influences L: the
agent’s degree of risk aversion. Since no incentive problem arises when the agent
is risk netural, but an incentive problem does arise when the agent is risk averse,
one is led to ask whether L increases as the agent becomes more risk averse. One
difficulty in answering this question in general is the following. The way one
makes the agent more risk averse is to replace his utility function U(Z,a) by
H(U(1,a)) where H is a real-valued, increasing, concave function. However, if U
satisfies Assumption Al, then H(U) will generally not. To get around this
difficulty, we will confine our attention to the case where A4 is a subset of the real
line, V(1) = —e’“ G(a) =0, and K(a) = e"*, i.., the agent’s utility function
is U(a,])= —e *I=9 where k> 0. Assume also that U= —e %, ie., the
agent’s outside opportunlty is represented by the perfectly certain income «. An
increase in risk aversion can then be represented simply by an increase in k.

Note that if the agent’s utility function is —e %/~ and U= —e **, then
Crp(a) = a + a, which is independent of k. Hence first best profits are indepen-
dent of k.

PROPOSITION 15: Consider the incentive problem (A, U, U,m, q) where A is a
subset of the real line, U(a,I) = —e ¥/~ U= —e % and k > 0. Assume A3.
Write the loss from being unable to observe the agent as L(k). Then lim;_,,L(k)
=0, lim,_,  L(k)= L*

Proor: To show that lim,_,  L(k) = L*, it suffices to show that lim,_,  C(a¥*,
k) = oo for all a* with Crg(a*) > min, ,Crg(a). Suppose not for some such a*,

and let Cpg(a) < Cgg(a*). Then if (I,, ..., I,) implements a*, we must have
_(Zwl(a*)e—kl,)eka* > —(Zw,(a)e_“')ek”
i i
(I, ..., I, of course depend on k). Therefore,

(52) et gzw,(a)e*“’/zw,.(a*)e*"".

Now let k— 0. The LHS of (5.2) > o0. Therefore so must the RHS. We may
assume w.l.o.g., however, that I, = min,/;. Then

Z,-w,-(a)e’k" Eiwi(a)e"(l‘_")

Zi,ﬂi(a*)e—kl, ziwi(a*)ek(ll—ll) ’

which is bounded since the denominator > =,(a*). Contradiction.
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We show now that lim,_,,L(k) = 0. Let I, = g, — F. Then the agent maximizes

(53)  E(—e kU-9)= —E(l — k(I —a)+ ’—‘23(1—a)2+ )

2
= —l+k( Jvr,.(a)q,-—F—a)— %—E(l—a)z+
It follows that the agent maximizes
k
(Zm(a)g— F—a) - 5 E(I- ay+ -,

which means that in the limit k-0 the agent maximizes B(a) — Crz(a), i.e.
chooses a first-best action. Furthermore, setting (5.3) equal to —e %= —1 +
ko + - - -, we see that in the limit k>0,

neg(Zn(@a - a) = F =

so that the principal’s expected profit equals F = max,c,(3;7q; —a) — «
= max, ¢ 4(B(a) — Crg(a)) = first-best profit. Q.E.D.

Proposition 15 tells us about the behavior of L(k) for extreme values of k. It
would be interesting to know whether L(k) is increasing in k. We do not know
the answer to that question except for the case n = 2, 4 finite.

PROPOSITION 16: Make the same hypotheses as in Proposition 14. Assume in
addition that n =2 and A is finite. Then L(k) is increasing in k.

PrOOF: See Appendix.

REMARK 9: Propositions 15 and 16 tell us how the principal’s welfare varies
with k. It is also interesting to ask how the shape of the optimal incentive scheme
depends on k. Unfortunately, even in the case n =2, very little can be said. In
this case, the incentive scheme is characterized by the agent’s share s. It is not
difficult to construct examples showing that an increase in the agent’s risk
aversion may increase the optimal value of s, or may decrease it.

We conclude this section by considering how L depends on the agent’s
incremental costs. Consider the case of additive separability, i.e., K(a)
= constant. Suppose that we write the agent’s utility function as U,(a,I)
= G,(a) + V(I), where Gy(a) = a + AF(a), A > 0. (Without loss of generality, we
take K = 1.) Then, when A is small, one feels that L will be small since the agent
does not require much of a reward to work hard. The fact that lim, ,,L(A)=0
has in fact been established by Shavell [20]. We prove a somewhat stronger
result.

