
J. Phys. I France 7 (1997) 423–429 MARCH 1997, PAGE 423

Generalization of a Two-Dimensional Burridge-Knopoff Model
of Earthquakes

Kwan-tai Leung (1), Judith Müller (2) and Jørgen Vitting Andersen (2,∗)

(1) Institute of Physics, Academia Sinica, Nankang, Taipei 11529 Taiwan, ROC

(2) Department of Physics, McGill University, Rutherford Building, 3600 University Street,

Montréal, Québec, Canada H3A 2T8

(Received 21 March 1996, revised 31 October 1996, accepted 26 November 1996)

PACS.05.70.Jk – Critical Point Phenomena
PACS.46.30.Nz – Fracture mechanics, fatigue, and cracks
PACS.91.30.-f – Seismology

Abstract. — We present a generalization of the two-dimensional spring-block model of earth-
quakes previously studied by Olami, Feder and Christensen (Phys. Rev. Lett. 68 (1992) 1244).
Making the simplest possible assumption, we regard the tectonic plates as elastic media with
inter- and intra-plate harmonic forces, that is, forces governed by Hooke’s law. The robustness
of the model with respect to effects of internal strain, vectorial force and different boundary
conditions are examined and demonstrated both analytically and numerically.

In 1967, Burridge and Knopoff [1] introduced a one-dimensional (1D) system of springs
and blocks to study the role of friction along a fault in earthquakes. Since then, many other
researchers have investigated similar dynamical models of many-body systems with friction,
ranging from propagation and rupture in earthquakes [2-11] to the fracture of overlayers on a
rough substrate [12].

Among these developments, a deterministic version of the 1D Burridge-Knopoff (BK) model
was analyzed by Carlson and Langer [2] and the same model but in a quasi-static limit was
studied by Nakanishi [3]. A 2D quasi-static variant was first simulated by Otsuka [4] and
later by Brown, Scholz and Rundle [5], who formulated it as a discrete cellular automaton.
A similar model with non-conservative, continuous local variable (the force), generalizing the
model of Bak, Tang and Wiesenfeld [6], was first introduced by Feder and Feder [7] in connec-
tion with their experiment. A more refined version was later developed by Olami, Feder and
Christensen [8] (OFC). Contrary to previous models, the model by OFC (henceforth called
the OFC model) is derivable under certain limit (see below) from a 2D BK model, thereby
establishing a more direct connection between earthquake problems and self-organized criti-
cality. One of its interesting features is the dependence of the values of critical exponents on
the level of conservation [8, 10]. OFC argued that it explains the variance of the exponent in
the Gutenberg-Richter [13] law observed in real earthquakes [14]. More recently, motivated
by the findings of OFC, Jánosi and Kertész [15] and Middleton and Tang [16] addressed the
important issue of how a model without conservation law may attain self-organized criticality.
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Making the simplest possible assumption, we regard the tectonic plates as elastic media
with inter- and intra-plate harmonic forces, that is, forces governed by Hooke’s law. It is worth
noting that the OFC model corresponds, in the sense of the specification of forcings, to a
restricted form of a 2D BK model. In this article, we shall examine the effects on the physical
properties of the OFC model when the restrictions are removed. The intense interests centered
on the OFC model and nonconservative models in general motivate such an examination. We
shall also discuss the influence and physical realization of certain boundary conditions.

Model

As before, our model consists of a 2D array of blocks in contact with a rough surface. Each
block is interconnected to its nearest neighbors via coil springs whose spring constants are K1

and K2 and unstretched lengths l1 and l2, along the x- and y-direction respectively. Each block
is also connected to a rigid driving plate by a coil spring of spring constant KL. The purpose
of the coil spring is to confine the block within the x−y plane. The position of the coil springs
on the moving plate, labeled by (i, j) where 1 ≤ i, j ≤ L, forms a square lattice with lattice
constants a1, a2. We restrict ourselves to the situation where a > l, and the displacements
xi,j, yi,j measured from (i, j) fulfill xi,j � a1 and yi,j � a2, so that Hooke’s law applies. The
plate moves at constant, infinitesimal speed. Stress thereby builds up between the array and
the plate. The friction from the underlying rough surface prevents a block from moving, until
it exceeds a static threshold Fth and the block then slips instantaneously to a new equilibrium
position.

