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Heuristic derivation of continuum kinetic equations from microscopic dynamics
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We present an approximate and heuristic scheme for the derivation of continuum kinetic equations from
microscopic dynamics for stochastic, interacting systems. The method consists of a mean-field-type, decoupled
approximation of the master equation followed by the “naive” continuum limit. The Ising model and driven
diffusive systems are used as illustrations. The equations derived are in agreement with other approaches, and
consequences of the microscopic dependences of coarse-grained parameters compare favorably with exact or
high-temperature expansions. The method is valuable when more systematic and rigorous approaches fail, and
when microscopic inputs in the continuum theory are desirable.
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[. INTRODUCTION croscopic specification of the dynamics. Our goal is not to
propose a new formal derivation, but rather to give a quick,
Ever since its introduction in a classic treatment of thesimple, and heuristic means that can be applied generally to
Brownian motion[1], the Langevin equation has been play- Stochastic systems, several of which shall be discussed be-
ing an important role in modern statistical physics. It pro-low.
vides a mathematical framework and a physical basis for Expositions of the historical, philosophical, and technical
studying stochastic processes in statistical, mechanical sygspects of the Langevin equation are beyond the scope of
tems. Applications are wide-rangig], including chemical this paper. Interested readers are thus referred to the relevant
reactions, laser physics, diffusive processes, and modefiierature[2]. This paper is organized as follows. An elemen-
theories of dynamical critical phenomef®]. Recent topics tary recapitulation of the master equation and Langevin
such as surface growfH] and pattern formatiofs] also rely ~ equation is presented in Sec. Il. Section Ill contains several
heavily on the Langevin equation. examples as illustrations of the method, as well as assess-
It is fair to say, however, that despite its popularity, thement of the quality of the approximation involved. Conclu-
Langevin equation for a specific problem is seldom derivedsions are given in Sec. IV. A discussion of the noise corre-
from the corresponding microscopics. It is often postulatedation is given in the Appendix.
on the grounds of symmetry and physical reasoning. Only
rarely in simple circumstances is it derived with reasonable 1. MASTER EQUATION AND TIME-DEPENDENT
mathematical rigor from the more fundamental master equa- GINZBURG-LANDAU EQUATION
tion. To this end, th&) expansion introduced by van Kam- L , , i
pen[6] is a well-established technique. It consists of a de-, !N Statistical physics, one of the most important applica-
composition of the slow variable into a macroscopic part andiONS Of the Langevin equation is in the theories of dynamical
a fluctuating part, followed by a systematic expansion of thec'itical phenomends3]. Therefore, our discussion shall be
master equation in inverse powers of the volufdeof the cast in that language, although it should be obvious that the

coarse-graining block. While the leading order in the expanMethod itself is not limited to systems exhibiting those phe-
sion gives the deterministic equation of motion for the slown°Mena. For concreteness, consider the kinetic Ising model

variable, the next order yields a Fokker-Planck equation fofhat (_)beys _Glaubeh_.e., spin-flip dyr_lamlcs[ll]. At the

the fluctuating part, from which the noise term of the asso.classical, microscopic level of description, the system con-
ciated Langevin equation can be identified. An independentStS OfN spinso; interacting via the Hamiltonian

method, based on a Fock space representation of classical

objects using creation and annihilation operators, was intro- H=-JD, oo, (1)
duced by Doi[7] and reformulated by Rodé8] and Grass- (N

berger and Scheun€i®]. Although not directly cast in the ) ) )

Langevin language, it also addresses the dynamics of clasdihere J is the coupling constant and,j) denotes a sum
cal many-particle systems. The method is noted for its appli9Ve" nearest-neighbor pairs. The time evolution of the sys-
cation in birth-death processes such as chemical reaction§€M iS governed by a master equation

Later, Peliti[10] recast it in a path-integral form and treated

random walks and aggregation problems. P(oit+1)=P(a;1)

In this paper, we shall present an approximate scheme
somewhat in between a mere postulation and rigorous for- =, [w(¢'—o)P(c';t)~w(o—a')P(ait)],  (2)
mulations, for deriving the Langevin equation from the mi- o'

WhereP((;;t) is the joint probability of finding the system in
*Email address: leungkt@phys.sinica.edu.tw the spin configurationr={o;,05, ... oy} at timet, and
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w’'s are the transition rates between two configurations thagquation[14], which in principle yields expressions of the
differ only by one spin flip. There is a great deal of freedomcoarse-grained parametels u, and g in Egs. (5)—(7) as

in the choice ofw, as long as the following detailed balance functions of microscopic ones in E¢R).

condition is satisfied to ensure the same equilibrium distri- However, for more complicatedH, the Hubbard-
bution P, q((;)NefBH(r;), Stratonovich transformation fails and the coarse graining
cannot be done explicitly. Moreover, these methods rely on
the existence of a Hamiltoniad and the associated equilib-
rium Boltzmann weighe™ 4", which is not valid in generic
nonequilibrium situations defined only by the dynaniits].