PROPOSITION 17: Consider the incentive problem (A, U,, U,n, q), where U,(a,I)
=a+AF(a)+ V() for all a€ A, A> 0. Assume that A1-A3 hold for this
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problem. Assume also that (1) A is an interval of the real line; (2) B(a) and F(a)

are twice differentiable in the interior of A; (3) V is twice differentiable on § and
V' > 0; (4) There is a unique maximizer a* of B(a) lying in the interior of A and
B”(a*) < 0. Then lim,_,o(LA)/A) =

Proor: Consider the incentive problem with A = 1. Then there are a’s arbi-
trarily close to a* for which C(a) is finite. For let the principal set v, = rg, — k
where k is chosen so that v; €A for all /. Then the agent will maximize
Sm(a)Uy(a, L), ie. X m(a)g, + F(a)/r. By letting r - oo, we can get the agent to
choose an action arbitrarily close to a*. For such an action, C(a) will be finite.

Consider now an a arbitrarily close to a*. Let (v,,...,v,) be the cost
minimizing way of implementing @ when A = 1. Then it is clear from (2.2) that
Av, + B, ..., Av, + B) will implement a for A # 1, where

NZm(ayo + F(a)) + a+ B=T.
It follows that
LN < S m(a)q,— h(T - a - \F(@))
- (2 m(a)g — S m(a)h (Ao, + B)),
where d maximizes Y, m;(a)q; — h(U — a — AF(a)), i.e. 4 is the first-best action in

problem A.
Therefore,

L
g\ ) H{Zw(a*)q, — h(T = a = AF(a*))

(St~ Sr(ahto + 6))]

{Zw(a)q, - h( —a —AF(&))

> =

*|

- > m(a*)g + h(l_f—a —)\F(a*))}J.

Now 4 — a* as A— 0. Furthermore, by differentiating the first-order conditions
(d/da)(Sm(8)q, — (U —a — AF(&)) = 0, one can show that dd/d\ exists at
A = 0. It follows from the mean-value theorem and the fact that B’(a*) = 0 that
the second square bracket >0 as A— 0. To see that the first square bracket — 0,
note that, since a is arbitrary, we can make a converge to a* as fast as we like.
Therefore we need only show that

(54 lim 5 (Ew(a)h(}\v +B) = h(U~a—AF(a%))) =



PRINCIPAL-AGENT PROBLEM 41

But
Efrr,(a)[h(}\vi +B)—h(U—a- }\F(a*))]
= wa(a)[h(}\v, + U—a—AY m(a)y, — }\F(a))
~h(T-a —AF(a*))]
= Ew,-(a){h(ﬁ— o) + H(T = a)(ho, = A S m(a)s, — AF(a))
+ - = h(T—a)+ k(U —a)(\F(a*)) + - - - ]
= h'(U+a)(—AF(a)+ AF(a*)) + - -
from which (5.4) follows. Q.E.D.

The proof of Proposition 17 is based on an envelope argument. It appears that
a similar result can be established for the more general case where U is not
additively separable, but Assumption Al holds. Since the proof is more compli-
cated, however, we will not pursue this result here. The assumption that a* lies in
the interior of A may seem quite strong. Note, however, that if a* is a boundary
point and B’(a*) # 0, then the second-best optimal action equals a* for small
enough A. It is straightforward to apply the proof of Proposition 17 to show that
lim, _,o(L(A\)/A) = 0 in this case too.

Since the marginal product of labor of the agent—that is, the increase in
expected profit resulting from an extra pound of expenditure by the agent—is
proportional to 1/A, Proposition 17 can be interpreted as saying that the welfare
loss L is of a smaller order of magnitude than the reciprocal of the agent’s
marginal product of labor.

6. EXTENSIONS

We have assumed throughout the paper that the principal is risk-neutral and
that the agent’s attitudes to risk over income lotteries are independent of action
—Assumption Al. We now briefly consider what happens if we relax these
assumptions.

As we have noted in Section 2, Remark 3, our method of analysis generalizes
without any difficulty to the case where the principal is risk-averse. Specific
results change, however, The main difference is that now, even in the first-best
situation, the principal will not bear all the risk. One implication of this is that
even if there is no disutility of action for the agent, i.e. a does not enter the
agent’s utility function, the first-best will not generally be reached. The reason is
that there may be a conflict between the principal and agent over what income
lottery should be selected (for a study of this conflict, see Ross [17] and Wilson
(23)).
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As a result of this, Proposition 3, part (5), is no longer true when the principal
is risk-averse. Nor is Proposition 17 since L(0) # 0. Propositions 1 and 2 and
Proposition 3, parts 1-4, continue to hold, however. So do Propositions 4 and 5
on the characterization of an optimal incentive scheme. Propositions 7, 8 general-
ize, as do Propositions 10, 11, and 12 (note that the function Crp is still well
defined although it no longer refers to first-best cost). Proposition 3(6) does not
hold and neither does Proposition 6 nor Proposition 9 (at least in its present
form). Finally Corollary 1 of Proposition 13 and Propositions 14-16 do not
generalize in an obvious way, since changing the risk aversion of the agent or the
probability distribution of outcomes affects the first-best as well as the second-
best.

