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Abstraet. Low-temperature interfacial properties of several driven, non-equilibrium lattice gases
in steady states are studied with computer simulations. The drives are directed along the tangent
to the interface. By focusing on the small-momentum behaviour of the height-height correlation,
G(g), we determine that the longitudinal spatial isotropy symmetry is relevant to the long-
distance behaviour. For the case whete the sign of the drive is random in time, the analytically
predicted G(g) ~ ¢! is observed for the first time. For uniform drive, we determine numerically
Glg) ~ g~ with n & 1.33. This suggests that the effective stiffness of the interfaces is
enhanced on large scales, consistent with roughness being severely suppressed.

It has been recognized in recent years that when a system is maintained in a non-equilibrium
steady state by certain external fields, its behaviour can be drastically different from that in
equilibirum. If the constituents of the system are driven to move in a specific direction, the
system acquires spatial anisotropies. Notable examples are driven lattice gases [1], which
may model superionic conductors {2], and binary fluids under shear flow [3]. Novel features
such as generic singularities at all temperatures and anomalous dimensions at criticality
which are distinct from the equilibrium ones can all be attributed to the breakdown of the
fluctuation-dissipation theorem znd anisotropies at one level or ancther [4, 5].

In addition to the effects on the bulk, anisotropies also dictate the behaviour of the
interfaces at low temperature. For example, the rough interface of an Ising lattice gas in two
dimensions [6] was found to become smooth {7, 8] (i.e. finite statistical width or localized)
under a constant drive that forces particles in the bulk to move in a direction parallel to
the interface. When the drive is random in time but unidirectional [9], interfacial relaxation
and correlation can be calculated from the dynamics [10]. Strong anisotropy is found in the
height-height correlation G(g), which behaves according to 1/gy for small momenta along
the drive, and according to the unsual 1 /qi transverse to the drive. This analytical result
has three implications: (i) the interfacial roughness, obtained by f a G(g), is also suppressed
as in the case with constant drive; (ii) the correlation remains gapless, differing from the
massive modes of equilibrium interfaces smoothed by, for example, gravity in a binary
fluid [6];, and, most importantly, (iii) the mechanism of roughness suppression is achieved
by violating the fluctuation-dissipation theorem.

Ag a continuation of and extension to the above studies, we report in this brief letter
extensive Monte Carlo simulations for the interfaces of several non-equilibrinm lattice gases
with attractive nearest-neighbour interactions:
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(i} Randomly driven model (RDM) [9]. The drive E is a uniform, annealed variable
random in time with equal probability to be in the +y or —y direction. It is incorporated
into the jump rates by a factor e*£/%7 for jumps along or against the drive (see [9] for
details).

(ii) Two-temperature model (2T™M) [11]. In this model, configurations are ypdated in the
usual way but with different temperatures T and aT for jumps along x and y, respectively.
Being generally distinct from (i), it becomes identical in the limit &« — o0 to a randomly
driven model with E == 0o and anisotropic sampling rates between x and y directions.

(iii) Uniformly driven model (UbM) [1]. This is the model in which roughness
suppression was first observed [7,8]. We re-examine it in greater depth for comparison
purposes. The only difference from the first model is that the drive is constant here.

We will focus on probing the structure factor. Our motivations for this are three-fold:
first, we test the predicted form G{g) ~ 1/g which is anatytically obtained for the RDM [10].
Second, we determine the relevance of parity symmetry in the y direction, which is violated
in the third model but intact in the first two, Third, by analogy with equilibrium systems,
we Infer the effective stiffness of the interface from its correlation at small momenta.

The computer simulations used two-dimensional square lattices with a periodic boundary
condition along the horizontal edges, and fixed boundary conditions (particle density = 1
and 0) along the vertical edges [7,8]. This results in an interface that runs parallel to y
and wanders about its mean position: L,/2. To obtain a well-defined interface and to
allow for sufficient sampling of its fluctuations, simulations are done at certain well-chosen
temperatures below bulk criticality. In this letter, we will only report the data obtained for
7 = 0.9 in units of the Onsager critical temperature [12). Since the bulk correlations decay
algebraically rather than exponentially {13, 11], some care must be exercised in choosing
the transverse size, L,, to avoid boundary effects. We have ensured that L, is sufficiently
large in our studies. By a suitable coarse graining of the particle configurations, we are able
to probe the local structure of the interface, exemplified by the height-height correlation
function {#(x)A(x")) — (h)2. The structure factor G(g) is its direct Fourier transform.