For those cases, alternative to the established techniques
[6-10], it is highly desirable to have a straightforward
method to extract a continuum description directly from the
dynamics[16]. In the next section, we shall present such a
method.

W(o'—0a)  Pefo)

W(g—3a") Pefa’)

e BIH(@)~H(")] 3)

with 8=1/kgT. In practice, the choice is largely dictated by
mathematical convenience. The most common choices of
are the Metropolis rate in Monte Carlo simulations for its
ease of implementation, and the heat-bath fatso known
as the Kawasaki ratgl2]) in analytic calculations for its
analyticity. In this paper, we confine our attention to the

latter choice. It is given by I1l. FACTORIZATION AND NAIVE CONTINUUM
EXPANSION
I 1
wW(o—o')= (4) Our method is very simple. It consists of two steps: a

—B[H(0)—H(a")] " . g . .. . . .
1+e  AR(A=AED] mean-field-type factorization of joint probabilities into sin-

Since the master equation is not very convenient for anag:)er:tigzﬁfn'g;ggnggﬁte.rrﬁ guraet;%rllt, If ; ngc?c()jnt?r%/ujm nlzlr\]/:'[i c
lytic purposes such as a renormalization-group analysis, on . . ' : :
é‘ttenptufns to a mesoscopic, continuum ?eprgsenta)t/ion. Fog;quatlon with full _knowledge of the microscopic depe_zndence
an Ising system with Glaubér dynamics, the relevant cons f the coarse- grained parametgty]. Sl_nce the nput IS the

' master equation, whether the system is an equilibrium one or

tinuum field is the local magnetization densigyr,t), which ot [15] is irrelevant. To illustrate, we now discuss several

obeys a kinetic equation examples in increasing order of sophistication.
0 p 5 i
e 50 g, ) A. 1D Ising model

Focusing on a spin at position in a one-dimensional

o]l ) (1D) Ising model, it is easy to find by integrating out all
H= ] dr)5(Ve)"+V(d), ) other spins in Eq(2) that

u g P,(x;t+1)—P, (x;t)=P___w___+P__,w__,
=— 2+ —p*+ ...,
V(¢) 2¢ 4!¢ (7) +P+,+W+,++P+,,W+,,
This is an example of the time-dependent Ginzburg-Landau —Poiw_ —P_woyy
(TDGL) kinetic equation. In Eq(6), d is the dimensionality
of the system, and{ is a coarse-grained Hamiltonian. For

Eq. (5) to describe a stochastic process, the noise 'g’e(ﬁn) (10)

is needed, which accounts for the effect of thermal fluctua-

tions and prevents the system from trapping in metastabl@hereP . (x;t) denotes the singlet probability of finding the
states. For mathematical convenience, it is often taken to b&Pin up at sitex at timet, andP ., , . (x;t) denotes the joint

Py w, , P, w, .,

Gaussian with zero mean: probability of finding three spins up at site-1, x, x+1,
respectively, and so on. From Ed), the heat-bath transition
<§(F,t)>:o, (8) rates are given byw___=w, ., =W,, w__,=w,__
=w_,,=w,, =W, andw, _,=w_, =W_,, where
(¢ HL(r,t))y=2D5(r—r")s(t—t’). )
1
For equilibrium systems, the correlati@in Eq. (9) has to W,= Tl (11
be chosen to ensure that the stationary solution of(&qis l+e