While this setup is an obvious extension of the 1D BK model [1] to two dimensions, previous
models [4, 5, 8] invariably correspond to a different setup in which the blocks are confined
to move in one direction. To our knowledge, this restriction was not physically motivated,
but introduced for the reason of simplicity. It is not obvious a priori whether the physical
properties of the model will be affected significantly. To find out, we lift this restriction and
start with the equations for the force appropriate to coil spring connections. The net force Fi,j
(which equals the friction from the rough surface) on a block at (i, j) is now a vector:

Fi,j = fL + f(i+1,j)−(i,j) + f(i−1,j)−(i,j) + f(i,j+1)−(i,j) + f(i,j−1)−(i,j) (1)

where f(i±1,j±1)−(i,j) is the force exerted by a neighboring block and fL the loading force by
the driving plate. Specifically, we use Hooke’s law:

fx(i+1,j)−(i,j) = K1[a1 + xi+1,j − xi,j −
(a1 + xi+1,j − xi,j)l1√

(a1 + xi+1,j − xi,j)2 + (yi+1,j − yi,j)2
], (2)

fy(i+1,j)−(i,j) = K2[yi+1,j − yi,j −
(yi+1,j − yi,j)l2√

(a1 + xi+1,j − xi,j)2 + (yi+1,j − yi,j)2
]. (3)

Then the x component of the force in equation (1) takes the form:

F xi,j = fxL −K1[2xi,j − xi+1,j − xi−1,j

+
(a1 + xi+1,j − xi,j)l1√

(a1 + xi+1,j − xi,j)2 + (yi+1,j − yi,j)2
−

(a1 − xi−1,j + xi,j)l1√
(a1 − xi−1,j + xi,j)2 + (yi,j − yi−1,j)2

]

−K2[2xi,j − xi,j+1 − xi,j−1

+
(xi,j+1 − xi,j)l2√

(a2 + yi,j+1 − yi,j)2 + (xi,j+1 − xi,j)2
+

(xi,j−1− xi,j)l2√
(a2 − yi,j−1 + yi,j)2 + (xi,j − xi,j−1)2

] (4)

and, by symmetry, F yi,j follows by switching x↔ y, i↔ j, l1 ↔ l2, a1 ↔ a2 and K1 ↔ K2.
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Linear Version

To compare with the OFC model, we expand Fi,j to first order in the displacements x’s and
y’s. Specifying fL = (−KLxi,j, 0) as in [5, 8], we readily find that

F xi,j = −KLxi,j −K1(2xi,j − xi+1,j − xi−1,j)−K2S2(2xi,j − xi,j+1 − xi,j−1) + · · ·

F yi,j = −K1S1(2yi,j − yi+1,j − yi−1,j) −K2(2yi,j − yi,j+1 − yi,j−1) + · · · . (5)

Thus a slip to a zero-force position for the block at (i, j) results in the following force redistri-
bution [17,18]:

F xi±1,j → F xi±1,j + α1F
x
i,j,

F xi,j±1 → F xi,j±1 + S2σα1F
x
i,j,

F yi±1,j → F yi±1,j +
S1

σ
α2F

y
i,j,

F yi,j±1 → F yi,j±1 + α2F
y
i,j,

Fi,j → 0, (6)

where S1 ≡ (a1 − l1)/a1 is the internal strain of the network in the x-direction, and similarly
for S2. σ ≡ K2/K1 and κ ≡ KL/K1 are measures of anisotropies in the couplings. In the bulk,
α1 and α2 are given by:

α1 =
1

2(1 + S2σ) + κ
; α2 =

1

2(1 + S1/σ)
. (7)

Using equation (6), our model can be described as a coupled map lattice as was done in [8]. If
yi,j ≡ 0 is imposed at all sites as in [5,8], F yi,j = 0 to first order and we recover the OFC model
in the limit S2 → 1, i.e., for maximal internal strain along the y-direction. This also follows
from the general relation equation (4), since F x becomes linear in x for S2 = 1 and y = 0. The
physical rationale behind this correspondence is that leaf springs were chosen along y in the
array in references [4, 5, 8], which by definition can only be bent but not extended . To linear
order, they are effectively fully stretched coil springs. The advantage of having different kinds of
springs along x- and y-direction is that the force is scalar and the equations linear. However, the
network is intrinsically asymmetric (not to be confused with anisotropy). This manifests itself
most clearly in the elastic moduli [20]: for the OFC model, we obtain [17] C1111 = K1a1/a2,
C2222 = ∞, C1122 = 0, and C1212(shear modulus) = K2a2/a1. Clearly, setting K1 ≡ K2 does
not render the model symmetric. In contrast, our model is symmetric: C1111 = K1a1/a2,
C2222 = K2a2/a1, C1122 = 0, and C1212 = (K1K2S1S2a1a2)/(K1S1a

2
1 +K2S2a

2
2).

