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Abstract

Self-organized criticality (SOC) in systems governed by stick-slip dynamics is studied by
means of a spring-block model. Contrary to conventional models which are loaded additively in
their stationary states, our model is driven towards equilibrium in a multiplicative and isotropic
manner via a temporally increasing coupling strength. A coarsening process builds up correlations
in the bulk and establishes power-law avalanche size distributions, independent of boundary
conditions and system parameters. The observed behavior is robust and suggests that some
experimental systems approaching equilibrium via a punctuated threshold dynamics may well
show SOC. c© 1998 Elsevier Science B.V. All rights reserved

1. Introduction

Stick-slip mechanism plays a dominant role in a wide variety of physical phenomena,
ranging from earthquakes [1], rupture [2], granular 
ows [3] to interface pinning [4,5].
In particular, it is often the means of introducing dissipation into many model systems
exhibiting self-organized criticality (SOC) [6].
SOC refers to the spontaneous organization in dissipative systems towards the kind

of dynamical critical state which is characterized by power laws. Of considerable recent
interests is a class of SOC models known as the spring-block models. Such models
are coarse-grained descriptions of systems whose elements are in frictional contact
with a substrate, where stick-slip action arises from external driving of the elements.
An interesting example is the one proposed by Olami, Feder and Christensen (OFC) [7],
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much studied because of its coexistence of SOC and non-conservation [7–11]. It is
now understood qualitatively that it belongs to a class of models exhibiting SOC by
means of de-synchronization which is initiated and invaded into the bulk from inho-
mogeneities such as open boundaries or quenched disorders [11]. The de-synchronized
state has long-range correlation and power-law distributed avalanche size, thus qualify-
ing an SOC state. In contrast, the pure model without inhomogeneity is known to settle
into a periodic state with only size-one avalanches [9–11]. Although temporally more
organized in the avalanches where each site takes turn to topple, it has short-range
spatial correlation in the sense that the topplings are localized. In particular, the model
with periodic boundary conditions (PBC) is not critical. PBC is also known to forbid
criticality from occurring in conservative systems such as sandpile models [6,12].
Here we introduce a new class of spring-block models which di�er from previous

stick-slip models in several aspects [13]:
1. It is driven multiplicatively and isotropically via a temporally increasing coupling
strength [14,15]. Previous models are driven additively, realized for example by
adding grains on a pile one at a time [6,12], or by pulling the blocks along a �xed
direction [16–19,7–11].

2. It achieves SOC by a novel mechanism without invoking any spatial inhomogeneity.
In particular, it is insensitive to boundary conditions, hence critical even under PBC.

3. It exhibits the dual property of approaching (without ever reaching) an equilibrium
state and being characterized by an e�ective steady state in the dynamical variables.
In contrast, previous SOC models settle into nonequilibrium steady states.

To our knowledge, our model is the �rst of its kind to show SOC in approach to an
equilibrium state, thereby suggesting a new class of experimental systems in search of
real SOC systems.

2. An isotropically driven model

Similar to the OFC model [7], we consider a two-dimensional array of blocks in-
terconnected among nearest neighbors by coil springs. The springs are characterized
by spring coe�cient K and relaxed spring length l. The blocks are in contact with
a rough surface, with a static threshold Fs for friction. The array is initially stretched
and maintained by friction at a lattice spacing a¿l, i.e., it is prepared with an internal
strain given by s=1 − l=a¿0. Initial spatial disorder is introduced by placing each
block at (ia+ x; ja+y) with random amplitudes |x|6A, |y|6A. Each block is labeled
by the pair of indices i; j=1; : : : ; L. Hereafter we set a=1.
To compare with previous models, the Hookean force–displacement relationships are

expanded to �rst order in (x; y) to obtain the force components acting on a block from
its nearest neighbors [20]:

Fxi; j = (xi+1; j + xi−1; j − 2xi; j)K + (xi; j+1 + xi; j−1 − 2xi; j)sK ;
Fyi; j = (yi+1; j + yi−1; j − 2yi; j)sK + (yi; j+1 + yi; j−1 − 2yi; j)K :