consistent with the Boltzmann weight.,~ e " (cf. the Ap-

pendiX. For a system as simple as the Ising model sfagic ~ Adopting a mean-field approximation, the joint probabilities
continuum Hamiltoniar{ can actually be derived from the are replaced by their factorizations, e.gP.;_(X;t)
microscopicH via the partition function by means of the —P(x—1;t)P.(x;t)P_(x+1;t). Since X, 0P,(X;t)
Hubbard-Stratonovich transformatigm3], which is a trick =P, (x;t)—P_(x;t)=(o) and I P (x;t)=P (x;t)
based on the Gaussian integral. For the dynamics, the TDGk P_(x;t)=1, in the spirit of coarse graining we proceed to
equation has been derived by coarse graining the mastenake the identification
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1+ p(x;t) Linear response then determines that the susceptibiliy is
P.e———, (120 =u/r=B(1—»%2)/(1- ), wherey=tanh 28J. In the Ap-
pendix, we show that is needed to fix the noise correlation.
where ¢ is the local magnetization density. By usiggin- (v) Besides capturing the correct symmetries, our results

stead of spin number densities, we take advantage of syngompare quite well with exact results. From E§), the re-
metries anticipated in the final kinetic equation. Since a spinaxation time can be read off easily as-1/I'r =1/(1-y).

flip depends on a total of+1 spins in Eq.(2), wherez ~ This turns out to be exa¢t1]. For the susceptibility, devia-
—2d for hypercubic lattices, the factorization effectively tion from the exact resulBe®” [11] shows up only at
produces a power-series expansiondirup to ¢2*1. After ~ O((8J)°) when expanded iJ. Hence, our method has the
replacingP’s by ¢'s, we make the transition to the con- advantage that it embodies a refined mean-field theory, as

tinuum by “naively” expanding aboug, such as already applied to studies of stochastic resonance in Ising
systemg19].
Ip(x;t) 1 FPp(x;t) (vi) Finally, due to the factorizations, only the determin-
PXELD =X E———F 5 — 7+ istic terms in Eq(5) can be derived. The noise term has to be

(13 deduced separatelfsee the Appendix The result for the
noise correlatiorD in Eq. (9) is D=kgTul.
For most applications, we are only interested in the long- Having gone through the details of our method, we now
distance behavior, hence it suffices to stop at the lowest deyrn to a few less trivial examples.
rivatives as shown. This procedure results in a deterministic
kinetic equation forg in precisely the form of Eqg5)—(7),

. . B. 2D Ising model
barring the noise terng:

The same procedure can be applied to the 2D Ising model

d P g . with Glauber dynamics. Again we obtain E@), with the
- Tl —@tretge) parameters given by
ici i 1
where the coefficients are given by = g(_2W4+2W—4_W8+W—8)1 (16)

1
= §(W74_W4),

1
I’=§(6W0+ 12\/\/4_4W,4+5W8_3W,8), (17)

1
r= E(SW4_W,4+ 2WO)1

g: f(_6W0_4W4+4W—4+5W8+W_8)’ (18)
3
9= 1 (Wat W4~ 2Wo). (14) B
1= o5 (BWEHAWW_ o+ WaW ). (19)

Several remarks are in order.

(i) Symmetries in the resulting continuum equatiith It is worth noting that’, g, andu are positive definite for all
respect top, x, andt) are as expected, because the approXi-r— 5 \whereasr has one zero atTC~3 0898)/kg
’ c .

mations respect those symmetries and leave them intact. ~1.36167,, again an improvement over the mean-field pre-

(i) There are explicit temperature dependences in the co;. " MF - o =
efficients that cannot be deduced by symmetry or physicaN'(:Zt'gggz;rlg ._‘;‘:/kB’ twh_t:._rel tTC_ 2£]/kB Ig(ﬁ 1)t q
reasoning. Such dependences are specific to the choice g]f ) g IS the exact critical temperature. As expected,

. 5 .
jump rates that are manifest through the approximations €€ 'S nog> and higher-order terrf118]:
Juses. g PP The results ofr and y for the Gaussian casg€0) are

(iii) Noting thatW_,=1—W,, for any n, we find =31 quite satisfactory. They differ from high-temperature series
-n n ’

~W,>0 andg=0 at anyT [18], andr =2W, /T has one expansiong20] at orderO((3J)°) and O((B8J)*), respec-

zero, atT=0. This is consistent with the absence of phaset'vely' whereas the usual mean-field results are worse, at

transition in the 1D Ising model at any finite temperature, ano((ﬁ‘])s) and0((83)?).

improvement over the usual mean-field restft =2J/kg . _

There is no stability problem arising frog=0 because the C. 3D Ising model

quadratic coefficient is positive for>0. Despite being more tediou428 terms on the right-hand
(iv) In the presence of an external magnetic fieJdhe  side of the master equatiprwe also derive the kinetic equa-

degeneracies in jump rates are lift¢d.g., W, ._=(1  tion for the 3D Ising model with Glauber dynamics. The

