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Self-Organized Criticality in Stick-Slip Models with Periodic Boundaries
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A spring-block model governed by threshold dynamics and driven by temporally increasing spring
constants is investigated. Because of its novel multiplicative driving, criticality occurs even with
periodic boundary conditions via a mechanism distinct from that of previous models. This mechanism is
dictated by a coarsening process. The results show a high degree of universality. The observed behavior
should be relevant to a class of systems approaching equilibrium via a punctuated threshold dynamics.
[S0031-9007(98)05441-6]
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Out-of-equilibrium driven systems with threshold dy- knowledge, our model is the first of its kind to show SOC
namics exhibit a rich phenomenology, from synchronizedn approach to an equilibrium state, and as such suggests
behavior [1,2] to self-organized criticality (SOC) [3—5]. a new class of experimental systems which could exhibit
SOC refers to the spontaneous organization towards &OC states.
kind of dynamical critical steady state. Threshold out-of- Model—We consider a two-dimensional spring-block
equilibrium dynamics encompasses many systems, such amdel consisting of an array of blocks interconnected
neural networks, solid friction, rupture with healing, earth-among nearest neighbors by coil springs. The springs have
quakes, and avalanches. It is now understood qualitativelihe same spring constait and relaxed spring length
that there is a class of models exhibiting SOC as a resulhitially, the array is stretched to a lattice spacing> [
of their tendency to synchronize [6]. This tendency is,and placed on a frictional substrate which is characterized
however, frustrated by constraints such as open boundahy a static threshold; for slipping. Disorder is introduced
conditions [5,6] and quenched disorder [7] which lead to an the form of random displacements, y) of the blocks
dynamical regime at the edge of synchronization, the SO@bout the coordinate§a, ja) on a square lattice, where
state. Another class, so-called extremal models, is under-A < x,y =< A, andi,j = 1,...,L. The force between
stood to exhibit SOC due to the competition between locatwo neighboring blocks af and 7’ is given by Hooke’s
strengthening and weakening due to interactions [8]. Idaw (|7 — 7/| — [)K. Since we are interested in dynam-

a third class of models, SOC results from the tuning ofics primarily governed by tensile stresses, this nonlinear
the order parameter of a system exhibiting a genuine critidlependence on the coordinates leads to unnecessary com-
cal point to a vanishingly small, but positive value, thusplications in the algorithm. To simplify and compare with
ensuring that the corresponding control parameter lies exsimilar models, we expand the expression to first order in
actly at its critical value for the underlying depinning tran- (x, y) to obtain the force components on a block in the bulk
sition [9]. The issue is furthermore complicated by theat (i, j) [16],

fact that a notable fraction of numerical and experimental

works [10—12] claiming the observation of SOC from the Fij = (xiv1j + xi-1; — 2x)K
measurements of power-law distributions rely on the slow + (xpjo1 + xijo1 — 2x)sK
sweeping of a control parameter towards a critical point . ()
[13,14]. Fij = (yiv1j + yi-1; = 2yij)sK

The purpose of this Letter is to present a variation of + (yij+1 + yij-1 — 2yi DK,

spring-block models using a novel form of driving. The

surprising result is that, when the dynamics is coupled tavheres =1 — [/a > 0 is the initial strain. It is im-
conservation laws and fgeeriodic boundary conditions portant to stress that the terms proportionalsttead to
(PBC), the system self-organizes into a critical state witranisotropic couplings to nearest neighbors in the transverse
stationary distributions, despite approaching equilibriumdirection. The coupling and the SOC state disappear for
None of the four above mechanisms seems at work here,= 0 or in 1D chains.

especially in dramatic contrast to other stick-slip models Since the forces are linear in displacements, it is possible
[4,5,15] which require either open boundaries and/or disto invert (1) and formulate the model solely in force
sipation to desynchronize and hence achieve SOC. To owariables, as in [4]. Starting with a stable configuration
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with net forceF = VF* + F»* < F, for all the blocks, investigate the effects of spatial inhomogeneities, we also
we drive the system by gradually increasikig[17] until  use free boundary conditions (FBC) with no block beyond
one of the blocks becomes unstable, iis increased to the edges, and cylindrical boundary conditions (CBC)
KF,/Fm.x during loading, wheré',,,x denotes the spatial with one pair of parallel edges periodic and the other pair
maximum of F in the stable configuration. As in [4], the free. All of these boundary conditions respect the local
block is assumed to slip to its equilibrium position definedconservations.