The computational procedure presented in Section 4 for the two outcome case
can be extended to the case where the principal is risk-averse. In the finite action
case, it is still true that the agent will be indifferent between two actions at the
optimum, except in the case where the first-best can be achieved. Thus it is
necessary to check whether the first-best can be achieved. Otherwise the proce-
dure is unaltered.

We turn now to the consequences of relaxing Assumption Al. These are much
more serious since most of our analysis has depended crucially on being able to
choose the control variables V'(1)), ..., V(1,) independently of a. Some results
do generalize, however. In particular one can show that Propositions 1, 3, 10, and
12 generalize. It seems unlikely that the characterization of an optimal incentive
scheme in Proposition 4 and Proposition 5, part 1, holds, but we do not have a
counterexample. Surprisingly, perhaps, Proposition 5, part 2 does hold. Proposi-
tion 6 does not hold and it seems unlikely that Propositions 7-9 do.

In the two outcome case, one can still show that it is optimal for the agent’s
share s to satisfy 0 < s < 1. As a consequence Propositions 10 and 12 generalize.
Proposition 11 does not generalize, however, and nor does our computational
procedure for the two outcome case. Propositions 13 and 14 and Corollary 1 of
Proposition 14 do not hold as they stand, although they do if one enlarges the set
of feasible incentive schemes to include random schemes. (As we have noted in
footnote 17, once Assumption Al is dropped, random incentive schemes may be
superior to deterministic schemes.) Finally, it seems likely that Proposition 17
could be generalized to the nonseparable case.

7. SUMMARY

The purpose of this paper has been to develop a method for analyzing the
principal-agent problem in the case where the agent’s attitudes to income risk are
independent of action. Our method consists of breaking up the principal’s
problem into a computation of the costs and benefits accruing to the principal
when the agent takes a particular action. We have used this method to establish a
number of results about the structure of the optimal incentive scheme and about
the determinants of the welfare loss resulting from the principal’s inability to
observe the agent’s action. We have shown that it is never optimal for the
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incentive scheme to be such that the principal’s and agent’s payoff are negatively
related over the whole outcome range, although such a relationship may be
optimal over part of the range. We have found sufficient conditions for the
incentive scheme to be monotonic, progressive, and regressive. We have shown
that a decrease in the quality of the principal’s information in the sense of
Blackwell increases welfare loss. When there are only two outcomes, welfare loss
also increases when the agent becomes more risk averse. Finally, we have
discussed how our techniques can be used to compute optimal incentive schemes
in particular cases.

While we have talked throughout about “the” principal-agent problem, we
have in fact been considering the simplest of a number of such problems. More
complicated principal-agent problems arise when not only is the principal unable
to monitor the agent, but also the agent possesses information about his environ-
ment, i.e. about 4, 7, or U(a,I), which the principal does not. Such problems
possess a number of features of the preference revelation problems studied in the
recent incentive compatibility literature; see, for example, the Review of Economic
Studies Symposium [16]. A start has been made in the analysis of such problems
by Harris and Raviv [6], Holmstrom [7], and Mirrlees [12]. It will be interesting
to see whether the techniques presented here will also be useful in the solution of
these more complicated principal-agent problems.

University of Chicago
and
London School of Economics

Manuscript received September, 1980; revisions received September, 1981.

APPENDIX

PrOOF OF ProposiTION 16: Tt suffices to show that C(a, k) is increasing locally in k for each
a € A whenever C(a, k) is finite. Let k = Ak A > 1. Assume that (/,, I,) is the cost minimizing way of
implementing a, given k. Then, by the results of Section 4, e.g. equation (4.4),

_ 1
W + Tw, = z‘m s
(Al
m\wy + mw, = e’
where w, = e k1w, = e Kz, 7y = m(a), my = mya), )} = w(a’), 7y = 7y(a’), @ € A, a’ < a. Fur-
thermore we can pick a’ so that a’ is independent of k for A close to 1. .
Equations (A1) determine w, and w, for each value of k. The cost of implementing a, C(a, k), is
then given by

(A2) C(a, lg) =ml, +myl, = — %(w,logw, + m,logw,).