+e=2fM 1] To O(h), the kinetic equation acquires a new results are

termI" wh on the right-hand side, where

2p

1
> T'= S5(Wo 12+ 4W_g+5W_ 4 —5W, — 4Wg— W),
M= T(W0+W4W—4)' (15

(20
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[25], which was proposed on the grounds of symmetries. As

r=gop(—OW-12~ 18W_g— 1W_ 4+ 20Wo + 45W, side remarks, note that we obtain the diffusion equation for
p=q, and thatf is smooth in the “infinite” drive limit (p
+30Wg+7Wy5), (21 =1,q=0), which is used in most Monte Carlo simulations
of driven diffusive systems.
15
g: ﬁ( _W_ 12+ 6W_8+ 9W_4_ 12\/\/0_ 15\N4+ 6W8

E. 2D driven lattice gas

+7Wyy), (22 Generalization of the previous result to the 2D interacting
driven lattice gas is immediate, despite the unpleasant fact
B that there are altogether 512 terms in the master equation. In
H=ar the presence of a drivié along the+y direction and attrac-
(23)  tive[J>0 in Eq.(1)] interaction between particles, the heat-
bath rates for hoppings of particles along and against the
As for the 2D Ising modell’, g, andu are positive definite  drive take the form
for all T>0, andr has one zero afS"~5.0733/kg, 12%
higher than the best estimat@l], compared toTM" 1

:6J/kB WI’LiEE 1+enBJIEBJ1 (26)

(1OW3+ 15W_ ;W,+ BW_gWg+W_1,W;5).

D. 1D driven lattice gas . .
where the dimensionleds(0<E<x) represents the “work

In many generic nonequilibrium systenps5], the free  gone” on the particle by the field. Obviously, the rates for
energy does not exist and one has to start from the dynamlc[s,oppmgs perpendicular t are W,, o= W, .
such as described by the master equation. A notable example Going through the same procédure as above, we eventu-
is the driven diffusive systerf22], which is regarded as a gly obtain a kinetic equation that is in complete agreement

paradigm of spatially extensive interacting systems that exyith the standard field theory of the driven diffusive system
hibit cooperative phenomena in steady-state nonequilibriumos;.

situations. In its standard form, it models an Ising-like lattice
gas of particles whose motion along a certain direction is

4 4 4
biased by an external drive denoted By For E=0, the @:_(a AP AL é
model reduces to the ordinary kinetic Ising model with Ka- ot X ox? X ox2ay? Y gyt
wasaki, or spin-exchange, dynamigsodelB in [3]).
- : 92 92 1/ & 92
A question subject to recent debate concerns the form of L sy _) b+ —(g —+g _) P
nonlinearities associated wifh[23,24). That is an important Xox2 Y gy? 6\ 7 ax? PV ay?
issue because the nonlinearities decide to which universality £ 90

class of critical behavior the system belongs. It is interesting +- (27)
to see what the present method says about that. First, we 2 9y

consider a one-dimensional, simplified version in which the

particles are not interacting except being hard core, but theifpg anisotropies are generated by the drive. Excluding the
hoppings to nearest neighbors are biased by having differefis term, this is the anisotropic generalization of the deter-

jump ratesp andg, to the right and left, respectively. Hence, ministic TDGL equation with conserved magnetization, i.e.,
the master equation reads modelB [3]:

P (Xt+1) =P .(Xt)=pP, _(x=1;t) +qP_ . (xt)

—pP, _(x;t)—qP__ (x—1;t), %:VZ —aV2¢>+r¢+%¢3 . (28

at
(24)
where as usual an uf@own) spin corresponds to the occu- All coefficients are determined as follows:

pation of a particle(hole), and joint probabilities such as
P, _(x—1;t) mean the probability of finding a particle-hole

pair at sitex—1 andx. After factorizations and applications ay==—(69—85W,— 68Ws— 17W,,), (29)
of Eq. (12) and(13), we readily find 384

i —D&2¢+ £ 997 25 1

ot Tox? 2 ox’ (25) =g 20~ 20W,— 16Wg — AW+ W1 e+ W1
where the diffusion coefficient i®=(p+q)/2, as expected, +4W_g _g+4W_ge+SW_, _g+5W_4g—5W, ¢
and the coefficient of driving i€=(p—q). The nonlinear ‘ ' ’ ’ ’
term is the same as in the “standard” field theoretic model —S5W,g—4Wg _g—4Wge— Wi _g—Wiop), (30
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FIG. 1. Quadratic coefficient in the transverse directigmplot-
ted vs temperature. Its zero locates the critical temperatﬁ're

