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I. INTRODUCTION

Understanding the origin of the strength of materi-
als and how they break is not only important to engi-
neers, but also interesting and challenging for physi-
cists. Due to the non-equilibrium nature of the pro-
cesses and the importance of disorders, this under-
standing remains largely incomplete today, despite a
long history of e�orts since the early ideas by Grif-
�th [1]. Statistical physicists get interested in these
problems rather recently because suitable tools and
concepts only become available over the past decade
or so. Recently, some fruitful results have been ob-
tained by applying concepts such as phase transi-
tions, percolation and fractal to fracture [2,3], as well
as by careful experiments and extensive simulations
[3].
Here we consider the collective behavior in the

fracture of brittle materials induced by mechanical
or thermal loading. Speci�cally, we focus on the sur-
face fracture phenemena of an overlayer coupled to
a frictional substrate. These phenomena are ubiqui-
tous, being abundantly present in processes of arti�-
cial or natural origin [4]. The resulting cracks span
a surprisingly wide range of length scales and form
intricate patterns. Physically, the tendency of the
system to lower its energy (entropy playing a minor
role) causes the relief of accumulated stresses either
by means of slipping at the interface of contact (such
as peeling o� of paint on walls due to aging), or by
cracking the overlayer directly (such as cracking on
the surface of dried lakebeds and roads). Our goal
is to study the resulting geometrical and statistical
properties of cracks in the latter kind of rupture. We
propose simple computational and analytic models
and analyse them with concepts and methods taken
from modern statistical physics.

II. MODEL

The complexity of the stress concentration and
relaxation and the interaction among many cracks
make the problem very hard to tackle analytically.
We thus introduce a simple spring-block model based
on the competition between stick-slip mechanism
and cracking [5]. It consists of an array of intercon-
nected blocks and springs, in contact with a frictional
substrate. The array models the elastic response
of the overlayer in a coarse-grained manner, while

its frictional interaction with the substrate is mod-
eled by a threshold condition. The threshold condi-
tion speci�es that a block will slip to a new equilib-
rium position if the net force F acting on it from its
neighbors exceeds a given threshold Fs. Moreover, if
the tension b on a spring exceeds a breaking thresh-
old Fc, the spring breaks and a microcrack is born.
Stress ampli�cation at the crack tip may then trig-
ger the microcrack to grow to macroscopic size and
ultimately split the sample into pieces.
Denoting the spring coe�cient by K, relaxed

spring length by l the lattice constant by a, we �nd
that to linear order in displacements (x; y) the force
acting on a block at site (i; j) is given by [6,5]

Fx = (a� l+ xE � x)KE + (xN � x)sKN +

(�a+ l + xW � x)KW + (xS � x)sKS

Fy = (yE � y)sKE + (a� l + yN � y)KN +

(yW � y)sKW + (�a+ l+ yS � y)KS; (1)

where the subscripts \ESWN" refer to the (i�1; j�1)
directions. s = 1 � l=a > 0 is the internal tensile
strain. Similar linear relationship holds for the spring
tension b.
This model has two basic elements: The stress

loading mechanism and the modes of stress relief.
There are many possible ways to load the system,
here we only discuss the simplest case [7] modeled af-
ter desiccation experiments [8]. Starting with small
K, we impose stress by slowly increasingK. As a re-
sult, all F on the blocks and b of the springs increase
proportionately. For the stress relief, the basic idea
is that when the material is increasingly strained, it
seeks to relieve at the weakest point, either within
the layer (cracking) or at the interface (slipping).
The relative dominance of one mode over another,
embodied in the ratio � � Fc=Fs, dictates the wide
range of static and dynamical properties of fracture.
Using Eq. (1), it can be shown that a slip event

causes the following redistribution of the forces
among the nearest neighbors [6,5]:
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where � = 1=(2+2s) speci�es the amount of redistri-

bution. Notice that
P

i;j
~Fi;j is unchanged by a slip,
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hence the dynamics is naturally constrained by con-

servation of the force components. For the spring-
breaking event, we simply put K = 0 thereafter for
the given spring, and then check for possible slip-
pings in the connected blocks. We assume the system
evolves in the quasi-static limit [9], where slipping
and cracking take place instantaneously during an
increase of K. This is an excellent approximation of
real situations such as in [8], where the time scale in
the driving is usually much longer than that of stress
relief. The advantage is that the dissipated dynam-
ics arising from friction during slippings do not need
to be treated explicitly [10]. The model as de�ned
by Eq. (1), (2) and cracking events under the quasi-
static limit is then reduced to a coupled-map lattice
which can be updated e�ciently on a computer.

(b)

(a)

FIG. 1. Typical patterns for L = 100, for fs; �g
equal to (a) f0:5; 1:6g, large internal strain with a weak

strength; and (b) f0:1; 6g, small strain with a moderate

strength.