We scan across & wide range of field strengths (2 € £ £ 50, 4/3 € o 10°) and find
no qualitative difference between strong and weak fields. Our main results are summarized
in figures 1-4. First, at large momenta (small length scales), the fluctuations ‘see’ no
drive, and we expect the inverse structure factor for each model! to behave as 42, just as in
equilibrium. This is clearly shown in figure 1, which also displays the crossover from g2
to g7 for g < g, with n ~ 1. As anticipated, the crossover wavenumber ¢, diminishes
with decreasing drive, and vanishes at zero drive.

For small g, the RDM indeed exhibits a linear region in 1/G(g) (see figure 2), consistent
with an analytical calculation based on the bulk dynamics of a continuum model [10].
However, the picture in the g — O limit is less clear. There appears to be two alternatives:
one a straight extrapolation to a gap, the other a crossover to a lower power in g. The data
very near g = 0 are too noisy for us to resolve the differences, although those for large drive
seem to favour the second scenario (see figure 3). Now, we argue that the second is the
more plausible alternative. We found that the interfacial relaxation rate is proportional to g2
[10]. Being diffusive and relaxing as g also, the bulk modes are equally “soft’, and may
not decouple fully from the interface modes. Contrast this situation with that in equilibrium
cases where the interface relaxes as ¢° [14]. These bulk modes could systematically modify
the infrared behaviour of the interfacial correlations through nonlinear couplings. Another
possible source of anomalous powers of ¢ is nonlinear andfor non-local interactions of
h(x) itself. Such effects are absent from our previous linear stability analysis, which was
essentially a Gaussian theory. On the other hand, a gap in the spectrum is reminiscent of
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Figure 1. Inverse structure factor 1/G{(g) plotted against wavenumber squared, g2, showing
the crossover from equilibrium-like behaviour to non-equilibrium one. The curves are, from top
to bottom, for E = 50(RDM), E = 50(UDM), & = 105(z7M), B = S{rDM), & = 4/3(z1™) and
E = 2(rDM). All E are in unit of nearest-neighbour coupling; and £ = 50 is practically infinite.
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Figure 2. Inverse structure factor 1/G{g) against wavenumber g, for randomly driven model
at E = 2. The linear behaviour is predicted by theory. Finite-size {L,) effects are negligible,
but the limit ¢ — 0 seems perplexing.

the effects of gravity on capillary waves [6]. But, unlike that case, the drive here does
not break translational invariance. Thus, we believe that 1/G(g ~» 0) — 0 is the more
piausible outcome. '

While the 2TM behaves very much like the RDM, the trend of the UDM is more conclusive:
1/G(g) crosses over from g% to g>~7, and is apparently gapless at ¢ == 0. Numerically we
find n &~ 1.33 for both strong and weak drive (see figure 4). The difference in the small-g
behaviour between the uniformly driven case and the others shows that breaking the parity
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Figure 3. Randomly driven model and two-iemperature model with different drive, From top:
E=50,a=10%@a=5 E=50=4/3and E =2 The trend suggests possible crossover
from 1/G(g) o< g to ¢P with p < | as ¢ gets very small. Ly{= 600 here} is still not large
enough to settle whether a gap is present.
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Figure 4. Uniformiy driven model with different drive and system sizes. The small-¢ behaviour

is simpler than the other two models, as the structure factor displays a weak singularity:
Glg) ~ 1/q” with p = 0.67.

in y is relevant to the long-distance properties of the interface.

The gapless mode implies an infinite correlation length, despite the interface being
smooth, In this respect, our situation is closer to an equilibrium interface in a quasiperiodic
potential, which is governed by an gffective Hamiitonian of the form [15]

Hin) = L f Fet(@)a (@) 2
7

with an effective stiffness
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Tee(g) = Kq™" for small g,

For certain quasiperiodic potentials in two bulk dimensions, 5 > 0 so that the stiffness grows
on large scales: E.p ~ L7 [15]. Thus, by analogy, we are led to an intuitively appealing
picture which suggests that a uniform drive suppresses the roughness of an interface by
enhancing its effective stiffness on large scales.

To conclude, we have computed numerically the structure factor for interfaces in several
non-equilibrium systems. The suppression of roughness is manifested as a modification of
the long-distance correlation and effective stiffness, which are different in the two cases
with and without parity symmetry. We end by identifying several open questions. First, it
is necessary to obtain more precise data for very small g in the case with random field and
two temperatures, in order to determine whether a mass gap is present. On the other hand,
an analysis of the nonlinear effects of the soft, bulk modes on the interfaces under a random
field is desirable, which will undoubtedly lead to a better understanding of not only the
mechanism of roughness suppression, but also the general interplay between interfaces and
the bulk with comparable relaxation rates. Finally, it will be a challenging task to determine
the index n analytically under uniform drive, e.g. by starting from the non-Hermitian operator
involved in the linearized bulk dynamics.
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