(1)
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Notice that the OFC model barring external pulling terms is recovered by setting
s=1 and Fy =0 [20], re
ecting the use of leaf springs in that model [7] (and to our
knowledge in all previous spring-block models, see e.g. [16–19] and references therein)
along the y-direction. On the other hand, setting s=0 yields a set of decoupled one-
dimensional (1D) chains, criticality then disappears. Thus, we see that a �nite internal
strain s is essential for 2D collective behavior (such as SOC) to occur.
We drive the system in the following way. Motivated by sti�ening caused by desic-

cation [21–23] (e.g., drying of clay or mud), we increase the spring constant K at an
in�nitesimal rate while keeping all the other parameters �xed [14,15]. In a real situa-
tion, one may have a more complicated combination of time dependent l, K and Fs.
However, our simple de�nition is more general than it appears, actually applying to
a wide class of situations in which K=Fs is an increasing function of time, since only
this ratio matters in topplings. Beginning with a stable con�guration, suppose the force
acting on the block at (i; j) from its neighbors is the maximum among all blocks. Then
nothing happens until K is increased to KFs=|Fi; j|, when the block slips the distance
(�x; �y) to a new position where Fi; j becomes zero:

Fxi; j → 0=Fxi; j − (2 + 2s)K�x ;
Fyi; j → 0=Fyi; j − (2 + 2s)K�y :

(2)

This changes the forces acting on its neighbors, e.g.,

Fxi±1; j → Fxi±1; j + K�x ;

F xi; j±1 → Fxi; j±1 + sK�x ;
(3)

leading to the updating rules for a slip entirely expressed in terms of the forces:

Fxi; j→ 0; Fyi; j→ 0 ;

F xi±1; j→Fxi±1; j + �F
x
i; j ; Fyi±1; j→Fyi±1; j + s�F

y
i; j ;

F xi; j±1→Fxi; j±1 + s�F
x
i; j ; Fyi; j±1→Fyi; j±1 + �F

y
i; j ;

(4)

where �=1=(2+2s). Notice that
∑

i; j Fi; j is unchanged by a slip, hence the conservative
nature of the dynamics. As in most other SOC models, an in�nite separation of time
scales is assumed so that K is increased further only after |F | ≡F¡Fs is restored on
all blocks. Thus, in terms of a slow time variable t chosen simply as t≡K , avalanches
occur instantaneously. The central question to ask is under what conditions the system
can be critical.

3. Simulation results

We have simulated the model for a wide range of values of s and A, and system
size L [13]. PBC is used except otherwise stated. As it turns out, boundary conditions
are not essential (see Section 4).
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Fig. 1. Spatial averaged force on a block normalized by the threshold vs. time t≡K , showing approaches
to stationarity for di�erent values of internal strain s.

Fig. 1 presents the �rst evidence that our system reaches an e�ective stationary state
in which the force variable �F(t)=Fs 
uctuates about a �nite constant (the overbar de-
notes a spatial average). Such stationary 
uctuations are characteristics of a dynamical
steady state in SOC models. Since the ratio measures the e�ective “distance” of the
system from its instability limit, this result implies a marginally stable state in the long
time limit, maintained by the threshold condition, preventing the system from ever
reaching its equilibrium state where all blocks sit on a perfect regular lattice.
This stationary characteristic is also exhibited in the spatial ordering, measured by

the stress �eld �(r; t) that is approximated by the local average of the spring tension.
In [15], a characteristic length R(t) was introduced, using the second moment of the
radially averaged structure factor S(k; t) of �:

R(t)≡ 2�
[∑

k

k2S(k; t)
/∑

k

S(k; t)

]−1=2
: (5)

R measures the correlation of the stress �eld. Fig. 2 shows how R(t) changes in time
for some typical set of parameters. The power-law growth reminds us of a coarsening
phenomenon for a concentration �eld in spinodal decomposition [24]. This analogy
is con�rmed by directly inspecting the time evolution of �(r; t), such as in Fig. 3.
Furthermore, the exponent 1=3 holds for all s¿0 and A, in agreement with the notion
of universality and the accepted exponent for conservative dynamics [24].
Notice in Figs. 2 and 3 that R decays to a stationary value R0 after reaching a

peak value equal to the system size L. The reason for the decay can be understood
as a result of the system remaining in a stressed state at long times, due to the peri-
odic boundary constraints. We remark above, after Eq. (1), on the e�ect of s on the
transverse couplings of the blocks. Such an e�ect cumulates over a large number of
slip events and results in correlation over a distance that is longer for larger s. The
value of the stationary correlation also re
ects the level of frustration of the system
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Fig. 2. Characteristic length R(t) of the stress �eld vs. time for di�erent sets of s and A, showing the
universal 1=3 power law and plateau. L=40 with PBC.