Before going further, we remark that given the underlying square lattice, neither model is
isotropic. More importantly, neither satisfies a “space filling” condition in that they do not
contract laterally when stretched. This is obvious from the way the springs are connected,
and is also reflected in the above relation C1122 = 0, which gives a zero Poisson’s ratio. This
is a shortcoming of most if not all of the spring-block models. However, the space filling
condition may be fulfilled if extra springs between next -nearest neighbors are added whose
spring constant will then be proportional to C1122 [17]. Since the addition of extra springs
introduces considerable complications into the rules of the cellular automata, we will not pursue
it here. Notwithstanding such complications associated with the implementation, it is useful to
remember that the discrete spring-block models may be systematically refined along this line,
and the general, tensorial macroscopic elastic equations may be obtained in the continuum
limit.
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Fig. 1. — Exponent in slip-size distribution P (> s) ∼ s−B versus conservation level of a force com-
ponent, from data of L = 100, S1 = S2 = 1, and κ = K1 = K2 = Fth = 1, with FBC.

For general strain (0 ≤ S2 < 1) but F y ≡ 0, the linear version of our model coincides
with the so called “anisotropic” OFC model [8] with our S2σ corresponding to OFC’s K2/K1.
The statement [8] regarding the variance in the Gutenberg-Richter law as a result of different
coupling strengths has to be reinterpreted, in the present context, as also a result of different
internal strain.

Next, for the more general case of yi,j 6= 0, the two force components are locally coupled

because a slip is decided by the sign of
√

(F x)2 + (F y)2−Fth. We need to consider its relevance.
We examine the net change of force after a block in the bulk at (i, j) slips by a distance (δx, δy):

δF x = −KLδx = −κα1F
x
i,j; δF y = 0. (8)

This follows from equations (6, 7), showing that F y is conserved in the bulk. The changes at
the boundary depend on the boundary conditions.

Following OFC, for “free” boundary conditions (FBC) there are three neighbors along the
edges and two at corners. Thus, the α’s on the boundary differ from the bulk values in
equation (7):

α
(x=1,L)
1 =

1

1 + 2S2σ + κ
, α

(y=1,L)
1 =

1

2 + S2σ + κ
, α

(corner)
1 =

1

1 + S2σ + κ
;

α
(x=1,L)
2 =

1

2 + S1/σ
, α

(y=1,L)
2 =

1

1 + 2S1/σ
, α

(corner)
2 =

1

1 + S1/σ
.

(9)

As a result, equation (8) holds at all sites. Although equation (8) implies |F x| always decreases
in a slip event, the spatial mean F̄ x fluctuates about a finite value due to constant loading.
But due to isolation for FBC, the spatial mean F̄ y is identically zero by Newton’s third law. In
the steady state, we find that the fluctuation of F y also approaches zero, so that this coupling
of a conservative component F y to F x is irrelevant for FBC.

Although F̄ y = 0 in practice, it remains interesting to see, generically, if a coupling to a
finite conservative field F̄ y = const 6= 0 [19] is relevant in the context of more general cellular
automata, analogous to similar consideration in critical dynamics [21]. Figure 1 shows that
F̄ y matters, as the exponent B defined in the Gutenberg-Richter law varies continuously. The
OFC model with FBC corresponds to the point F y ≡ 0.

For “open” boundary conditions (OBC) there are four neighbors throughout. Equation (7)
then holds at all sites but equation (8) is modified to δF y/F y < 0 at the boundary.



N◦3 GENERALIZATION OF A 2D BURRIDGE-KNOPOFF MODEL 427

Table I. — Comparisons between the OFC model and our generalizations for their critical
behavior. F yi,j denotes the y-component of the force acting on a block, and F̄ y is its spatial
average.

