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Nontrivial stochastic resonance temperature for the kinetic Ising model
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The kinetic Ising model in a weak oscillating magnetic field is studied in the context of stochastic resonance.
The signal-to-noise ratio calculated with simulations is found to peak at a nontrivial resonance temperature
above the equilibrium critical temperatufg. We argue that its appearance is closely related to the vanishing
of the kinetic coefficient al.. Comparisons with various theoretical results in one and higher dimensions are
made.[S1063-651X99)09103-5

PACS numbse(s): 64.60.Ht, 05.40-a, 05.50+q

I. INTRODUCTION to four-dimensional square-type lattices are carried out. Heat
bath algorithm is used. The flipping probablity is in accor-
A series of recent papefd-5] reveal unequivocally the dance with the accepted kinetic Ising model definition

phenomenon of stochastic resonaf§®) [6] in the kinetic

Ising model driven by an oscillating magnetic field. The pos- exp(— BAE)

sibility of SR was anticipated by viewing the Ising model as I:’ﬂip:m' )

a system of coupled two-state oscillators in a stochastic force

field which is taken to be thermal fluctuations. In our preVi'whereﬂz 1/kT(k is the Boltzmann constant, afdthe tem-

ous paper$1,2], we considered the synchronization aSpeCtSperature and AE is the energy change of the sytem due to

[7] of SR manifes_ted_ in the correlation _fun(_;ti(ﬂ(T) be- the proposed spin-flip. We set the energy scale by consider-
tween the magnetic field and the magnetizatioM (T) as a ing k=1. For one and two dimensions, a detailed study of

funcyon of temperaturé’. C(T) was shown to exhibit two the SNR as a function of the driving frequenty= 2.,
relative maxima at resonance temperaturds;<<T. driving amplitude A, system sizeV=L¢, and sampling

<T,, (T, being the critical temperature of the equilibrium . -
system withh=0). The values of botf,, andT,, depend lengthN are performe_d. Having determln_ed the_ trend of such
dependences, SNR in three and four dimensions are calcu-

on the driving frequency. They convergeTgin the experi- lated onlv f . | f1h .
mentally relevant, low frequency limit, thus no novel char- ated only for representative values of the parameteyss

acteristic temperature for the kinetic Ising model was ob-xPressed in units of 1/MC8nverse Monte Carlo step per
served. The results are qualitatively the same for twoSite) andA in units of th_e_ nearest_nelghbor coupling con_stant
dimensional(2D) and three-dimensiondBD) systems, and J. Free boundary conditions are imposed and system sizes up
of course in the one-dimensiondlD) caseT,, is absent. to V=3x10" are simulated.
Conventionally, SR is characterized by the behavior of To determine the SNR at each temperature, we follow the
the signal-to-noise ratiSNR). In the case of the 1D kinetic time evolution of the total magnetizatiod (t) for N=2P
Ising model governed by Glauber dynami@&, the SNR  MCS, after sufficient equilibration, whegeranges from 10
was computed analyticall{4] both for the response of an to 12. The power spectru®(f) of M(t) is computed using
embedded spin and of the whole chain, after Glauber’s origithe fast Fourier transformation method. Averaging over 500
nal derivation[8]. Their results(to be discussed in greater to 1000 independent runs, the ensemble-averaged power
detall in Sec. IV suggest that the SNR exhibits a maximum spectrum(S(f)) is obtained. A typica{S(f)) is presented in
at a weakly frequency dependent resonance temperatufgy 1, which shows the characteristic sharp peak at the driv-
T In.th|s manner a .charactenstlc temperature for the kiing frequencyf along with background noises. To compute
netic Ising model was introduced. _ the SNR, the noise level neég is determined by averaging
The aim o_f th|_s work is to study the beha_wor_of the_SNR<S(f)> over the interval |=[fs—6/N,f—2/NJU[fs
for the kinetic Ising model in general spatial dimensign +2/N, f+6/N]. The result is denoted byyS(f))|, . Taking

