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Abstract. 'We consider power spectra for fluctaating quantities at a critical point, P{w) x.&™?,
where ¢ is determined by the dynamic exponent z and static exponents specific to the quantity
considered. From the magnetization spectra oblained with simulations, z is found to be
2.13 £ 0.03 for the two-dimensional Glauber kinetic Ising model, hence in accord with recent

- Monte Carlo relexational studies, but at odds with those obtained by series expansion and
damage spreading methods. Excellent dynamic finite-size scaling for system sizes L = 10 to
128 supports our estimate. ‘

At the critical point of a second-order phase transition, the correlation length £ generally
diverges with the system size, L. In parallel to this static behaviour is the increase of
the correlation time ¢ ~ £°, where z is the dynamic exponent. This is the well known
phenomena called critical slowing down [1). While the divergence of £ arises from
singularities of the free energy, v and z can only be determined from the dynamics [1],
such as that described by a Langevin or a master equation. That the dynamics are much
harder to solve explains why z is not exactly known except for certain one-dimensional
(1D) models [2-5). Computer simulation is therefore very valugble in providing a non-
perturbative way of computing z.

In this paper, we will focus on the 20 Ising model. Desplte considerable amount of
works over the past two decades (see, e.g., [6, 7,24, 26] and references therein), there is
no universal agreement on its precise value. We are not going to give a comprehensive
review on its present status, but merely to recall that its estimate varies widely: for instance,
from 2.076 £ 0.005 to 2.34 £ 0.03, deduced respectively from magnetization relaxation via
Monte Carlo simulation [8] and series expansion [7]. These values bracket the commonly
accepted estimate at about 2.16, obtained mainly by relaxational methods [6, 9, 10]. Recent
studies using methods of damage spreading also add to the controversy [11, 12]; they tend
to favour a large z = 2.3, Since different approaches continue to disagree with each other
and some even produce mutually exclusive results, as is further evident from several latest
works [21-26], it is desirable to have as many independent checks as possible.

Here we introduce a method which uses the power spectra to determine z from simulation
data. The basic idea is simple: at a critical point, temporal scale invariance implies algebraic
decay of correlations which is reflected as power laws in the power spectra of fluctuating
quantities. This approach has been used [13] to re-derive z =4 — 5 for the spin-exchange
Ising model [14] (model B in the terminology of Hobhenberg and Halperin {11), where we
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analysed the fluctuating average current. For the spin-flip kinetic Ising model [15] (i.e.
model A [1]), we consider the following spectrum:
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where m is the average magnetization. In terms of the Fourler transforms, we have

P(w) =V 'Gk =0, w) v

1
m m

where V = L is the volume of the system, and & is the correlation function in momentum—
frequency space

ik, )ik, @)) = VinG Wk, @) —du,-w - 3)

Since Gk, w) = k=21 2g(k?w) is established non-pe_rturbatively by dynamic
renormalization group methods [16, 11, we obtain by requiring ¢ to be finite as £ — 0 for
finite w

P(w) ~ Vo™ @

where ¢ = 1 + (2 — n)/z. In passing, note that this procedure fails for model B in the
presence of a discontinuity at & = 0, due to the conservation of m. Thus the simplest
spectrum to consider is the current instead [13)].

For finite L and finite #,(=length of time series), we generalize (4) by making a finite-
size scaling ansatz [17]

Plw, L, tn) = L0 G0l tnL ™). (3)
Ignoring the argument tr,/L? for the moment, the scaling function satisfies asymptotically

{ constant wlz>» 1
G~ {6)
(L) ol €1

because for ‘observation time’ w~! <« 17 o L?, P knows no L (except the trivial overall
L~%), and in the opposite limit P must be finite: P(w — 0, L) ~ L?~"**~4_ The latter is
realized if the time series are long enough such that the minimum frequency 2w/t <« L%
Equation (5) can also be rewritten in the equivalent form

Plw, L, ty) = L4 Gwl? 1 L7%). ' )

Now we discuss the effect of #;,/L? in G or G above, which is introduced on dimensional
ground. In principle, unless this argument is kept constant, data for different L will not
collapse in a plot of L™2t7"2H P versus wL?, so there will be no such simple visualization
of dynamic finite-size scaling. In practice, since we expect G to be analytic in the limit
G{wL*, tn/L? — co), the effect of #,/L7 is negligible for sufficiently long time series.
This is possible for small L, but not so for larger L, as the length 1, is increasingly limited
by computing power.