Differentiating (A2) with respect to A we get

aC(a, k)

1 m dwy,  m, dw,
(A3) Y )

)\=1= ;(wllogwl + mlogw, — W—l " w—2 an
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Set x = e Ka+® ), = o=k(@+) jp (Al]). Then e~ Mata) = yA o—ka'+a) = y*. Hence

dw, dw,

w,-ﬁ+wzﬁ=xlogx,

(A4)
, dw, , aw, —
TGN TR TR
where derivatives are evaluated at A = 1. Solving (Al), (A4) yields

_ mMX—my  MX =My
wy = T T v
T Ty — M7 Ty — T

>

dw, mixlogx —m,ylogy
an Ty — Ty ’

It follows that logw, > (1/w,)(dw,/dM). For

dw, mHx —my THX — Ty y myx logx — 7, y log y
(AS5) wilogw, — —— = log — -
dA T — Ty Ty — Ty Ty — Ty
= 7 l py [(ax — By)log —0(;( : g}’ —axlogx — Bylog y],

where a = 7%, 8 = 7,. However, the RHS of (A5) > 0 by Lemma 3 below. The same argument shows
that log wy > (1/w,)(dw,/ dX). Tt follows from (A3) that (9C/0A) > 0, i.e., C is increasing locally in k.

LEMMA 3: Assume a, B,x,y >0. Then if a > B and ax > By, axlogx — Bylog < (ax — By)
log((ax — By)/(a — B)). On the other hand, if a < B and ax < By, axlogx — Bylog y > (ax — By)
log((ax — By)/(a — B)).

PrOOF: Since zlogz is a convex function,

g(ylogy)+(a;B)(aﬁ:gylogaz:gy)leogx.

This proves the first part. The second part follows similarly. Q.E.D.

REFERENCES

[1] ArrOW, K. J.: “Insurance, Risk and Resource Allocation,” Essays in the Theory of Risk Bearing.
Chicago: Markham, 1971.

[2] BerTsEkAs, D.: “Necessary and Sufficient Conditions for Existence of an Optimal Portfolio,”
Journal of Economic Theory, 8(1974), 235-247.

[3] BLACKWELL, D., AND M. A. GIRSHICK: Theory of Games and Statistical Decisions. New York:
John Wiley and Sons, Inc., 1954.

[4] BorcH, K.: The Economics of Uncertainty. Princeton: Princeton University Press, 1968.

[5] Harpy, G. H., J. E. LITTLEWOOD, AND G. POLYA: Inequalities. Cambridge: Cambridge Univer-
sity Press, 1952.

[6] HARRIs, M., AND A. Raviv: “Optimal Incentive Contracts with Imperfect Information,” Journal
of Economic Theory, 20(1979), 231-259.

[7] HoLmsTROM, B.: “Moral Hazard and Observability,” Bell Journal of Economics, 10(1979), 74-91.

[8] Keeney, R.: “Risk Independence and Multiattributed Utility Functions,” Econometrica,
41(1973), 27-34.

[9] MiLGrROM, P. R.: “Good News and Bad News: Representation Theorems and Applications,”
Discussion Paper No. 407, Northwestern University, Illinois, Mimeo, 1979.



PRINCIPAL-AGENT PROBLEM 45

[10] MIRRLEES, J. A.: “The Theory of Moral Hazard and Unobservable Behavior—Part I,” Nuffield
College, Oxford, Mimeo, 1975.

[11] : “The Optimal Structure of Incentives and Authority Within an Organization,” Bell
Journal of Economics, 7(1976), 105-131.
[12] : “The Implications of Moral Hazard for Optimal Insurance,” Seminar given at Confer-

ence held in honour of Karl Borch, Bergen, Norway, Mimeo, 1979.

[13] PauLYy, M.: “The Economics of Moral Hazard: Comment,” American Economic Review,
58(1968), 531-536.

[14] PoLrLAK, R.: “The Risk Independence Axiom,” Econometrica, 41(1973), 35-39.

[15] RADNER, R.: “Monitoring Cooperative Agreements in a Repeated Principal-Agent Relation-
ship,” Mimeo, Bell Laboratories, 1980.

[16] Review of Economic Studies Symposium on Incentive Compatibility, April, 1979.

[17] Ross, S.: “The Economic Theory of Agency: The Principal’s Problem,” American Economic
Review, 63(1973), 134-139.

[18] RUBINSTEIN, A. AND M. YAARI: Seminar given at Conference held in honour of Karl Borch,
Bergen, Norway, 1979.

[19] SHAVELL, S.: “On Moral Hazard and Insurance,” Quarterly Journal of Economics, 93(1979),
541-562.

: “Risk Sharing and Incentives in the Principal and Agent Relationship,” Bell Journal of
Economics, 10(1979), 55-73.

[21] SPENCE, M., AND R. ZECKHAUSER: “Insurance, Information, and Individual Action,” American
Economic Review, 61(1971), 380-387.

[22] STiGLITZ, J. E.: “Incentives and Risk Sharing in Sharecropping,” Review of Economic Studies,
61(1974), 219-256.

[23] WiLsoN, R.: “The Theory of Syndicates,” Econometrica, 36(1968), 119-132.

[24] ZECKHAUSER, R.: “Medical Insurance: A Case Study of the Trade-Off Between Risk Spreading
and Appropriate Incentives,” Journal of Economic Theory, 2(1970), 10-26.

(20]