by F = 0, ignoring the overshot, We study the evolution of the system by monitoring the

‘ stress fieldo (7, r), approximated by the averaged tension

Fi; —0, F,{j —0; Fiy;— Fioy; +afF;;, of the four springs attached to a block. Using its Fourier
Fiyﬂ,j _ Fiyﬂ,j ¥ sa Flv, @) transformg, we compute the structure factéik, ) =

y (&, )%/ L? — L23,;’0<fr(l§,t)>2 and the circular aver-
he ageS.i;(k,t) = Z,;eﬂ,;':k}S(k, 1), where the overline and
he angular brackets mean a spatial and an ensemble

X X X Y y
ij*l b Fi,jtl + saFi’j . Fi,jtl i Fi,jtl + aF

. . t
wherea = 1/(2 + 2s). This locally conserves the signed . > 5
force components. The resulting modification of the stres verage, I’eSE%CtIde. Thek(r) = 277[2’% k. Seir(k, 1)/

environment may trigger further slips in neighboring: i Seir (k, 1)] measures the characteristic length scale

blocks, and hence an avalanche, uftik F, is restored n _trhhe StI’E?S field. | der the infl f i
for all blocks. ThenK is increased again and the slip € System evolves under the intiuence ot conservation

process continues laws from large disorders to small disorders when the

If Fy was zero, the only stable (minimal energy) configu-bk?ckS converge onto a pgrfect lattice. Thisis gnalogous to
ration would be that the blocks were exactly at the node§pInOdaI decomposition (in model C to be precise) [20] and

of a perfect square lattice of mesh size The nonvan- suggests a coarsening in the stress field. We indeed find

o g - - ~ %, where¢ = 0.33 = 0.01
ishing friction thus creates a large ensemble of coexisting' POWe' law growthR (1) ~ 1 » W L .
g g >flcf. [19]) for all s and A, as illustrated in Fig. 1. This

metastable states which is responsible for the nontrivial dy*~: | . .
namics. ForF, # 0 ands # 0, the toppling rules (2) do universal behavior and the value ¢fagree with spinodal
0 ’ decomposition.

not put the blocks in their minimum energy configuration N tth id howing th tem in th
due to the couplings to their four neighbors. This ensuref ow we present Iné evidence showing the System in the
ong-time limit is stationary and critical in the variables

that a block will go on becoming unstaldel infinitumas ) . . .
g g relevant to the dynamics. Figure 1 illustrates tRét) is

long askK is increased indefinitely. . ) ; .
g y stationary as it reaches a plateau after transient. While the

Themultiplicativeloading is motivated by the stiffening dsaturation rate depends sandA, the value of the plateau
of an overlayer caused by desiccation [18], originally use R, depends only om due tosL being the length the sys-

tostudy cracks [19]. ltdiffers from the ustadditiveload- tem has to contract to reach a stress-free state. But this
ing in sandpiles [3] and stick-slip models [4-6,15], Wherecannot be achieved due to PBC, so that the blocks wind

physically the driving force arises from dropping grains =" o

onto a pile or pulling a frictional surface. Those systemstfp n a frustrat_ed state correl_ated over Fh's dlst_ance. For
are known to exhibit SOC in nonequilibrium steady states!rlxef[:l L, we lverlf)t/ thftl(e)‘)(s’f) |_r|1_cr:]rea|sets Ilneartly 'g’ ex ¢
In contrast, our system approachesegpilibriuminstead cept very close ta = 9 or 1. € plaleau extends up 1o
of a genuine steady state. We stress that the dynamié@n deca}des '?-ISUT‘“' reac_hmg the limit Of. n_umerlcal ac-
does not conserve the net forge asF — FF,/Fua, > curacy (i.e,107in F, using dogble precision). Further
F during loadings, and it is decreased during sIippingse.\”df“r!ce corr:es frorﬁ(t_)/FS Wh'ch measures the effec-
as can be proved in the scalar linfit, = 0. What dis- tive “distance” from the instability limit of the system. lIts

tinguishes ours from others is therefore the coupling optationary fluctuations about a finite constant (Fig. 2) is an

the dynamics to local conservations of the force compo-
nents. Such a coupling turns out to be crucial to the critical

T T T

properties. [ s A symbal
Without loss of generality, we hereafter set= 1 = 08 018 -
F,. Of the remaining dimensionless paramefgrsi, K}, 01018 —
s determines the equilibrium length scale and the dynamics g 0.5 002 A
. L . . 0.5 0.40 ——
through (2),A characterizes the initial disorders but is 10 |-slope=1/3 —
irrelevant for the equilibrium state, and defines the ]
“time” ¢t = K. ¢ X KOO0

| I 1 L !