We are particularly interested in the mechanism responsiblg, . height of the peak minus the averaged noise level as the
for the maximum of SNR versus temperature, its position ignal, we define the SNR in the simulations by

and the associated scaling behavior as a function of syste%I

sizes, driving amplitude, driving frequency, and dimension- 3 (S(Fo)) = [(S(F))]

ality of the system. Reim= S|<S(f)>| :
|

In a typical continuum linear-response calculation of the
Standard Monte Carlo simulations for the kinetic Ising power spectrum, one obtains the general form
model in an oscillating magnetic field= A sin(wd), on one-

@
Il. SIMULATION METHOD

S(w)=Sp(w)+Qé(w— ws), ()

*On leave from Dept. of Theoretical Physics, Babes-Bolyai Uni-where Sy(w) is the zero-field spectrum, an@Q«=A is the
versity, Str. Kogalniceanu 1, RO-3400, Cluj-Napoca, Romania. amplitude of signal. These two terms correspond to the noisy
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FIG. 2. General shape of tHR(T)/VA? curve in one dimension
for different sets of driving frequencys, driving amplitudeA,
system sizeV, and time stegN. The continuous line is the exact
theoretlcal resul{10
background and the sharp peak, respectively, as depicted In 1.

Fig. 1. Conventionally, the SNR is defined by the ratio . . . I
Q/Sy(wg) [6]. Thus, in order to compare with theories, somefor-l.-l_h>e .Ite?_:_lts_m ;\Gv/oln(zl\/r%enil)on; ;rseg‘]qu[zl]liaégllerl]yo:lee dsli';lme
adjustments t& need to be made. It s straightforward to seemension, except a stronger influence of the driving frequency
that the proper definition after replacifigy w is on R(T) is seen(see Fig. 4 At high frequencies, a second
5 peak gradually develops beloVy, as illustrated in the mag-

Rsim:_ﬂ-N sim» (4  nified plot in the inset of Fig. 4. Our simulations show that
N this second peak becomes more refined as the lattice size is
. - . increased. We also check the validity of the scaling relation
Where we hav_e also norm.allzed by the trivial fadt.bvx_/mch (5) and find it fails only for fairly large driving amplitudes
arises from discrete Fourier transform, so tRaf, is inde- A< (o Thus, in the low-frequency, small-amplitude limit,
pendent ofN. Hereafter our simulation results will be pre- q rasonance peak far>T, converges to
sented in terms oRg;,,. Notice that in the small frequency ¢
and small amplitude limitRq;,, is expected to scale dsf.

FIG. 1. Characteristic shape ¢§(f)) for a driving frequency
fs~0.097.

2D__
[4) T, ~(1.350.03T,. )
Reim(T;V,A)=VA%g(T), (5)  With that we confirm the existence of a characteristic tem-
perature distinct fronT.. For higher frequencies, the peak
whereg(T) is independent of/ and A. aboveT, shifts slightly towardT.
For three dimensions the same trend versus frequency is
ll. SIMULATION RESULTS observed with lower frequencies, resulting in a higfier
In all the dimensions considereR,;,(T) exhibits a char- . . .
acteristic peak at a resonance temperaflyre Results for
one dimension are presented in Figs. 2 and 3 for the effect - oo tg-g?
of the dnvmg_ frequency, system sizes, and driving ampli- 0.2 A0 ke ADLS .
tude. From Fig. 2, we see that varying the frequency pro-
duces no major shift iff, . Hence we obtain O‘
TP~J. ® T T
:E O.Q*

In Fig. 2, the scaled SNR is plotted for a variety of combi- « 0.1 | %‘h .
nations ofN, V, andA. The fact that they all collapse onto ‘G"i';h
one curve confirms the expected scaling fabn Its break- ol 9
down is evident only for driving amplitudes=J, as shown
in Fig. 3, due to nonlinear effects. From Fig. 2 one can alsc
observe that for temperatures beldw the simulation data B,
are sensitive téA even for quite small values d&. In this 00 p > 3 2
region much smalleA than simulated are required in order ™

to reach the asymptotic zero-amplitude limit. Decreasing the
amplitude further, however, would increase the statistical er- FIG. 3. Breakdown of the scaling la) for high driving field
rors significantly. intensity A. N=4096) = 1000, andf;=0.0195 for all curves.