‘We have done Monte Carlo simulations for the 2D Ising model at the critical point, on
a periodic square lattice, using single spin-flip algorithm [15]. Figure 1 shows the power
spectra for the magnetization, where #, = 32768 for L < 64, 4096 for L = 80 and
2048 for L = 128. The data represent averages over 1000 runs to ensure good statistics.
From the slopes of these curves, we immediately get z (see figure 2). The best estimate is
z=72.13+0.03 from L = 128. Including errors, this is somewhat smaller but agrees with
estimates by relaxational methods [9, 6, 10, 21, 26].
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Figure 1. Log—log plot of power spectra for magnetization of 2p Ising model with single-spin-

flip algorithm. f = w/27, system size L = 10, 20, 40, 64, 80 and 128 from top down. The
bottom.straight line is for reference. Its slope comesponds to z = 2.13.
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Figure 2, Estimates of dynamic exponeat z from the slope of power spectra in figure 1, using
equation {4). :

Regarding finite-size scaling, the problem with finite £, /L* mentioned above is apparent
in figure 3, which shows the systematic effect of varying #y, with fixed L. By adjusting the
relative vertical position of these curves, we find complete overlap. Therefore, aside from
vertical shifts, the curves with longer 7y, appear 1o be extensions of those with shorter 1, 10
smaller frequencies. Since we are not aware of any theoretical prediction for the dependence
of P on 4,/L?, the above statement will be taken as an empirical observation. For practical
reason, our main data in figure 1 actually have shorter ¢, for larger L. To circumvent the
resulted deviations from simple scaling, a separate reference set of data consisting of shorter
tm were taken with fixed £, /L. Then the log P curve for each L in figure 1 was shifted to
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Figure 3. Finite tn/L7 causes small, systematic shift in P. Data are from multispin coding
algorithm, L = 128, and from top to bottom: fn, = 64, 128, 236, 512, 1024 and 2048.

match with that reference set of data. This corrective procedure effectively suppresses the

dependence of G on #,/L? in (7), and leads to excellent dynamic scaling, as exhibited in
figure 4.
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Figure 4. Dynamic finite-size scaling for the data that use single-spin-flip algorithm (from
fipure 1). The Yine of reference has a slope comresponding to z = 2.13 which gives the best
overlap.
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Figure 5. Dynamic finite-size scaling for L = 16 to 128, wsing multispin coding algorithm.
z = 2.13 is used. Up to a shift (equation (8)), the scaling function appeats :ndISUnqulshable
from that in figure 4, indicating the same universality <lass.

Several comments are in order: first, we emphasize that the deviations prior io
corrections are very small, and will not be resolved given poorer statistics. Even for
small tn/L* where we expect problem, the slope appears to be unaffected (see figure 3)
so that z can still be extracted. In any case, such a procedure of shifts is unnecessary if
one only chooses i, o L? {(with reasonable trial z). Second, as shown in figure 4, the
scaling function G has an inflection point between the two asymptotic limits. This results
in finite-size effects well before the plateay is reached. It is the origin of the large errors
for small L in figure 2. Third, there are expected systematic deviations from scaling for
data at high frequencies which are not shown in the figures for clarity. Such high-f tails
tell us precisely where the temporal scaling regime as described by (5) begins.

We have also obtained a separate set of data using the multispin coding technique
[19, 20], where an entire sublattice is updated at once. As antlcxpated the system evolves
faster

(mu[ﬁspin} ( l—spin}
2 /e

where numerically we ﬁnd ¢ = 3.84. The resuited spectra 1s related to those of single-spin-
-flip algorithm via a simple rescaling (cf [18])

Pimumspm)(m’ L.tm) =c IPil Spm'l(w/c, L, Ctm) l ‘ - (8)

where the prefactor (c~!) ensures the same statics for both algorithms. Other than an overall
change in time scale, the two belong to the same dynamic umversahty class and give the
same estimates of z (see figure 5). A
Our approach has certain advantages: it is clean and precise, giving an estimate of z from
runs for one large system size, with no need of extracting z;, explicitly and studying its finite-
size effects. Furthermore, the derivation works for quantities in addition to magnetization.
For example, one can show that the spectrum for the mean energy also obeys (5) but with
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¢ = 1 +a/vz. Of course, the 2D Ising model is a special case here because the fluctuation
of energy is logarithmic, and it is not clear how logarithmics should be incorporated into
the finite-size scaling ansatz. Nevertheless, we get fine data collapse analogous to figure 4,
with & = Q. This altemative will be useful for models where «/v, instead of n =2 —y/v,
is available. Finally, since our method relies only on the validity of the scaling form for
correlation functions (below equation (3)), applications to higher dimensions and to other
models are immediate, investigations already being under way. -

In conclusion, in parallel to the treatment for conserved order parameter [13], we have
shown how the exponent z can also be determined precisely by power spectra for the case of
non-conserved order parameter. Using the 2D Glauber Ising model as an example, we find
z = 2.130.03, somewhat smaller but in agreement with those obtained by the relaxational
methods [6, 9, 10, 21, 26]. Thus an intermediate value among current estimates is favoured.
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Note added. After the completion of this work, we received a preprint by Lauritsen and Fogedby [27], who have
used the same method to compute z for the 20 and 3D Ising models. Although their statistics are insufficient to
show the correction of sealing from the presence of tm /L7, their estimate for the 20 Ising model is consistent with
ours, They have also analysed power spectra for certain models of interface growth and sandpiles, and obtained
some useful scaling refations.
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