in lowering its elastic energy: due to PBC, it is unable to shrink its size from L to
(1− s)L to achieve a stress-free state. There is more frustration for larger stress s.
An important probe of critical properties is the �nite-size e�ects. Fig. 4 shows

that R(t; L) not only scales with L on the plateau (despite R¡L for s¡1), but also
satis�es a �nite-size scaling form with the asymptotic behavior typical at a critical
point:

R(t; L)= t�R̃
( t
L1=�

)
; (6)

where �=0:33± 0:01 is the growth exponent.
Turning our attention to the distributions of event sizes, Fig. 5 shows the change

of the distribution of the slip number S as K increases. The phase in which R∼ t1=3
corresponds to a gradual departure from an exponential P(S), while the phase with
stationary R0 corresponds to a power-law distribution

P(S)∼ S−(B+1); B=0:15± 0:05 : (7)

From (6) and Fig. 4b, the convergence time is given by � ≈ L1=�.
Now from Eq. (2) we have the force drop in one slip given by

F slip =
Ku
�
; (8)

where u≡
√
(�x)2 + (�y)2 is the slip distance. Since F slip&Fs, this implies the slip

distance drops like 1=K as the positions of the blocks converge to a regular lattice.
This raises questions about the observability of P(S) as a result of this approach to
equilibrium. While usually only the statistics of S is extracted from avalanches in other
SOC models, it is important in our case to look for other stationary distributions of
observables.



90 K.-t. Leung et al. / Physica A 254 (1998) 85–96

Fig. 3. Evolution of the stress �eld �(r; t) for L=40, s=0:5, A=0:18 with PBC, cf. R(t; L=40) in Fig. 4a.
The same time intervals are used in Fig. 5.
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Fig. 4. (a) Finite-size e�ect shows that for the plateau R0(L1)=R0(L2)≈ L1=L2, which implies R0(L)∝ L.
s=0:5, A=0:18 with PBC. (b) Finite-size scaling plot of the same data.

Fortunately, there exist other more accessible, physically more meaningful measure-
ments of avalanche size. Analogous to seismology [1], we de�ne the “seismic moment”
M as the slip distance summed over the “fault area” S:

M =K
S∑
l=1

ul= �
S∑
l=1

F slipl &�FsS ; (9)

where the inequality follows from F slip&Fs. Furthermore, the “radiated seismic energy”
E is given by the energy dissipated by friction over the fault area:

E=
1
2

S∑
l=1

F slipl ul=
�
2K

S∑
l=1

(F slipl )2 &
FsM
2K

; (10)

where we have used Eqs. (8) and (9). These two quantities can be precisely retrieved
from seismic monitoring. It is clear from Eqs. (9) and (10) that both the distribution
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Fig. 5. (a) P(S) obtained from successive intervals in t corresponding to the snapshots in Fig. 3, to show
the approach to power law as R(t)→R0. (b) The distinct segments in this plot of �F(t)=Fs vs. t correspond
to the successive curves in (a).

of M and the scaled energy EK are stationary and follow the same power law as
for S. Of course, the approach to an equilibrium state means that the dissipated energy
gradually diminishes, and unlike a generic stationary state, not every distributions are
stationary. But the punctuated manner of approach nevertheless leads to a marginally
stable state characterized by stationary distributions of the above physical quantities.
One important feature that distinguishes our model from others is that the conserved

quantities (Fx and Fy) are signed. Multiplicative loading does not increase them mono-
tonically. In fact, due to Newton’s third law, they sum over all sites to zero at all
times. This is not the case for sandpiles [6] and other stick-slip models [16–19,7–11]
where their dynamical variables are non-negative and increased additively by loading.
This explains why those models are ill-de�ned when they are both conservative and
periodic. Another way to rationalize our results is to notice that the mechanisms at
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work to produce power laws in the presence of multiplicative noises (ampli�cation by
multiplication followed by reinjection) [25] might also be relevant here.