2732 KWAN-TAI LEUNG AND ZOLTA N NEDA PRE 59
0.06 T T 1.0 = T T
e 1,=0.0976 08 | e ]
a-a §=0.0195 | | » Tl
xex §.=0.0097 206 1
[ S
0.04 - . . = 04 ““\—-\\;,
g I
— g 02 1
< ¥s,
= *5‘&* 0.0 ) )
o 0.034 ; v Ry I I
. * Y v‘h“kﬁ
0.02 1 0032 R 4 7
0.030 | . 1
0.00 g . 0028 50 ‘ 085 1.00 | 105
o5 1.0 15 2.0 25
T,

FIG. 4. General shape and frequency dependence of the _ )
R(T)/VA? curves in two dimensions. All results are fot=50 FIG. 6. Trend fofT, , and the height of the peak as a function of
X 50N= 1024, andA=0.11. The magnified region shows the peak the dimensionality of the square-type lattices. The decrease of the
underT,, observable for high driving frequencies. height is well fitted by a~ ¢ power law withc=2.

but even in the low-frequency limit the sharp peak is closer In Fig. 6 we summarize the overall trends of the height
to T, (T.~4.511J; see for examplg¢10]) than in two di- and position of the main resonanceTat>T, versus the co-
mensions: ordination number of the lattice,d? in the low-frequency,

3D small-amplitude limit. The decrease of the peak height fol-

T, "~(1.1£0.09T,. (8  lows roughly a power lavd ¢ with c~2.

The second peak beloWw, also becomes more evident for
higher frequencies, and its height is now comparable to that IV. ANALYTICAL APPROACHES AND DISCUSSIONS
of the main peakFig. 5).

Turning to four dimensions, namely, the upper critical

dimension of the Ising model, we see clearly a twin-peak S mentioned above, the SNR for the 1D kinetic Ising
structure in R(T) (Fig. 5 and the peak abovd, (T, model has been computed by Schimansky-Geier and co-

~6.68J from Ref. [11]) is even closer taT, than in three workers[4] in the low-frequency limit. For completeness,
¢ their result is recorded here

A. 1D exact result

dimensions:
VA2 2]
TP~ (1.05-0.09T,. (9) RI="""" \/1—tank? __)_ (10)
4T T
0.06

R/(VA?)

FIG. 5. Modified 1D theory withl,=Jd (solid line), and MF
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Comparison with simulation data is given in Fig. 5. The
agreement is excellent for small except below the peak,
where the data are more sensitivedicand theA— 0 limit is
not yet reached. But the overall trend®fs a function oA
supports the above prediction.

B. Mean-field theories

For higher dimensions, no exact result Bris available
and we must resort to approximations. A naive approxima-
tion is to consider at high temperature that an average spin in
different dimensions only differ by the number of spins
coupled to it, given by &. We may then make use of Eq.
(10), derived for one dimension, to obtain an approximated
formula of R(T) for d>1 by replacingJ with an effective
coupling constant

Jeo=1Jd. (13)

approximation (dashed ling in comparison with characteristic
simulation data for all the considered dimensions. For one dimen-
sion A=0.05V=1000; for two dimensionsA=0.11V=50; for Of course this approximation should hold only at high tem-
three dimensionsA=0.09V=30%, and for four dimensionsA peratures, but comparison with simulations in Fig(sblid
=0.07V=12*. For all considered dimensiorlg=0.0195 andN lines) shows agreement better than naively expected, espe-
—4096. cially in two dimensions.
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Independent of the approximation, the general form of the  0.06 - . T - . )
SNR is given by Y * simulation
0.04
R m (AM)? 12
2 So(ws)
0.02

where Sy(w) is the frequency dependent power spectrum
(noise strength andAM is the amplitude of the total mag- —
netization induced by the external magnetic field, i.e., the < 0.00 : : : . : :