Results—We have simulated the model for= s < '
1, A = 0.02,0.18,0.4, and system size30 = L = 300. SOt b 10 1 Ter0s evld derld deviz

We are mqinly interfested i_n the possibility Of_ SOC with FIG. 1. Characteristic lengtR(z) vs timer = K for different
PBC as this most differentiates us from previous workssets of s and A, showing the universal /B power law and

Unless stated otherwise, PBC is assumed hereafter. Tmateau. L = 40 with PBC.
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scaled energ¥ K are stationary and follow the same power
law. From these results, we conclude that our system
approaches in a punctuated manner without ever reaching
its final equilibrium, and is driven into a marginally stable
critical state.

We also examine the effects of boundary conditions.
The same exponenB within numerical uncertainty is
found for PBC, FBC, and CBC. This is remarkable in view
of their approach to different equilibrium states, and the
usual sensitive dependence of SOC systems on boundary
FIG. 2. Spatial averaged force on a block normalized by theconditions.
threshold vs time, showing approaches to stationarity. The above results suggest a mechanism distinct from

all previous SOC models [3—7] constructed with thresh-
important characteristic of a dynamical steady state in SOGId dynamics. Those models do not exhibit SOC with
models [3-7]. PBC because open boundaries are required either (i) to bal-

Next, we show that the system is critical. First, for fixed ance the influx of the conserved quantity (the total number
s, we findRy(s, L) = L, implying long-range correlations of grains or total force on the blocks), or (ii) to provide
in the stress field. More importantlg satisfies finite- a means of desynchronization. While it is clear, due to
size scalingR(t, L) = t*R(t/L'/?) (see Fig. 3), with the separation of toppling and conservation, that our model is
asymptotic behavioR(x — 0) = const andk(x — =) «  different from those associated with (i) [3], the major ques-
x~®. This is a clear signature of criticality. tion remains whether the coarsening is a manifestation of

Second, the avalanches are characterized by power-laav different mechanism compared to invasion from inho-
distributions, another hallmark of criticality. From (1), the mogeneities in case (i) [4,5]. To settle this, we introduce
force drop in one block slip is given bysliP = Ku/a  dissipation by adding-(x, y)xK to (Fy, Fy) in (1), which
[4,16], whereu denotes the slip distance. Sing&'? =  represent harmonic couplings to a rigid surface in earth-
F, u diminishes ad /K when the blocks gradually con- quake models [4,5,15]. Since naw= 1/(2 + 2s + k)
verge to aregular lattice. An avalanche consists of a corrg4,16] by (2), the dissipation iff, andF, arex a k. Ifthe
lated sequence of block slips. Analogous to seismology mechanism is the same as in [4,5], we would expect SOC
[21], the “seismic momentM and the “radiated seismic to survive. Conversely, it is different. A decisive test is
energy”E can then be computed, to consider the casg, = 0, s = 1, k > 0 with FBC, in
which the difference between our model and [4,5] reduces

1 100

10000 1le+06 1le4+08 1le+10 le+12 let+l4
t

s s
M=K Z U = a Z FZShP = aF,S, (3) tojustthe way of driving. Figure 5 clearly displays the
= = ‘ absence of criticality, strongly supporting a new mecha-
nism is at work. Generally, the correlation lendth and
1S polin @ < slip F.M the cutoff in P(S) are found to diverge as — 0, which
=5 Z = 5K Z(Fl = Sx - @ happens to be the generic, physical limit in the context of

desiccation processes [18].
These can be measured experimentally, as is precisely In conclusion, we have studied a system which shows
done for earthquakes. In our contektgquals the energy SOC without relying on desychronization initiated by in-
dissipated by friction. We find that the distribution of homogeneities [5,6]. It reveals a coarsening mechanism
S approaches a power law(S) ~ S~*D with B =  whereby correlations (or “self-organized” regions) gradu-
0.15 = 0.05 (see Fig. 4), whemR(t,L) — Ro(L) for t =  ally build upin the bulk While the associated power-law
LY¢. Consequently, both distributions dff and the exponents are extremely robust (universal) with respect to
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FIG. 3. Finite-size scaling plot of the characteristic length inFIG. 4. P(S) obtained from successive intervalssro show

the stress fieldR(z, L).
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s = 0.5, A = 0.18 with PBC.

the approach to power law &t) — Ry.
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