4. Robustness tests

To gain more insight into the mechanism leading to SOC, we examine the robustness
of the model against the following variations.

4.1. Scalar forcing

First we note that to our knowledge all previous stick-slip models have scalar forcing,
i.e., the blocks moves only in one direction. In [20], a generalization to vectorial forcing
was examined and found to be irrelevant in most cases. Similarly, the scalar version
(e.g., Fy ≡ 0) of the present model is also found to exhibit the same properties as the
vectorial version, thus belonging to the same universality class.

4.2. Boundary conditions

It is well known that boundary conditions are crucial to the properties of nonequilib-
rium states. For the OFC model with PBC, it 
ows into a periodic state characterized
by avalanches of size one, where the sites topple in an order speci�ed by the initial
condition [9–11]. With free boundary conditions (FBC) instead, SOC state prevails
with a power-law distribution of avalanche size. It has been suggested [11] that the
existence of inhomogeneities at free edges, having � in Eq. (4) di�erent than the bulk,
serves as some kind of relevant perturbation which changes the nature of the �xed
points of the dynamics from periodic to SOC. In stark contrast, we �nd for our model
no quantitative di�erence of physical or statistical signi�cance between PBC, FBC
and a cylindrical boundary conditions (CBC, being half periodic and half free). In
particular, their avalanche size distributions have the same exponent within numerical
uncertainty (see Fig. 6). Although R(t) grows linearly for FBC and CBC, it is not due
to an invasion of SOC region, but rather due to the stress relief at free edges. SOC
region remains to coarsen in the interior of the system with the same exponent, as
studies of subsystems show [26].

4.3. Conservation

Next we explore the dependence on conservation laws. We introduce non-
conservation by adding a term −(x; y)�K to (Fx; Fy) in Eq. (1), which may be thought
of representing harmonic couplings of each block with another surface, such as a driv-
ing plate in earthquake models [16,17,7]. � speci�es the level of non-conservation,
while � in Eq. (4) is now generalized to 1=(2 + 2s+ �) [7,20]. For �¿0, our results
show that the avalanche size distribution is exponential and the correlation length is
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Fig. 6. Slip number distributions for di�erent boundary conditions show the same exponent. From top to
bottom: a slope of −1:15 for comparison, FBC, CBC and PBC. The curves for FBC and CBC have been
shifted vertically for clarity.

�nite. There are evidences [26] revealing a transition from a subcritical state (with
truncated power-law distributions) to a strictly periodic state under PBC, whereas
it is always subcritical under FBC. We conjecture that the system become critical
only in the conservative limit �→ 0, but the nature of this transition remains to be
determined.

4.4. Quenched randomness

Further tests have been done [26], against the addition of randomly positioned, weak-
ened springs of a �xed strength 06Kw¡K and spatial density 0¡�¡1. Remarkably,
for any value of Kw and �, we �nd no deviation from the pure case in P(S) apart from
a smaller cuto�. Again this independence di�ers sharply from the e�ects of quenched
randomness in other models [8,27].

5. Conclusion

To summarize, we have studied a new class of SOC models which is extremely
robust (universal) with respect to the initial disorder, quenched disorder, initial strain,
size of the system and the type of boundary conditions. It has been suggested that
SOC in sandpiles and stick-slip models arises from an invasion mechanism initiated by
inhomogeneities from free boundaries [11]. Our system reveals an alternative, without
relying on such inhomogeneities, to attain criticality even with periodic boundaries.
The mechanism involves building up correlation or SOC region in the bulk via a
coarsening process.
The resulting characteristic dependence on system size in the convergence time

�≈L1=� (cf. Fig. 4b) contrasts dramatically with both the boundary invasion in the
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OFC model and the usual exponential approach to equilibrium in thermodynamic sys-
tems away from critical points. This highlights the dual nature of our system as being
critical and meanwhile approaching an equilibrium in the sweeping of the spring coe�-
cient K . This teaches us that experimental systems appearing transiently driven might in
fact be stationary in the variable relevant to the dynamics, especially when converging
to a fundamental equilibrium state. Search schemes and optimization techniques using
the sweeping of a control parameter such as in simulated annealing to get access to
the fundamental state or to the optimal solution might exhibit this kind of phenomenon
in which the relaxation is characterized by a wide distribution of jumps.
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