“signal” in M(t)=Vm+AM sin(wt—¢) where m is the = 04 0 - 2 AI' 6 ?
equilibrium magnetization per spin, arflis the phase shift L exact theory
[2]. Note thatQ=7(AM)?/2 is just the amplitude in E43). 03 | o o =
The simplest approach to calculateM and S, is the ) \\\‘\\ 70
mean-field (MF) approximation. The mean fieldM can I \\\ -==- n=100
. . _2 - Ve — - - n=200
easily be found2]: 0 N yoo
A
01 R
272 1
2
(AMye) === (L-me)*——, (13 00 | , ,
w2 0 2 4
e T

FIG. 7. High temperature expansion results as a function of
=tanh({/T) and v =tanh(2/T) for two- and one-dimensional sys-
tems, respectively.n(indicates the order of the expansipn.

wheremy,: can be determined in the standard way by nu-
merically solving the self-consistency equatiomye
=tanh(2Jmy/T), and mye is the mean-field relaxation
time: where

1

= . 14
T R 19 1 23 1
T ( mMF) )\Z? 1—tanl? ? Zm (18

The noise strengtts,F(w) can be determined using the

Wiener-Khintchin theorem: is the zero-fieldkinetic coefficient, given by the ratio be-
tween the susceptibility and relaxation time,

2 (M2)ye—V2mie (15

T™MF 1 ' :K
T+w2 A t (19
T™MF

S (w)=

, , . for generaldimension[12]. For one dimensiony=e?"T/T
The numg:rator can _read|ly be found via the susceptibility t0nd 7= 1[1—tanh(2/T)] are exact. For higher dimensions
be (1~ myg) 7ve - With these we obtain no exact result fog, 7 or A are known, but Eq(17) remains
valid. In fact, Eq.(16) is the mean-field version of E@Ll7),
(16) with )\MF=(1—mfAF)/T. _ _ _
4T2 In the more refined mean-field approach introduced in
Ref. [2] based on the time-dependent Ginzburg-Laudau
We plot Ry(T) in Fig. 5 (dashed lines The mean-field €equation, the SNR can be derived and it takes the same form
result agrees with simulations at high temperatures, but ne@s Ed.(17). With that approach in two dimensiong is
T, it misses the peaks entirely. Instead, the facterm.  accurate up toO(v®),7 up to O(v*) and hencexT=1

yields a cusp al¥' . Thus mean-field theory fails to capture —4v2+0(vY), where v=tanh(/T) is the usual high-
the essence of the SNR from simulations. temperature expansiatiTE) parameter. This also yields a
smoothR(T) with no peak.

Of course the HTE oA T is available in the literature to
much higher order for the 2D kinetic Ising model, at least up
The clue for the origin of the above discrepancy comeso O(v?% [13]. It is interesting to ask if this more accurate

from re-examining the 1D exact result. It is instructive to gives the peak irR(T). Figure 7 plots the cumulative con-

7VAZ(1—mZe)

C. High-temperature expansions

rewrite R;p of Eq. (10) in a more general form: tributions up to various orders”, and it is clear that even
) O(v?9) is not enough to yield the simulated shapeRgiT).
R1D— TVA“X 17) That this is the right conclusion is indicated by doing the
4T same procedure for one dimension where the HTE is known
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to all orders. The resulfFig. 7) shows the same trend as in 0.06 . . .
two dimensions. The peak is not revealed until upnto

~70. We conclude that the peakR(T) is an elusive quan-

tity to obtain; its absence is due to the inaccuracy of our
approximation of the kinetic coefficient nearT.. In retro- 0.04 |
spect, approximations of high-temperature nature are bound _
to fail, because their expansion parameters are close to unity";
near where the peak is supposed to be. We must therefore s

address the critical region. 0.02 I

D. Critical dynamics

From the general fornfl7), the SNR for a weak field is
proportional to the kinetic coefficiert. From a renormal-
ization group analysif12], r~¢e "%, andy~e¢ 7, wheree
xT—T¢, we obtain \ ~ "(72*7), where y=v(2—17) is FIG. 8. Result using the phenomenological approximatze)
used. Itis then clear th&(T) must exhibit a maximum near o the kinetic coefficientsolid line) in comparison with 2D simu-
T, because critical slowing down entails the vanishing of theation data.
kinetic coefficient afl; [12], R(T) must bend down near,
asT is lowered.