1
ay = 7_68( 8W_ 12—E +8W_ 12E +31W_ 8—E +31W_ 8E
+35W_,_g+35W_ 4~ 10W,_ e~ 10Wo e — 50W, ¢
—50W,g—37Wg g~ 3MWge—9Wip g~ IWipg),

(31

r — 9+ 25W,+ 20Wg+ 5W,,), (32)

x:3_2(
ry= a( —2W_1p g=2W_1pg—=7TW_ g ¢—7W _g¢

- 5W,4’, E_ 5W*4,E+ 1()\NO’, E+ 1()\NO,E+ 2@/\/4’, E
+ ZWVALEJF 13\/\/8,* E+ 13\/\/8,E+ 3W12', E+ 3W12,E) ’
(33

5
gx=1—6(3+W4—4W8—3W12), (39

0.4 \ .................................................................................. ]
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1
gy = 3_2( 6W, 12-E + GW, 12E + 7W, 8,—E + 7W, 8E

—W_ 4-E W_ 4F + 6W0’_ E + 6WO,E + 4W4’_ E + 4W4,E
—13Wg g~ 13Wge—9Wy, g~ 9Wipg), (35

1
&= 1_6( —W_1p gtW_1g—3W_g g+3W_ge—3W_, ¢

+3Wge—Wip g+ Wise). (36)

They have the following important properties.

(i) All but £ are even irE, consistent with the invariance
of the dynamics undefE— —E,y— —y}.

(i) The quadratic coefficient, is independent . It has
one zero affS-=3.86143/kg, as shown in Fig. 1. In con-
trast, r, depends orE. Figure 2 displays the behavior of
ry(T,E) versusr(T) as T is lowered from abovel$" at
fixed E, as well ag (T=TS",E) versusE. It shows that for
any E>0, r, always vanishes beforg, does whenT is
decreased. For smai, ry~rx+cE2, wherec>0. Conse-
quently, at the critical temperature, the dominant derivatives
come from ther, and e, terms, leading to the identification
of an intrinsically anisotropic critical theory with scaling of
momentaky~k§. This agrees with a previous perturbative
argumen{25].

(iii) The coefficient of the leading nonlinearity induced
by the drive vanishes linearly ik at smallE, and saturates
to a constant aE=oc. This dependence, exhibited in Fig. 3,
is already anticipated above from the 1D model and argued
previously[24], but at odds with the claims if23].

(iv) The E=0 limit. SettingE=0, we readily recover the
isotropic modelB with a,=a,, ry=r,, andg,=g,, mak-
ing use of the identitylV_, ;=1—W, . We also finde,,

# ay, — the continuum model derived is not rotationally in-
variant. While this is not surprising since the symmetry is
absent in the original lattice model, it turns out that,

=a, at TS". At present, we are not sure whether this ac-

0.6

05

04 | 1

03 r ]

((T=T,, E)

02 ]

01 B (b) T
0

0 10 20 30 40 50
E

FIG. 2. (@) Trends ofr, vsr, asT is varied acros§fL at fixedE. From bottom to topE=0, 2, 4, 6, 10, 14, 20, and 5() Intercept

ry(ry=0) in (a) plotted vsE.
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from known microscopic dynamics for stochastic, interacting
EEE T e systems. The method has a mean-field flavor. It preserves the
e i underlying symmetries of the dynamics and is in line with

,,,,,,,,,,,,,,,,,,,,, | the spirit of coarse graining. The resulting equations are in
good agreement with other either more or less rigorous ap-
proaches, as demonstrated explicitly via several examples.
-1 Hence, despite the approximate and heuristic nature of our
approach, it proves to be a useful and convenient means to
1 obtain a correct continuum theory, especidllywhen other
more rigorous approaches do not apply or are too involved;
‘ ‘ ‘ (i) when symmetries of the system are not intuitively obvi-
20 30 40 50 ous; and(iii) when microscopic dependences of the con-
tinuum parameters are wanted.