III. RESULT

First we need to identify the control parameters.
By choosing the units of length, force and time, we
may set a = 1 = Fs (hence l = 1 � s, Fc = �), and
time t � K, since K increases monotonically. This
leaves us with a minimal set fs; �g, which de�nes our
parameter space on which the phase diagram may be
drawn. An immediate implication is that a strong
overlayer (large Fc) is equivalent to having a weak
substrate coupling (small Fs), when physical quanti-
ties are expressed in the present units. For simplicity,
from now on we will interpret � as material strength.
Fig. 1 displays two snapshots of the crack pattern

for two di�erent values of fs; �g, corresponding to
the case of a large strain with a weak material in
Fig. 1(a), and a small strain with moderate strength
in Fig. 1(b). Several qualitative di�erences are evi-
dent: The cracks in Fig. 1(a) are more tenuous and
isolated than in Fig. 1(b). Less stress ampli�cation
at crack tips due to smaller radius of curvature re-
sults in shorter cracks and a more di�used network.
These are consistent with the fact that a smaller �
also corresponds to a stronger substrate coupling Fs,
hence more limitation of stress ampli�cation, pro-
hibiting crack propagation.
To quantify the di�erent behaviors, we introduce

the crack size c as the number of consecutive broken
springs in a given spring-breaking event, and com-
pute the cumulative distribution function D>(c) for
having a crack size greater than or equal to c. On the
fs; �g-plane, while the system shows little di�erence
for di�erent � at �xed, small strain s, it exhibits a
striking phase transition at large, �xed s when � is
varied. There are two regimes [5]:
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FIG. 2. Cumulative distribution of crack size per

event. Note short (long)-range correlation below (above)

�� � 2:35.

1. Isolated cracks| This is the case when � is
small, as in Fig. 1(a). D>(c) decays expo-
nentially (see Fig. 2). It implies short-range
spatial correlation in the cracks. This result
can be understood on the basis of the e�ect
of � on the growth of correlation in the stress
�eld �(~r; t). Initially, the correlation is very
short-range due to initial randomness in the

2



positions of the blocks. Correlation length is
R = O(1). Because these randomness is an-
nealed, it coarsens and R grows as a result of
slippings. According to Eq. (2), slippings dis-

tribute ~F conservatively and hence build up
spatial correlations in the forces or the stress
�eld, in analogy to domain growth in binary
mixture via spinodal decomposition [11], The
stress �eld here plays the same role as the con-
centration �eld in binary mixture. However,
a small � = Fc means that cracks soon ap-
pear [12], before the domains have a chance to
grow to large sizes. The cracks in turn cannot
propagate very far because there are still small
length-scale randomness or uctuations in the
stress �eld.

2. Correlated cracks| The opposite is true for
large � > ��. Here the slippings dominate
and R manages to grow up to the system size
L. When the cracks �nally appear within this
highly correlated stressed environment, they
propagate far to break the sample in a violent
catastrophe. Consequently, D>(c) shows long-
range order (see Fig. 2). Intuitively, we can un-
derstand why we have catastrophic cracks for
large �. That is because large � correponds to
a small Fs, and a small Fs encourages slippings
to occur, which in turn ampli�es stress concen-
tration at crack tips. Thus, given a long-range
correlated stress �eld (cf. [12]), large stress am-
pli�cations drive the system to an instability.
In the limit Fs ! 0, the layer simply decouples
from the substrate and we recover the Gri�th
case [1], where the stress �elds are indeed long-
range, decaying by power laws.
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FIG. 3. Cumulative distribution of crack size per event

showing power-law decay D>(c) � c�0:63 at � = ��.

The transition is reminiscent of ordinary phase
transitions in thermodynamic systems [13]. The
main question is whether our transition is �rst or
continuous order. We �nd that there exists an s-
dependent critical value �� at which the correlation
length diverges, manifesting in a power-law decay of
D>(c). This is shown in Fig. 3. The physical mean-
ing of this power law is that the network of cracks per

event reaches a percolating cluster as � ! �� from
below. This is illustrated by the snapshots in Fig. 4.
Hence we conclude that the transition is continuous.
The exponent � assiciated with D>(c) � c�� ap-
pears to be nonuniversal. It varies from 0:75� 0:05
to 0:63� 0:02 as s changes from 0.8 to 0.5. Another
signature of the phase transition appears in the dis-
tribution P (f) of fragment sizes f [5]. For s < 0:4,
the qualitative changes seem to disappear, so that
there could be only one phase for all �. The physical
reason for this disappearance can be traced to the
dependence of stress uctuations on s [5]: smaller s
has larger uctuations, hence suppressing the above
e�ect of correlation on crack propagation.
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FIG. 4. Crack pattern for L = 100 at s = 0:5, � = 2:3,

near transition point �� = 2:35, showing almost perco-

lating cracks.

It is interesting to note that similar transitions
have been observed in the functional form of P (f)
in fragmentation experiments [14]. However, the re-
semblence may be super�cial as the nature of the
transition may well depend sensitively on the loading
scheme, which is usually extremely fast in fragmen-
tations (such as by impact or explosion).
In a related work, the e�ect of disorder in the

Gri�th limit (i.e., without stress transfer limitation
among the elements, such as the blocks above) is
studied analytically by means of an idealized model
consisting of a bundle of parallel �bers [15]. In that
model, when one �ber breaks, the relieved stress is
equally transferred to the remaining �bers. Disor-
der is introduced in the form of a broad distribution
of breaking thresholds Fc for the �bers. With suf-
�cient disorder and the existence of a minimum Fc,
we discovered a tri-critical rupture behavior, sepa-
rating in phase space a �rst-order and a continuous
regime [15]. Although it is a mean-�eld model, the
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result is consistent with simulations using the more
realistic spring-block model. This �nding explains
why some systems exhibit clearer precursors before
global rupture than others, and hence is useful for
failure prediction analyses.

IV. CONCLUSION

In summary, we have achieved our initial goal of
formulating a simple yet realistic model of surface
fracture, characterized by a minimal set of control
parameters. A novel phase transition is found to be
induced by the substrate coupling. The simplicity of
the model allow us to understand the surface frac-
ture phenomena in a physical and intuitive way. It
demonstrates that the model is suitable for investi-
gating the properties of cracks and their propagation.
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