It is, however, clear from the simulations tHa{T) does
not really vanish afl; (the finite-size effect plays no role
since the convergence with respectMoalready occurs at  We have simulated the kinetic Ising model in various spa-
rather smalV). The physical reason for this is that the pres-tial dimensions under the influence of an oscillating mag-
ence of an oscillating magnetic field prevents the systemetic field. We focus on the signal-to-noise rafi@s a mea-
from fully developing its correlations nedr; within the fi-  gyre of stochastic resonance for the spins in response to the
nite period 1f;. Singularities are rounded. In particular, external field. For all the dimensions we stuyexhibits a
critical slowing down is suppressed due to the cutoffr@ft  ¢jear maximum at a resonance temperature distinct from the
1/fs. Hence roundlngivazlre expected to occur at roudHly  equilibrium critical temperature. Various theoretical ap-
where (I* —T¢)/Tc~fS™. For an infinite system size, the rqaches to calculat® are discussed which, when properly
vanishing ofR is then controlled byfs according toR(Tc)  jncorporating the critical slowing down at,, agree with the
~f@72*7'%(Ris controlled byL instead ifL<f;*?). Thus,  gimulated results.

for small frequencies, we expect the kinetic coefficient to  \ye have confined our attention to the case of weak fields,
drop significantly ag . is approached, giving rise to the peak gjnce strong fields induce more complex response than is

in the SNR, and hence to a temperature scale distinct ffoffgataple by linear response theories. One such complication
Te. _ ) is the saturation of the magnetization within one cycle of
_ Since an accurate functional form®fT) nearT is lack-  qgcillation which would generate higher harmonics in the
ing, to partially remedy the situation we illustrate the above,,yer spectrum, thus invalidating even the usual definition

idea by means of a phenomenological description for thg¢ SNR. Theoretically, we have also confined ourselves
signs by equalities  ostly 1o T>T,. Below T,, localized excitations such as

V. CONCLUSION

SNR. We simply replace the above-

and szpleufy e=(T-T)/T to obtain 7re=€ " xraT  nucleation of droplets may become important in certain re-
=e """ and gion of the parameter space. They are more difficult to
handle than a spatially uniform perturbation done here.

With respect to other resonance temperatures defined by
means of the correlation function between magnetization and
external field 1,2], the present resonance temperature seems
to be unrelated. Since, unlike the previous ones, it does not
o . converge tol; in the small frequency limit, it offers a more
Folr the 2D kinetic Ising model, the exponent values are qp st characterization of the phenomena of stochastic reso-
=7,v=1, andz~2.16 (z is not known exacthyf13]). This  nance in kinetic Ising systems. We expect that experimental
particular form has the obvious advantage of capturing both,aasurement of thR(T) curve performed on monodomain
the correct high-temperature valteoth 7 andxT—1 asT  magnetic particles with localized magnetic moments could

—>oo).a.nd the behqvior nedr;. In fact, 7rg and ygc agree  reyveal this resonance temperature.
surprisingly well with the HTE away fronT.. The corre-

sponding SNRRgc(T), is plotted in Fig. 8, which indeed
shows the characteristic peak at about the right place. The
scenario is qualitatively the same in higher dimensions, but
the singularities are weakéogarithmic in four dimensions We are grateful to the NSC of Republic of China for their
which plausibly explains whyl',-T. decreases withl (Fig.  support through Grant No. NSC87-2112-M-001-006 and
6). NSC88-2112-M001-013.
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