FIG. 3. The coefficient of the leading nonlinearit, vs the
microscopic driveE, at different temperatures. From top to bottom: ACKNOWLEDGMENTS

kgT/J=1, 3, 3.86143 £TSh), 5, 10, 20, and 50. ) ,
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or the underlying lattice model or specific to the method. 5715 \_001-015, and a Main-Theme Grant of the Academia

Sinica.
F. Two-species driven lattice gas

. APPENDIX A: NOISE CORRELATION
In all the above examples, each site has only two local

stategspin up or dowin In the two-species driven lattice-gas  Since the present method only gives the deterministic part
model[26], motivated in part by multi-ionic conductors and of the kinetic equation, the noise term has to be considered
traffic flow problems, there are three possibilities: as a holeseparately. Here we follow the common practice of assuming
or either of two types of particles. The two types of particlesthat the noise’ is Gaussian distributed and correlated over

are driven in opposite directions as if they were oppositelynegligible ranges. Then the only question is to determine its
charged and driven by an electric field, with local particlecorrelationD in Eq. (9).

densities denoted hyy, andp_ . Due to the extra local state, There are two ways to do it. The first makes use of the
it is not easy to write down the correct set of equations bycorrespondence between the Langevin equation,

symmetry and intuition alone. One way to proc¢2f] is to

express the entropy in terms pf. andp_, and obtain the ip I oH Al
diffusion terms by functional differentiations. The driving s %4{’ (A1)
terms can then be added to the kinetic equations by general-

izing that for the one-species model. Another way is to use (Z(r L t))y=2Ds(r—r")s(t—t'), (A2)

the () expansion6,27]. The current method has also been

applied [28]. The equations derived are the same as imand the Fokker-Planck equation,
[26,27], with the advantage of tractable microscopic origins

in each coefficient. Hence, this model further testifies the JaP 4 6
usefulness of the present approach when symmetry and intu- ot f X5d
ition are not very helpful.

We end this section with a final remark. Since the methodvhich is a continuity equation. A stationary solution of the
begins with a factorization of joint probabilities, the ensuing Fokker-Planck equation is obtained by setting the probability
equation is deterministic. All information about correlations current to zero, i.e., -(-)=0, which givesPxe "D
seems to have been lost. The situation can be remedied, ho@ince the free energyh] in the presence of an external
ever, by introducing a noise term to restore a probabilisticfield h is of the form A h]=F[0]—h¢, it differs fromH by
description. Correlations can then be computed by averaging factor ofw. Hence, by matching™ “1"/keT ande /D,
over the noise by means of standard field-theoretic techwe deduce that
niques[29]. For equilibrium systems, the noise can be fixed
by requirements such as the fluctuation-dissipation theorem D=KkgTul. (A4)
(Appendix A). For nonequilibrium systems, there is no gen- o ) o o
eral rule. One usually has to resort to extrapolation fromln passing, it is worth noting that the kinetic coefficient de-
equilibrium or to theQ) expansior{6,27]. fined in

FéH D
- 5—¢7)— g,

(A3)

op  OF

IV. CONCLUSION =—\—
at 5¢

+¢ (Ab)

We have presented in detail a very simple and straightfor-
ward method to derive the deterministic kinetic equationss A=D/kgT, which is the Einstein relation.
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An alternative way to determindD is to use the consider the Gaussian model in the casgef0. Thus, by
fluctuation-dissipation theorem, which in  momentum- Fourier transforms, we obtaiy(k,»)=T u/[ —iw+T(k?

frequency space takes the form +r1)] andG(k,w)=2D/[ w?+T?(k?+r)?], which by virtue
kT of Eq. (A6) also gives Eq(A4).
B Imy(k, w)=G(k,w). (AB) Sj_nc&_a the .abgve_deductions require the knowledg_e pf the
w equilibrium distribution, they do not apply to nonequilibrium

situationg[15]. In those cases, there are no similar shortcuts.
Extrapolation from equilibrium analogy or application of the
() expansion 6,27] seems to be all one can do.

Although neither the susceptibility nor the two-point cor-
relation functionG can be calculated in closed form for gen-
eral’H, Eq.(A6) holds order by order so that we only need to

[1] P. Langevin, C. R. Hebd. Seances Acad. $46 530(1908. [17] Similar approaches exist in other contexts, such as in the sur-

[2] See, e.g., N.G. van Kampe8tochastic Processes in Physics face growth problem, where the equation of motion for the
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