Boundary conditions Specifications of F y Critical behavior cf. OFC model

FBC F yi,j ≡ 0 same

F yi,j 6= 0, F̄ y = 0 same

F yi,j 6= 0, F̄ y 6= 0 different, new universality classes

OBC F̄ y 6= 0 same (stable fixed point at F̄ y = 0)

Fig. 2. — Snapshot of a configuration of blocks after 2000 avalanches, for L = 20, S1 = S2 = 0.9, and
κ = K1 = K2 = Fth = 1, showing the unphysical effect of pinned frame (denoted by 2) with OBC.
The array is pulled to the right. The system evolves according to equation (10).

This implies that a system with arbitrary initial spatial mean, F̄ y, will always flow in steady
state to the stable fixed point at F̄ y = 0.

Therefore, we have shown that the OFC model is stable against vectorial perturbation for
both the free and open boundary conditions studied by OFC. Our results are summarized in
Table I. The physical origin of these results can be traced to the manner of loading along a
fixed direction (cf. Eq. (8)).

Since the boundary conditions are always important ingredients of the model, we digress for
a moment to discuss the physical realization of the OBC, which is defined [8] by an “imaginary
layer of blocks” connected around the system in order to have the same number of nearest
neighbors everywhere. Physically, such a layer corresponds to a rigid frame that attaches
to the array by springs. Since spatially uniform loading in reference [8] implies no relative
displacement between the frame and the array during loading, the imaginary layer never slips:
it is permanently pinned on the rough surface. Although this is an unphysical setup, it is far
from obvious in the Fi,j representation. Working with the linearly related xi,j instead, we show
in Figure 2 how the initially square array of blocks is distorted due to the pinning. At long times,
the distortion can be arbitrarily large so that there is no meaningful steady state for this model.
To make physical sense, the frame has to move along with the driving plate. It is then intuitively
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clear that loading cannot be uniform: due to pulling and pushing by the frame, boundary blocks
are loaded more than in the bulk (e.g., ∆F x1,j = (1 + κ−1)∆F xbulk). Incorporating such non-
uniformity, we observe numerically [17] that the model becomes noncritical and reaches periodic
states much like with periodic boundary conditions [10]. Therefore, we conclude that the OBC
is a mathematical convenience in that the model is rendered noncritical if it is implemented in
a physical way.

Nonlinear Version

Finally, equation (4) allows for an investigation of nonlinear effects which naturally arise from
the spring connections. However, it is no longer possible to formulate the model as a coupled
map lattice (cf. Eq. (6)), because the displacements have to be kept track of. For each slip
event, the equations F = 0 have to be solved for the displacements (x̃, ỹ) that defines the
zero-force position of the block.

Apparently this program is not computationally efficient for large avalanches and high orders.
But the second order is simple: all second order terms (x̃2, ỹ2, x̃ỹ) cancel in the bulk (i.e., when
(i, j) has four nearest neighbors), resulting in two coupled first order equations for (x̃, ỹ) in
terms of the F and (x, y) before the slip:

F xi,j
K1

= (x̃i,j − xi,j)[α
−1
1 +

σl2

a2
2

(yi,j+1 − yi,j−1)]

+(ỹi,j − yi,j)[
l1
a2

1

(yi+1,j − yi−1,j) +
σl2
a2

2

(xi,j+1 − xi,j−1)], (10)

plus a corresponding equation for F yi,j. It yields nonlinear dependence of (x̃, ỹ) on (x, y) via

the terms proportional to l/a2. Due to missing neighbors of the blocks on the edges with FBC,
second order terms in (x̃, ỹ) survive and one needs to solve higher order (3rd and 4th) equations
for the equilibrium positions of the boundary blocks.

Based on equation (10), we have performed simulations for different boundary conditions.
Remarkably, even with substantial nonlinearities (measured by l/a2), we do not find any de-
viation from the linear behavior for FBC, OBC and PBC. Thus, we are inclined to believe
that the important nonlinearities are not associated with the spring actions, but rather with
the force redistributions during the stick-slip motion, which are the same in the linear and
nonlinear cases.

Summary

Using Hookean force-displacement relations, we have investigated the critical behavior of a 2D
spring-block model of earthquakes under the quasi-static limit. We find that the internal strain
is an additional ingredient in the variance of the Gutenberg-Richter law. As a consequence of
loading along a fixed direction, the model studied by Olami et al. [8] displays striking stability
against generalization to vectorial force for both free and open boundary conditions. However,
if the loading is applied in both directions (e.g., fL = −(Kx

Lx,K
y
Ly), or as shears through the

boundary), the vectorial generalization is expected to be necessary. Finally, nonlinear effects
associated with the spring actions are found to be not important.
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